Albic Podzols of Boreal Pine Forests of Russia: Soil Organic Matter, Physicochemical and Microbiological Properties across Pyrogenic History
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area Description and Soil Sampling
2.2. Geobotanical and Dendrochronological Studies
2.3. General Soil Analysis
2.4. Soil Organic Matter, Water-Soluble Organic Carbon and Nitrogen, and PAH Contents
2.5. Microbiological Parameters
2.6. Statistics
3. Results
3.1. Vegetation at the Study Sites and Pyrogenic History in the Study Areas
3.2. Morphological Properties of Soils
3.3. Physicochemical Properties of Soils
3.4. Carbon and Nitrogen Contents
3.5. PAH Contents
3.6. Microbiological Properties
4. Discussion
4.1. Vegetation Dynamics and Dendrochronology
4.2. Morphological and Chemical Properties
4.3. Soil Organic Matter of Studied Soils
4.4. Microbiological Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ivanov, A.L.; Shoba, S.A. (Eds.) Unified State Register of Soil Resources of Russia. Version 1.0; Dokuchaev Soil Science Institute: Moscow, Russia, 2014; 768p. (In Russian) [Google Scholar]
- Sannikov, S.N. Ecology and Geography of Scots Pine Natural Regeneration; Nauka: Moscow, Russia, 1992; 264p. (In Russian) [Google Scholar]
- Bond-Lamberty, B.; Peckham, S.; Ahl, D.; Gower, S.T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 2007, 450, 89–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santin, C.; Doerr, S.H. Fire effects on soils: The human dimension. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mergelov, N.; Petrov, D.; Zazovskaya, E.; Dolgikh, A.; Golyeva, A.; Matskovsky, V.; Bichurin, R. Soils in karst sinkholes record the Holocene history of local forest fires at the north of European Russia. Forests 2020, 11, 1268. [Google Scholar] [CrossRef]
- Köster, K.; Aaltonen, H.; Berninger, F.; Heinonsalo, J.; Köster, E.; Ribeiro-Kumara, C.; Sun, H.; Tedersoo, L.; Zhou, X.; Pumpanen, J. Impacts of wildfire on soil microbiome in Boreal environments. Environ. Sci. Health 2021, 22, 100258. [Google Scholar] [CrossRef]
- Ponomareva, T.V.; Litvintsev, K.Y.; Finnikov, K.A.; Yakimov, N.D.; Sentyabov, A.V.; Ponomarev, E.I. Soil Temperature in Disturbed Ecosystems of Central Siberia: Remote Sensing Data and Numerical Simulation. Forests 2021, 12, 994. [Google Scholar] [CrossRef]
- Evdokimenko, M.D. Pyrogenic disturbances of the hydrothermal regime of cryogenic soils under light coniferous forests in southeastern Siberia. Eurasian Soil Sci. 2013, 46, 117–126. [Google Scholar] [CrossRef]
- Nadporozhskaya, M.A.; Pavlov, B.A.; Mirin, D.M.; Yakkonen, K.L.; Sedova, A.M. The influence of forest fires on the formation of the profile of podzols. BIOSFERE 2020, 12, 32–44. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Bezkorovainaya, I.N.; Ivanova, G.A.; Tarasov, P.A.; Sorokin, N.D.; Bogorodskaya, A.V.; Ivanov, V.A.; Konard, S.G.; McRae, D.J. Pyrogenic Transformation of Pine Stand Soil in Middle Taiga of Krasnoyarsk Region. Contemp. Probl. Ecol. 2005, 12, 143–152. [Google Scholar]
- Dymov, A.A.; Dubrovskii, Y.A.; Gabov, D.N. Pyrogenic changes in iron illuvial Podzols in the middle taiga of the Komi Republic. Eurasian Soil Sci. 2014, 47, 47–56. [Google Scholar] [CrossRef]
