Effects of Different Harvesting Methods on Aboveground Nutrient Pools of Moso Bamboo (Phyllostachys edulis) Forest in China
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Sites
2.2. Experimental Design
2.3. Biomass Determination and Sample Extraction
2.4. Soil Sampling
2.5. Chemical Analysis
2.6. Statistical Analysis
3. Result
3.1. Soil Nutrients
3.2. Bamboo Nutrients
3.3. Biomass Accumulation
3.4. Nutrient Storage
4. Discussion
4.1. Differences in Soil Nutrients
4.2. Differences in Tissue Nutrients
4.3. Implications for Nutrient Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, Y.; Bai, Y.; Du, J. Co-gasification of rice husk and woody biomass blends in a CFB system: A modeling approach. Renew. Energy 2022, 188, 849–858. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. China Forest Resources Report; China Forest Publishing House: Beijng, China, 2019. [Google Scholar]
- Zheng, Y.; Guan, F.; Fan, S.; Yan, X.; Huang, L. Biomass Estimation, Nutrient Content, and Decomposition Rate of Shoot Sheath in Moso Bamboo Forest of Yixing Forest Farm, China. Forests 2021, 12, 1555. [Google Scholar] [CrossRef]
- Zheng, Y.; Guan, F.; Fan, S.; Yan, X.; Huang, L. Dynamics of Leaf-Litter Biomass, Nutrient Resorption Efficiency and Decomposition in a Moso Bamboo Forest after Strip Clearcutting. Front. Plant Sci. 2022, 12, 799424. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Guan, F.; Fan, S.; Zhou, Y.; Jing, X. Functional Trait Responses to Strip Clearcutting in a Moso Bamboo Forest. Forests 2021, 6, 793. [Google Scholar] [CrossRef]
- Fan, S.; Liu, G.; Su, W.; Cai, C.; Guan, F. Advances in Research of Bamboo Forest Cultivation. For. Res. 2018, 31, 137–144. [Google Scholar] [CrossRef]
- Zeng, X. Recovery Characteristics and Influencing Factors of Moso Bamboo Forests under Different Strip Clearcutting in South Anhui Province; Chinese Academy of Forestry: Beijing, China, 2019. [Google Scholar]
- Wang, S. Study on Response Characteristics of Underground Whip Root System and Ground Growth of Phyllostachys edulis Forests under Different Strip Cutting; Chinese Academy of Forestry: Beijing, China, 2021. [Google Scholar]
- Liu, G. Study on the Mechanism of Maintaining Long-term Productivity of Bamboo Forest; Chinese Academy of Forestry: Beijing, China, 2009. [Google Scholar]
- Zheng, Y.; Fan, S.; Zhou, X.; Zhang, X.; Guan, F. Dynamics of stand productivity in Moso bamboo forest after strip cutting. Front. Plant Sci. 2022, 13, 1064232. [Google Scholar] [CrossRef]
- Zheng, Y.; Fan, S.; Guan, F.; Xia, W.; Wang, S.; Xiao, X. Strip Clearcutting Drives Vegetation Diversity and Composition in the Moso Bamboo Forests. For. Sci. 2022, 68, 27–36. [Google Scholar] [CrossRef]
- Ma, C.; Luo, Y.; Shao, M.; Jia, X. Estimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau. J. For. Res. 2022, 33, 529–542. [Google Scholar] [CrossRef]
- Su, W. Fertilization Theory and Practice for Phyllostachys Edulis Stand Based on Growth and Nutrient Accumulation Rules; Chinese Academy of Forestry: Beijing, China, 2012. [Google Scholar]
- Song, X.; Peng, C.; Zhou, G.; Gu, H.; Quan, L.; Chao, Z. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla). Sci. Rep. 2016, 6, 25908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Li, N.; Lu, D.; Chen, Y. Mapping Moso bamboo forest and its on-year and off-year distribution in a subtropical region using time-series Sentinel-2 and Landsat 8 data. Remote Sens. Environ. 2019, 231, 111265. [Google Scholar] [CrossRef]
- Encyclopedia Britannica. The Editors of Encyclopaedia. “Microsoft Excel”; Encyclopedia Britannica: Chicago, IL, USA, 2019. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical; R Foundation for 417 Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Embaye, K.; Weih, M.; Ledin, S.; Christersson, L. Biomass and nutrient distribution in a highland bamboo forest in southwest Ethiopia: Implications for management. For. Ecol. Manag. 2005, 204, 159–169. [Google Scholar] [CrossRef]
- Ma, J.F.; Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan; Elsevier Science: Amsterdam, The Netherlands, 2002; p. 281. [Google Scholar]
- White, P.J. Long-Distance Transport in the Xylem and Phloem; Elsevier: Amsterdam, The Netherlands, 2012; pp. 49–70. [Google Scholar]
- Lilli, K.; Janne, V.; Mikael, M.; Sofie, H.; Mikko, K.; Anna, S.; Marjo, P.; Helmisaari, H.S. Stump harvesting in Picea abies stands: Soil surface disturbance and biomass distribution of the harvested stumps and roots. For. Ecol. Manag. 2018, 425, 27–34. [Google Scholar] [CrossRef]
- Johnson, K.; Scatena, F.N.; Pan, Y. Short- and long-term responses of total soil organic carbon to harvesting in a northern hardwood forest. For. Ecol. Manag. 2010, 259, 1262–1267. [Google Scholar] [CrossRef]
- Shen, J.; Fan, S.; Liu, G.; Chen, B.; Wu, C.; Cao, B. Spatiotemporal distribution characteristics of temperature on the surface layer of cutting gap of Phyllostachys edulis forest. Chin. J. Ecol. 2020, 39, 3549–3557. [Google Scholar] [CrossRef]
- Adolfo, C.C.; Lourdes, C.H.; Sandra, R.O. Mass, nutrient pool, and mineralization of litter and fine roots in a tropical mountain cloud forest. Sci. Total Environ. 2016, 575, 876–886. [Google Scholar] [CrossRef]
- Su, W.; Fan, S.; Zhao, J.; Cai, C. Effects of various fertilization placements on the fate of urea−15N in moso bamboo forests. For. Ecol. Manag. 2019, 453, 117632. [Google Scholar] [CrossRef]
- Tu, L.; Hu, H.; Hu, T.; Jian, Z.; Xianwei, L.; Li, L.; Xiao, Y.; Cheng, G.; Li, R. Litterfall, Litter Decomposition, and Nutrient Dynamics in Two Subtropical Bamboo Plantations of China. Pedosphere 2014, 24, 84–97. [Google Scholar] [CrossRef]
- Wright, I.J.; Westoby, M. Nutrient concentration, resorption and lifespan: Leaf traits of Australian sclerophyll species. Funct. Ecol. 2010, 17, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Zhao, J.; Su, W.; Yu, L.; Yan, Y. Comprehensive Evaluation of Soil Quality in Phyllostachys edulis Stands of Different Stocking Stocking Densities. Sci. Silvae Sin. 2015, 51, 1–9. [Google Scholar] [CrossRef]
- Guo, B. Ecological Stoichiometry Characteristics of Carbon, Nitrogen and Phosphorus in Phyllostachys pubescens Forest of Different Productivity Levels; Chinese Academy of Forestry: Beijing, China, 2014. [Google Scholar]
- Johnson, D.W.; Turner, J. Nutrient cycling in forests: A historical look and newer developments. For. Ecol. Manag. 2019, 444, 344–373. [Google Scholar] [CrossRef]
- Umemura, M.; Takenaka, C. Retranslocation and localization of nutrient elements in various organs of moso bamboo (Phyllostachys pubescens). Sci. Total Environ. 2014, 493, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Lambert, M.J. Analysis of nutrient use efficiency (NUE) in Eucalyptus pilularis forests. Aust. J. Bot. 2015, 62, 558. [Google Scholar] [CrossRef]
- Krift, T.A.J.d.; Gioacchini, P.; Kuikman, P.J.; Berendse, F. Effects of high and low fertility plant species on dead root decomposition and nitrogen mineralisation. Soil Biol. Biochem. 2001, 33, 2115–2124. [Google Scholar] [CrossRef]
- Shanmughavel, P.; Francis, K. Bioproductivity and nutrient cycling in bamboo and acacia plantation forests. Bioresour. Technol. 2001, 80, 45–48. [Google Scholar] [CrossRef]
- White, E.H. Whole-tree Harvesting Depletes Soil Nutrients. Rev. Can. Rech. For. 1974, 4, 530–535. [Google Scholar] [CrossRef]
- Pyttel, P.L.; Köhn, M.; Bauhus, J. Effects of different harvesting intensities on the macro nutrient pools in aged oak coppice forests. For. Ecol. Manag. 2015, 349, 94–105. [Google Scholar] [CrossRef]
Site | Number of Shoots | Number of New Trees | Mean Height to Crown Base | Mean Height | Mean DBH | Density | Aboveground Biomass |