- Maksimova, E.; Abakumov, E. Soil organic matter quality and composition in a postfire Scotch pine forest in Tolyatti, Samara region. Biol. Commun. 2017, 62, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Loiko, S.V.; Kuzmina, D.M.; Dudko, A.A.; Konstantinov, A.O.; Vasilyeva, Y.A.; Kurasova, A.O.; Lim, A.G.; Kulizhsky, S.P. Charcoals of albic podzols of the middle taiga of Western Siberia as indicator of ecosystem history. Eurasian Soil Sci. 2022, 55, 176–192. [Google Scholar] [CrossRef]
- Dymov, A.A.; Startsev, V.V.; Milanovsky, E.Y.; Valdes-Korovkin, I.A.; Farkhodov, Y.R.; Yudina, A.V.; Donnerhack, O.; Guggenbergerd, G. Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia). Geoderma 2021, 404, 115278. [Google Scholar] [CrossRef]
- Bryanin, S.V.; Danilov, A.V.; Susloparova, Y.S.; Ivanov, A.V. Pyrogenic Carbon Pools of the Upper Amur Region. Russ. J. For. Sci. 2022, 3, 285–296. [Google Scholar] [CrossRef]
- Bird, M.I.; Wynn, J.G.; Saiz, G.; Wurster, C.M.; McBeath, A. The Pyrogenic Carbon Cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 273–298. [Google Scholar] [CrossRef]
- Chebykina, E.; Abakumov, E. Characteristics of humic acids isolated from burned and unburned topsoils in sub-boreal Scotch pine forests by 13C-NMR spectroscopy. One Ecosyst. 2022, 7, e82720. [Google Scholar] [CrossRef]
- Eckdahl, J.A.; Kristensen, J.A.; Metcalfe, D.B. Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire. Biogeosciences 2022, 19, 2487–2506. [Google Scholar] [CrossRef]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. Black carbon in soils: The use of benzenecarboxylic acids as specific markers. Org. Geochem. 1998, 29, 811–819. [Google Scholar] [CrossRef]
- Brodowski, S.; Rodionov, A.; Haumaier, L.; Glaser, B.; Amelung, W. Revised black carbon assessment using benzene polycarboxylic acids. Org. Geochem. 2005, 36, 1299–1310. [Google Scholar] [CrossRef]
- Guggenberger, G.; Rodionov, A.; Shibistova, O.; Grabe, M.; Kasansky, O.A.; Fuchs, H.; Mikheyeva, N.; Zrazhevskaya, G.; Flessa, H. Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Glob. Chang. Biol. 2008, 14, 1367–1381. [Google Scholar] [CrossRef]
- Dymov, A.A.; Gabov, D.N. Pyrogenic alterations of Podzols at the North-East European part of Russia: Morphology, carbon pools, PAH content. Geoderma 2015, 241–242, 230–237. [Google Scholar] [CrossRef]
- Dymov, A.A.; Gorbach, N.M.; Goncharova, N.N.; Karpenko, L.V.; Gabov, D.N.; Kutyavin, I.N.; Startsev, V.V.; Mazur, A.S.; Grodnitskaya, I.D. Holocene and recent fires influence on soil organic matter, microbiological and physico-chemical properties of peats in the European North-East of Russia. Catena 2022, 217, 106449. [Google Scholar] [CrossRef]
- Startsev, V.V.; Yakovleva, E.V.; Kutyavin, I.N.; Dymov, A.A. Fire impact on the carbon pools and basic properties of Retisols in native spruce forests of European North and Central Siberia of Russia. Forests 2022, 13, 1135. [Google Scholar] [CrossRef]
- Rey-Salgueiro, L.; Martínez-Carballo, E.; Merino, A.; Vega, J.A.; Fonturbel, M.T.; Simal-Gandara, J. Polycyclic Aromatic Hydrocarbons in Soil Organic Horizons Depending on the Soil Burn Severity and Type of Ecosystem. Land Degrad. Dev. 2018, 29, 2112–2123. [Google Scholar] [CrossRef]
- Gennadiev, A.N.; Tsibart, A.S. Pyrogenic polycyclic aromatic hydrocarbons in soils of reserved and anthropogenically modified areas: Factors and features of accumulation. Eurasian Soil Sci. 2013, 46, 28–36. [Google Scholar] [CrossRef]
- Ravindra, K.; Becs, L.; Wauters, E.; Hoog, J.; Deutsch, F.; Roekens, E.; Bleux, B.; Berghmans, P.; Grieken, R.V. Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos. Environ. 2006, 40, 771–785. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Sapozhnikov, A.P.; Karpachevskii, L.O.; Il’ina, L.S. Postpyrogenic soil formation in Siberian pine–broad leaved forests. Lesn. Vestn. 2001, 1, 132–164. (In Russian) [Google Scholar]
- Krasnoshchekov, Y.N.; Cherednikova, Y.S. Postpyrogenic transformation of soils under Pinus sibirica forests in the southern Lake Baikal basin. Eurasian Soil Sci. 2012, 45, 929–938. [Google Scholar] [CrossRef]
- Dymov, A.A. Soil Successions at Boreal Forests of the Komi Republic; GEOS: Moscow, Russia, 2020; (In Russian). [Google Scholar] [CrossRef]
- Krasnoshchekov, Y.N.; Cherednikova, Y.S. Postpyrogenic Variability of Forest Soils in the Mountainous Baikal Region; SBRAS: Novosibirsk, Russia, 2022; (In Russian). [Google Scholar] [CrossRef]
- Ipatov, V.S.; Mirin, D.M. Description of Phythocoenosis. Metodical Recommendations; St. Petersburg State University Press: St. Petersburg, Russia, 2008. (In Russian) [Google Scholar]
- Madany, M.N.; Swetnam, T.W.; West, N.E. Comparison of two approaches for determining fire dates from tree scars. For. Sci. 1982, 28, 856–861. [Google Scholar]
- Fritts, H.C. Dendroclimatology and dendroecology. Quat. Res. 1971, 1, 419–449. [Google Scholar] [CrossRef]
- Grissino-Mayer, H.A. Manual and tutorial for the proper use of an increment borer. Tree-Ring Res. 2003, 59, 63–79. [Google Scholar]
- Rinn, F. Tsap; Version 3.5. Reference Manual. Computer Program for Tree-Ring Analysis and Presentation; Frank Rinn: Helenberg, Germany, 1996; 264p. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 44, 69–75. [Google Scholar] [CrossRef]
- Grissino-Mayer, H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 2001, 57, 205–221. [Google Scholar]
- Van Reeuwijk, L.P. (Ed.) Procedures for Soil Analysis. Technical Paper, 9; ISRIC: Wageningen, The Netherlands, 2002. [Google Scholar]
- Dymov, A.A.; Gabov, D.N.; Milanovskii, E.Y. 13C-NMR, PAHs, WSOC and repellence of fire affected soils (Albic Podzols, Russia). Environ. Earth Sci. 2017, 76, 275. [Google Scholar] [CrossRef]
- Yakovleva, E.V.; Gabov, D.N.; Vasilevich, R.S.; Goncharova, N.N. Participation of Plants in the Formation of Polycyclic Aromatic Hydrocarbons in Peatlands. Eurasian Soil Sci. 2020, 53, 317–329. [Google Scholar] [CrossRef]
- Anderson, T.H.; Domsch, K.H. Application of eco-physiological quotients qCO2 and qD on microbial biomass from soils of different cropping histories. Soil Biol. Biochem. 1990, 22, 251–255. [Google Scholar] [CrossRef]
- Ananyeva, N.D. Microbiological Aspects of Self-Cleaning and Soil Stability; Nauka: Moscow, Russia, 2003. (In Russian) [Google Scholar]
- Sparling, G.T. The substrate-induced respiration method. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: Cambridge, MA, USA, 1995; pp. 397–404. [Google Scholar]
- Grodnitskaya, I.D.; Karpenko, L.V.; Syrtsov, S.N.; Prokushkin, A.S. Microbiological Parameters and Peat Stratigraphy of Two Types of Bogs in the Northern Part of the Sym–Dubches Interfluve (Krasnoyarsk Krai). Biol. Bull. 2018, 45, 160–170. [Google Scholar] [CrossRef]