---|---|---|---|---|---|---|---|
(individual/hm2) | (individual/hm2) | (m) | (m) | (cm) | (individual/hm2) | (kg/hm2) | |
SC | 3750.00 ± 471.86 a | 1458.33 ± 72.17 a | 4.72 ± 0.19 a | 11.89 ± 0.06 a | 8.66 ± 0.31 a | 5583.33 ± 190.94 a | 73,357.74 ± 7875.45 a |
CK | 3250.00 ± 471.86 a | 1291.67 ± 72.17 a | 5.58 ± 0.08 b | 13.66 ± 0.29 b | 9.86 ± 0.25 b | 4295.83 ± 260.21 b | 63,728.99 ± 8469.32 a |
Site | Depth | Total Nitrogen | Total Phosphorus | Total Potassium | Available Nitrogen | Available Phosphorus | Available Potassium |
---|---|---|---|---|---|---|---|
cm | (g/kg) | (g/kg) | (g/kg) | (mg/kg) | (mg/kg) | (mg/kg) | |
SC | 0–10 | 2.10 ± 0.35 Aa | 0.26 ± 0.04 Aa | 9.68 ± 0.14 Aa | 135.92 ± 26.85 Aa | 5.26 ± 0.28 Aa | 49.20 ± 1.45 Aa |
10–20 | 1.18 ± 0.21 Ba | 0.27 ± 0.04 Aa | 9.94 ± 0.62 Aa | 121.67 ± 41.44 Aa | 3.40 ± 0.22 Ba | 36.38 ± 3.24 Ba | |
20–40 | 0.78 ± 0.34 Ba | 0.24 ± 0.02 Aa | 10.04 ± 0.28 Aa | 80.91 ± 48.68 Aa | 1.14 ± 0.22 Ca | 37.21 ± 2.94 Ba | |
CK | 0–10 | 1.68 ± 0.18 Ab | 0.27 ± 0.02 Aa | 9.98 ± 0.28 Aa | 148.54 ± 27.29 Aa | 4.70 ± 0.39 Ab | 46.88 ± 4.42 Aa |
10–20 | 1.22 ± 0.24 ABa | 0.25 ± 0.03 Aa | 10.10 ± 0.64 Aa | 102.93 ± 26.84 Aa | 3.47 ± 0.35 Ba | 33.16 ± 1.83 Ba | |
20–40 | 0.81 ± 0.34 Ba | 0.26 ± 0.03 Aa | 10.50 ± 0.75 Aa | 59.29 ± 15.14 Ba | 1.20 ± 0.13 Ca | 30.30 ± 2.04 Bb |
Treatment | Compartment | Biomass | Nutrient Storage (kg/hm2) | ||||||
---|---|---|---|---|---|---|---|---|---|
t/hm2 | % | N | % | P | % | K | % | ||
SC | Branch | 11.12 ± 5.8 a | 15.17 | 70.50 ± 19.1 a | 15.90 | 5.88 ± 1.6 a | 17.46 | 47.93 ± 11.9 a | 14.58 |
Culm | 54.89 ± 3.0 a | 74.89 | 245.78 ± 21.1 a | 55.45 | 23.87 ± 2.1 a | 70.89 | 218.97 ± 19.3 a | 66.61 | |
Leaf | 7.28 ± 1.0 a | 9.93 | 127.00 ± 17.3 a | 28.65 | 3.92 ± 0.6 a | 11.64 | 61.84 ± 9.5 a | 18.81 | |
Total | 73.29 ± 7.9 a | 100.00 | 443.28 ± 43.5 a | 100.00 | 33.67 ± 2.9 a | 100.00 | 328.74 ± 28.6 a | 100.00 | |
CK | Branch | 9.33 ± 6.4 a | 14.64 | 62.79 ± 4.36 a | 13.78 | 5.33 ± 0.4 a | 12.85 | 49.14 ± 4.6 a | 18.36 |
Culm | 48.66 ± 1.7 a | 76.34 | 298.29 ± 28.7 a | 65.46 | 33.23 ± 3.5 b | 80.11 | 170.71 ± 22.7 a | 63.78 | |
Leaf | 5.75 ± 0.9 a | 9.02 | 94.62 ± 10.4 a | 20.76 | 2.92 ± 0.3 a | 7.04 | 47.82 ± 5.3 a | 17.87 | |
Total | 63.74 ± 6.9 a | 100.00 | 455.70 ± 32.5 a | 100.00 | 41.48 ± 4.2 b | 100.00 | 267.67 ± 30.9 b | 100.00 |
Compartment | Element | R2 | Coefficients | p | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Total above-ground biomass | N | 0.965 | 163.2 | 0.0572 | 0.000199 | ≤0.001 |
P | 0.944 | 5.641 | 0.1185 | 0.000241 | ≤0.001 | |
K | 0.959 | 66.87 | 0.0959 | 0.000192 | ≤0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Feng, Y.; Fan, S.; Zhang, M.; Zhang, X.; Zhou, X.; Guan, F. Effects of Different Harvesting Methods on Aboveground Nutrient Pools of Moso Bamboo (Phyllostachys edulis) Forest in China. Forests 2022, 13, 2138. https://doi.org/10.3390/f13122138
Zheng Y, Feng Y, Fan S, Zhang M, Zhang X, Zhou X, Guan F. Effects of Different Harvesting Methods on Aboveground Nutrient Pools of Moso Bamboo (Phyllostachys edulis) Forest in China. Forests. 2022; 13(12):2138. https://doi.org/10.3390/f13122138
Chicago/Turabian StyleZheng, Yaxiong, Yun Feng, Shaohui Fan, Meiman Zhang, Xuan Zhang, Xiao Zhou, and Fengying Guan. 2022. "Effects of Different Harvesting Methods on Aboveground Nutrient Pools of Moso Bamboo (Phyllostachys edulis) Forest in China" Forests 13, no. 12: 2138. https://doi.org/10.3390/f13122138
APA StyleZheng, Y., Feng, Y., Fan, S., Zhang, M., Zhang, X., Zhou, X., & Guan, F. (2022). Effects of Different Harvesting Methods on Aboveground Nutrient Pools of Moso Bamboo (Phyllostachys edulis) Forest in China. Forests, 13(12), 2138. https://doi.org/10.3390/f13122138