- Grodnitskaya, I.D.; Karpenko, L.V.; Pashkeeva, O.E.; Goncharova, N.N.; Startsev, V.V.; Baturina, O.A.; Dymov, A.A. Impact of Forest Fires on the Microbiological Properties of Oligotrophic Peat Soils and Gleyed Peat Podzols of Bogs in the Northern Part of the Sym-Dubches Interfluve, Krasnoyarsk Region. Eurasian Soil Sci. 2022, 55, 460–473. [Google Scholar] [CrossRef]
- Bates, S.T.; Berg-Lyons, D.; Caporaso, J.G.; Walters, W.A.; Knight, R.; Fierer, N. Examining the global distribution of dominant archaeal populations in soil. ISME J. 2010, 5, 908–917. [Google Scholar] [CrossRef] [Green Version]
- Comeau, A.M.; Li, W.K.W.; Tremblay, J.-E.; Carmack, E.C.; Lovejoy, C. Arctic Ocean Microbial Community Structure before and after the 2007 Record Sea Ice Minimum. PLoS ONE 2011, 6, e27492. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, E.S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. R J. 2016, 8, 352–359. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Degteva, S.V.; Dubrovskiy, Y.A. Forests in the Basin of the Ilych River in the Pechoro-Ilychsky Reserve; Nauka: St. Petersburg, Russia, 2014; 291p. (In Russian) [Google Scholar]
- Kukavskaya, E.A.; Buryak, L.V.; Kalenskaya, O.P.; Zarubin, D.S. Transformation of the ground cover after surface fires and estimation of pyrogenic carbon emissions in the dark-coniferous forests of Central Siberia. Contemp. Probl. Ecol. 2017, 10, 62–70. [Google Scholar] [CrossRef]
- Ryzhkova, N.I.; Kutyavin, I.N.; Pinto, G.; Kryshen, A.M.; Aleinikov, A.A.; Vozmitel, F.K.; Drobyshev, I.V. Dynamics of fire activity in the pine forests of the Pechora-Ilychsky reserve according to the data of dendrochronological studies. Proc. Pechora-Ilychsky Reserve 2020, 19, 101–106. (In Russian) [Google Scholar]
- Niklasson, M.; Drakenberg, B.A. 600-year tree-ring fire history from NorraKvills National Park, southern Sweden: Implications for conservation strategies in the hemiboreal zone. Biol. Conserv. 2001, 101, 63–71. [Google Scholar] [CrossRef]
- Rolstad, J.; Blanck, Y.L.; Storaunet, K.O. Fire history in a western Fennoscandian boreal forest as influenced by human land use and climate. Ecol. Monogr. 2017, 87, 219–245. [Google Scholar] [CrossRef] [Green Version]
- Komin, G.E. Influence of Fires on the Age Structure and Growth of Northern Taiga Boggy Pine Forests in the Trans-Urals. Type and Dynamics of Forests in the Urals and Trans-Urals; Academy of Sciences of the USSR. Ural branch: Sverdlovsk, Russia, 1967; pp. 207–222. (In Russian) [Google Scholar]
- Gorshkov, V.V.; Stavrova, N.I.; Bakkal, I.Y. Post-fire restoration of forest litter in boreal pine forest. Lesovedenie 2005, 3, 37–45. (In Russian) [Google Scholar]
- Listov, A.A. Bory Belomoshniki (Burs Lichen); Agropromizdat: Moscow, Russia, 1986; 81p. (In Russian) [Google Scholar]
- Ivanova, G.A.; Konard, S.G.; Makrae, D.D. (Eds.) Influence of Fires on the Ecosystem Components of Middle Taiga Pine Forests in Siberia; Nauka (Science): Novosibirsk, Russia, 2014; 232p. (In Russian) [Google Scholar]
- Kharuk, V.I.; Dvinskaya, M.L.; Petrov, I.A.; Im, S.T.; Ranson, K.J. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals. Reg. Environ. Chang. 2016, 16, 2389–2397. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.I.; Ranson, K.J.; Dvinskaya, M.L. Wildfires dynamic in the larch dominance zone. Geophys. Res. Lett. 2008, 35, L01402. [Google Scholar] [CrossRef]
- Bakhmet, O.N. Carbon storages in soils of Pine and Spruce forests in Karelia. Contemp. Probl. Ecol. 2018, 11, 697–703. [Google Scholar] [CrossRef]
- Gyninova, A.B.; Kulikov, A.I.; Gonchikov, B.N.; Dyrzhinov, Z.D.; Gyninova, B.D. Post-pyrogenic evolution of sandy soils under pine forests in the Baikal region. Eurasian Soil Sci. 2019, 52, 414–425. [Google Scholar] [CrossRef]
- Ide, J.; Ohashi, M.; Köster, K.; Berninger, F.; Miura, I.; Makita, N.; Yamase, K.; Palviainen, M.; Pumpanen, J. Molecular composition of soil dissolved organic matter in recently-burned and long-unburned boreal forests. Int. J. Wildland Fire 2020, 29, 541–547. [Google Scholar] [CrossRef]
- Startsev, V.V.; Dymov, A.A.; Prokushkin, A.S. Soils of Postpyrogenic Larch Stands in Central Siberia: Morphology, Physicochemical Properties, and Specificity of Soil Organic Matter. Eurasian Soil Sci. 2017, 50, 885–897. [Google Scholar] [CrossRef]
- Krasnoshchekov, Y.N. Postpyrogenic variability of litter in mountain forest of Baikal region. Eurasian Soil Sci. 2019, 52, 258–270. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91–118. [Google Scholar] [CrossRef]
- Krasilnikov, P.V. Stable carbon compounds in soils: Their origin and functions. Eurasian Soil Sci. 2015, 48, 997–1008. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 2000, 14, 777–793. [Google Scholar] [CrossRef]
- Preston, C.M.; Schmidt, M.W.I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 2006, 3, 397–420. [Google Scholar] [CrossRef] [Green Version]
- Czimczik, C.I.; Schmidt, M.W.I.; Schulze, E.D. Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests. Eur. J. Soil Sci. 2005, 56, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Czimczik, C.I.; Masiello, C.A. Controls on black carbon storage in soils. Glob. Biogeochem. Cycles 2007, 21, 1–8. [Google Scholar] [CrossRef]
- Masiello, C.A. New directions in black carbon organic geochemistry. Mar. Chem. 2004, 92, 201–213. [Google Scholar] [CrossRef]
- Hockaday, W.C.; Grannas, A.M.; Kim, S.; Hatcher, P.G. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org. Geochem. 2006, 37, 501–510. [Google Scholar] [CrossRef]
- García-Falcón, M.S.; Soto-González, B.; Simal-Gándara, J. Evolution of the 15 Concentrations of Polycyclic Aromatic Hydrocarbons in Burnt Woodland Soils. Environ. Sci. Technol. 2006, 40, 759–763. [Google Scholar] [CrossRef]
- Campos, I.; Abrantes, N.; Pereira, P.; Micaelo, A.C.; Vale, C.; Keizer, J.J. Forest fires as potential triggers for production and mobilization of polycyclic aromatic hydrocarbons to the terrestrial ecosystem. Land Degrad. Dev. 2019, 30, 2360–2370. [Google Scholar] [CrossRef]
- Manzetti, S. Polycyclic Aromatic Hydrocarbons in the Environment: Environmental Fate and Transformation. Polycycl. Aromat. Compd. 2013, 33, 311–330. [Google Scholar] [CrossRef]
- Vasconcelos, U.; de França, F.P.; Oliveira, F.J.S. Removal of high-molecular weight polycyclic aromatic hydrocarbons. Quim. Nova 2011, 34, 218–221. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Bu, Z.-J.; Wang, S. Degradation of polycyclic aromatic hydrocarbons (PAHs) during Sphagnum litters decay. Environ. Sci. Pollut. Res. 2018, 25, 18642–18650. [Google Scholar] [CrossRef]
- Sihi, D.; Ingletta, P.W.; Inglett, K.S. Warming rate drives microbial nutrient demand and enzyme expression during peat decomposition. Geoderma 2019, 336, 12–21. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Pies, C.; Yang, Y.; Hofmann, T. Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Floodplain Soils of the Mosel and Saar River. J. Soils Sediments 2007, 7, 216–222. [Google Scholar] [CrossRef]
- Froehner, S.; de Souza, D.B.; Machado, K.S.; Falcao, F.; Fernandes, C.S.; Bleninger, T.; Neto, D.M. Impact of coal tar pavement on polycyclic hydrocarbon distribution in lacustrine sediments from non-traditional sources. Int. J. Environ. Sci. Technol. 2012, 9, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Tobiszewski, M.; Namiesnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lv, J.; Zhang, W.; Liu, S.; Feng, J. Polycyclic aromatic hydrocarbon (PAH) pollution in agricultural soil in Tianjin, China: A spatio-temporal comparison study. Environ. Earth Sci. 2015, 74, 2743–2748. [Google Scholar] [CrossRef]
- Mizwar, A.; Trihadiningrum, Y. PAH Contamination in Soils Adjacent to a Coal-Transporting Facility in Tapin District, South Kalimantan, Indonesia. Arch. Environ. Contam. Toxicol. 2015, 69, 62–68. [Google Scholar] [CrossRef]
- Nemirovskaya, I.A. Hydrocarbons in the White Sea: Routes and forms of migration and genesis. Geochem. Int. 2005, 43, 493–504. [Google Scholar]
- Gabov, D.N.; Beznosikov, V.A.; Kondratenok, B.M. Polycyclic aromatic hydrocarbons in background podzolic and gleyic peat-podzolic soils. Eurasian Soil Sc. 2007, 40, 256–264. [Google Scholar] [CrossRef]
- Lu, G.-N.; Danga, Z.; Tao, X.-Q.; Yanga, C.; Yi, X.-Y. Estimation of Water Solubility of Polycyclic Aromatic Hydrocarbons Using Quantum Chemical Descriptors and Partial Least Squares. QSAR Comb. Sci. 2008, 27, 618–626. [Google Scholar] [CrossRef]
- Gabov, D.N.; Beznosikov, V.A. Polycyclic aromatic hydrocarbons in tundra soils of the Komi republic. Eurasian Soil Sci. 2014, 47, 18–25. [Google Scholar] [CrossRef]
- Garcia, R.; Diaz-Somoano, M.; Calvo, M.; Lopez-Anton, M.A.; Suarez, S.; Suarez Ruiz, I.; Martinez-Tarazona, M.R. Impact of a semi-industrial coke processing plant in the surrounding surface soil. Part II: PAH content. Fuel Process. Technol. 2012, 104, 245–252. [Google Scholar] [CrossRef]
Site | Total Projective Cover (TCP) and Dominant Species of Lower Layers of Plant Communities |
---|---|
Zotino (Krasnoyarsk region), Central Siberia (CS) | |
45 CS | Dwarf-shrub herb layer (TPC 30%), Vaccinium vitis-idaea, Ledum palustre, Vaccinium uliginosum Moss-lichen layer (TPC 90%), Cladonia arbuscula, Cladonia rangiferina, Cladonia crispata, Pleurozium schreberi |
79 CS | Dwarf-shrub herb layer (TPC 25%), Vaccinium vitis-idaea. Calamagrostis obtusata, Diphasium complanatum, Vaccinium myrtillus Moss-lichen layer (TPC 80%), Cladonia arbuscula, Cladonia rangiferina, Cladonia crispata, Pleurozium schreberi |
121 CS | Dwarf-shrub herb layer (TPC 5%), Vaccinium myrtillus, Vaccinium vitis-idaea, Ledum palustre, Diphasium complanatum, Empetrum hermaphroditum Moss-lichen layer (TPC 90%), Cladonia arbuscula, Cladonia rangiferina |
Pechora-Ilychsky nature reserve (Komi Republic), European North (EN) | |
109 EN | Dwarf-shrub herb layer (TPC 30%–40%), Vaccinium vitis-idaea, Vaccinium myrtillus, Calamagrostis purpurea, Avenella flexuosa, Diphasiastrum complanatum Moss-lichen layer (TPC 80%–90%), Cladonia stellaris, Cladonia rangiferina, Cladonia arbuscula, Pleurozium schreberi, Ptilium crista-castrensis |
113 EN | Dwarf-shrub herb layer (TPC 40%–50%), Vaccinium vitis-idaea, Vaccinium myrtillus, Diphasiastrum complanatum Moss-lichen layer (TPC 80%–90%), Cladonia stellaris, Cladonia rangiferina, Cladonia arbuscula, Pleurozium schreberi, Ptilium crista-castrensis |
131 EN | Dwarf-shrub herb layer (TPC 50%–60%), Vaccinium vitis-idaea Moss-lichen layer (TPC 80%), Cladonia stellaris, Cladonia rangiferina, Cladonia arbuscula, Pleurozium schreberi, Polytrichum commune |
Site | Dates of Fires | Accounting Year | Fire Interval, Years | Average Frequency of Fires, Years | The Last Fire, Years | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1–2 | 2–3 | 3–4 | 4–5 | ||||
Central Siberia (CS) | ||||||||||||
45 CS | 1974 | 1953 | 1939 | 1911 | 1869 | 2019 | 21 | 14 | 28 | 42 | 26 | 45 |
79 CS | 1940 | 1898 | 1873 | – | – | 2019 | 42 | 25 | – | – | 34 | 79 |
121 CS | 1898 | 1825 | 1792 | 1766 | 1663 | 2019 | 73 | 33 | 26 | 103 | 59 | 121 |
European North (EN) | ||||||||||||
109 EN | 1910 | 1904 | 1880 | 1830 | – | 2019 | 6 | 24 | 50 | – | 27 | 109 |
113 EN | 1911 | 1906 | 1869 | 1841 | 1772 | 2019 | 5 | 37 | 28 | 69 | 45 | 113 |
131 EN | 1887 | 1805 | 1785 | 1744 | 1727 | 2018 | 82 | 20 | 41 | 17 | 40 | 131 |
Site | Horizon | Depth, cm | 2-Ring | 3-Ring | 4-Ring | 5-Ring | 6-Ring | ∑PAHs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NP | FL | PHE | ANT | FLA | PYR | BaA | CHR | BbF | BkF | BaP | DahA | BghiP | IcdP | ||||
Zotino (Krasnoyarsk region), Central Siberia (CS) | |||||||||||||||||
45 CS | Oe,pyr | 3–5 | 127 ± 64 | 8 ± 3 | 76 ± 38 | 4 ± 2 | 17 ± 8 | 5 ± 2.3 | 2 ± 0.8 | 9.2 ± 5 | 7.3 ± 3 | 2 ± 1 | 5.3 ± 3 | 3.4 ± 1.6 | – | – | 266.1 |
Epyr | 5–11 | 6.5 ± 3.2 | 1.3 ± 0.5 | 6.7 ± 3.3 | 0.4 ± 0.2 | 2.6 ± 1.2 | 0.8 ± 0.4 | 0.3 ± 0.1 | 1 ± 0.5 | – | – | – | – | – | – | 19.6 | |
79 CS | Oe,pyr | 1–2 | 75 ± 37 | 7 ± 3 | 121 ± 27 | 5 ± 3 | 9.5 ± 4.4 | 5.4 ± 2.5 | 1.5 ± 0.6 | 2.5 ± 1.3 | 6.1 ± 2.6 | 3.2 ± 1.5 | 3.6 ± 1.8 | 15 ± 7 | 1.8 ± 0.8 | – | 256.6 |
Epyr | 2–6 | 8.9 ± 4.4 | 1.2 ± 0.5 | 6.8 ± 3.4 | 0.3 ± 0.1 | 3.5 ± 1.6 | 2.1 ± 0.9 | – | 1.1 ± 0.5 | – | – | – | – | – | – | 23.8 | |
121 CS | Oe,pyr | 2–4 | 191 ± 96 | 9 ± 4 | 95 ± 21 | 3.8 ± 2 | 9 ± 4 | 4 ± 1.8 | 0.8 ± 0.3 | 23 ± 12 | 62 ± 26 | 0.9 ± 0.4 | 5.8 ± 2.9 | 29 ± 14 | – | – | 432.7 |
Epyr | 4–10 | 13 ± 7 | 0.7 ± 0.3 | 7.5 ± 3.7 | 1 ± 0.5 | 1.7 ± 0.8 | 0.7 ± 0.3 | 0.4 ± 0.2 | 2.2 ± 1.1 | – | – | – | – | – | – | 27.5 | |
Pechora-Ilychsky nature reserve (Komi Republic). European North (EN) | |||||||||||||||||
109 EN | Oe,pyr | 2–4 | 184 ± 92 | 13 ± 5 | 161 ± 35 | 4.2 ± 2 | 22 ± 10 | 5.8 ± 2.7 | 2.6 ± 1.1 | 31 ± 16 | 14 ± 6 | 3.2 ± 1.5 | 8.7 ± 4.3 | 14 ± 6 | 3.9 ± 1.7 | 18 ± 10 | 483.0 |
Epyr | 4–7 | 16 ± 8 | 3.6 ± 1.4 | 40 ± 20 | 3.1 ± 1.6 | 5.8 ± 2.7 | 7.2 ± 3.3 | 1.3 ± 0.5 | 7.4 ± 3.8 | 5.2 ± 2.1 | 0.3 ± 0.1 | 2.7 ± 1.3 | 3.8 ± 1.8 | 0.7 ± 0.3 | – | 97.0 | |
113 EN | Oe,pyr | 2–4 | 130 ± 65 | 16 ± 6 | 272 ± 60 | 7.2 ± 3.6 | 31 ± 14 | 18.5 ± 8.5 | 2.3 ± 1.0 | 27 ± 14 | 47 ± 20 | 4.9 ± 2.4 | 7.2 ± 3.6 | 14 ± 7 | 4.6 ± 2.0 | 41 ± 22 | 622.9 |
Epyr | 4–7 | 13 ± 7 | 2.9 ± 1.2 | 25 ± 12 | 1.5 ± 0.7 | 4.9 ± 2.3 | 4 ± 2 | 0.4 ± 0.2 | 0.9 ± 0.5 | – | 0.2 ± 0.1 | 0.4 ± 0.2 | – | – | – | 53.4 | |
131 EN | Oe,pyr | 1–3 | 61 ± 31 | 3.7 ± 1.5 | 159 ± 35 | 5 ± 3 | 18 ± 8 | 2.6 ± 1.2 | 1.3 ± 0.5 | 7 ± 4 | 49 ± 20 | 2.6 ± 1.1 | 5.2 ± 2.6 | – | 1.6 ± 0.7 | – | 315.8 |
Epyr | 3–7 | 21 ± 10 | 3.4 ± 1.4 | 32 ± 16 | 1.7 ± 1 | 4.7 ± 2.2 | 4.7 ± 2.2 | 0.7 ± 0.3 | 3.7 ± 1.9 | 3 ± 1.3 | 0.5 ± 0.2 | 1.3 ± 1 | – | – | – | 76.6 |
Taxonomic Position, Phylum | Fraction of OTU from Total Number of Obtained Sequences (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zotino (Krasnoyarsk Region), Central Siberia (CS) | Pechora-Ilychsky Nature Reserve (Komi Republic), European North (EN) | |||||||||||
45 CS | 79 CS | 121 CS | 109 EN | 113 EN | 131 EN | |||||||
Horizon, Depth, cm | ||||||||||||
Oe,pyr 3–5 | Epyr 5–11 | Oe,pyr 1–2 | Epyr 2–6 | Oe,pyr 0–3 | Epyr 4–10 | Oe,pyr 2–4 | Epyr 4–7 | Oe,pyr 2–4 | Epyr 4–7 | Oe,pyr 1–3 | Epyr 6–7 | |
Bacteria | ||||||||||||
Proteobacteria | 27.68 | 27.04 | 28.31 | 20.14 | 20.14 | 15.84 | 17.98 | 19.77 | 24.59 | 21.3 | 28.38 | 18.66 |
Actinobacteria | 11.86 | 9.72 | 17.97 | 7.77 | 10.31 | 9.6 | 13.14 | 7.9 | 9.03 | 9.26 | 24.57 | 15.05 |
Acidobacteria | 12.1 | 8.62 | 10.35 | 7.49 | 8.7 | 6.61 | 9.63 | 10.78 | 9.02 | 8.78 | 15.91 | 6.24 |
Planctomycetes | 8.17 | 16.86 | 8.69 | 21.86 | 9.2 | 13.52 | 16.09 | 13.1 | 18.55 | 10.57 | 5.97 | 16.43 |
Verrucomicrobia | 1.55 | 2.28 | 0.89 | 2.21 | 3.41 | 1.3 | 0.65 | 2.19 | 0.95 | 0.88 | 0.26 | 1.02 |
Bacterioidetes | 2.42 | 1.49 | 2.52 | 0.35 | 0.84 | 1.05 | 0.36 | 0.86 | 1.07 | 1.59 | 0.67 | 0.66 |
Cyanobacteria | 0.14 | 0.16 | 0.26 | 0.16 | 0.31 | 0.13 | 0 | 0.05 | 0.06 | 0.09 | 0.095 | 0.03 |
Firmicutes | 0.09 | 0.31 | 0.37 | 1.01 | 0.35 | 0.61 | 0.02 | 0.1 | 0.81 | 0.28 | 1.31 | 1.73 |
Myxococcota | 0.3 | 0.27 | 0.12 | 0.16 | 0.52 | 0.41 | 0.35 | 0.38 | 0.67 | 0.18 | 2.25 | 0.64 |
Unc._Bacteria | 1.39 | 1.03 | 1.45 | 0.76 | 1.54 | 0.62 | 0.9 | 0.87 | 1.89 | 0.77 | 0.14 | 0.28 |
Fungi | ||||||||||||
Ascomycota | 90 | 59 | 75 | 66 | 62 | 74 | 79 | 63 | 99 | 80 | 94 | 83 |
Basidiomycota | 2 | 3 | 20 | 9 | 7 | 0.6 | 12 | 10 | 0.2 | 2.6 | 0.7 | 6 |
Mortierellomycota | 0.07 | 0.02 | 0.3 | 0 | 0.08 | 0.04 | 1.18 | 11 | 0.3 | 1.7 | 0 | 0.09 |
Mucoromycota | 6 | 36 | 2.3 | 25 | 28 | 26 | 6 | 11 | 0.5 | 14 | 5 | 9 |
unc_Fungi | 1.5 | 1.3 | 2.1 | 0.09 | 3 | 0.05 | 1.2 | 4.5 | 0.06 | 1.1 | 0.11 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymov, A.A.; Grodnitskaya, I.D.; Yakovleva, E.V.; Dubrovskiy, Y.A.; Kutyavin, I.N.; Startsev, V.V.; Milanovsky, E.Y.; Prokushkin, A.S. Albic Podzols of Boreal Pine Forests of Russia: Soil Organic Matter, Physicochemical and Microbiological Properties across Pyrogenic History. Forests 2022, 13, 1831. https://doi.org/10.3390/f13111831
Dymov AA, Grodnitskaya ID, Yakovleva EV, Dubrovskiy YA, Kutyavin IN, Startsev VV, Milanovsky EY, Prokushkin AS. Albic Podzols of Boreal Pine Forests of Russia: Soil Organic Matter, Physicochemical and Microbiological Properties across Pyrogenic History. Forests. 2022; 13(11):1831. https://doi.org/10.3390/f13111831
Chicago/Turabian StyleDymov, Alexey A., Irina D. Grodnitskaya, Evgenia V. Yakovleva, Yuri A. Dubrovskiy, Ivan N. Kutyavin, Viktor V. Startsev, Evgeni Yu. Milanovsky, and Anatoly S. Prokushkin. 2022. "Albic Podzols of Boreal Pine Forests of Russia: Soil Organic Matter, Physicochemical and Microbiological Properties across Pyrogenic History" Forests 13, no. 11: 1831. https://doi.org/10.3390/f13111831
APA StyleDymov, A. A., Grodnitskaya, I. D., Yakovleva, E. V., Dubrovskiy, Y. A., Kutyavin, I. N., Startsev, V. V., Milanovsky, E. Y., & Prokushkin, A. S. (2022). Albic Podzols of Boreal Pine Forests of Russia: Soil Organic Matter, Physicochemical and Microbiological Properties across Pyrogenic History. Forests, 13(11), 1831. https://doi.org/10.3390/f13111831