Beyond Monetary Cost-Benefit Analyses: Combining Economic, Environmental and Social Analyses of Short Rotation Coppice Poplar Production in Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Land Cultivation and Data
2.2. Economic Analyses: Cost-Benefit Analyses and Regional Value Added
- (1)
- Economic net present value (eNPV) of investment: the eNPV describes the economic viability by calculating the discounted sum of values of the expected income stream over a certain time period. The analyses allow determining whether the project will lead to a profit (eNPV = > 0) or loss (eNPV = < 0). The formula used to calculate the eNPV is as follows:
- (2)
- Payback Time (PBT): refers to the time when the break-even point can be reached. This occurs when the cumulative profits are higher than the cumulative costs, and it indicates the time when the eNPV is becoming positive. For uneven cash inflows, the PBT is calculated as:
- (3)
- Internal rate of return (IRR): the percentage of effective interest resulting from the investments determines the eNPV equal to zero. The IRR is used as an index for the profitability of the project and is calculated as:
- (4)
- Benefit–Cost Ratio (BCR): indicates the ratio between discounted benefits, relative to their costs, serving as a decision-making support. A BCR less than one (<1) indicates that the proportion of discounted costs is higher than the discounted benefits and, therefore, the project would result in a loss. A BCR greater than one (>1) indicates that the benefits exceed the costs and allows the comparison of the profitability of the project. The Benefit–Cost Ratio can be either expressed in monetary and/or qualitative terms. The BCR is calculated with the following formula:
- (5)
- Regional Value Added (VA): a socio-economic indicator which is applied in the course of the CBA. The concept allows investigation of an aspect of socio-economic sustainability of SRC establishment in a monetized form. Turnock [50] already acknowledged rural diversification to counteract the depopulation of rural areas in Eastern Europe. The EU’s Common Agricultural Policy encompasses rural development to minimize regional disparities for rural countries like Slovakia [51]. Regional development is strengthened by harnessing intrinsic resources to ensure a sustainable future at all three pillars of sustainability (environmental, economic and social) in a defined area characterized by connecting elements. While the economic level can be measured and represented in monetary terms, it is more challenging for the environmental and social aspects [52]. Regional value added calculation is used to measure the generation of social wealth achieved through the economic activities of an entity [53,54]. Inputs from upstream processes that could be provided in the defined region and a network of regional suppliers are fundamental for increasing the regional value added [52]. Regional value creation at an operational level is assessed for the three land use scenarios, according to the calculation formula [54,55]:
2.3. Environmental Analyses: Estimation of Soil Organic Carbon (SOC)
2.4. Social Analyses: Social Cost–Benefit Matrix
3. Results
3.1. Economic Analyses
3.1.1. Cost Analyses of Poplar SRC, Corn Maize and Winter Rye Production
3.1.2. Impact of Land Use Form on Economic Costs and Benefits and Regional Value Creation
3.2. Prediction of SOC Dynamics of Poplar SRC under Different Soil Conditions
3.3. Potential Social Benefits and Burdens of SRC Implementation
4. Discussion
4.1. Economic Performance
4.2. SOC as Environmental Benefit of SRC
4.3. Social Benefits and Burdens of SRC
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Comission. Innovating for Sustainable Growth: A Bioeconomy for Europe, in Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Comission: Brussels, Belgium, 2012. [Google Scholar]
- Global Bioeconomy Summit. Communiqué of the Global Bioeconomy Summit 2015/Making Bioeconomy Work for Sustainable Development; Global Bioeconomy Summit: Berlin, Germany, 2015; p. 9. Available online: https://bei.jcu.cz/Bioeconomy%20folders/bioeconomy-global-summit-2015/communique-global-bioeconomy-summit-2015-making-bioeconomy-work-for-sustainable-development (accessed on 20 September 2021).
- Lazíková, J.; Rumanovská, L.; Takáč, I.; Prus, P.; Fehér, A. Regional Differences of Agricultural Land Market in Slovakia: A Challenge for Sustainable Agriculture. Agriculture 2021, 11, 353. [Google Scholar] [CrossRef]
- MPSR Slovak. Basic Information on the Homepage of the Ministry of Agriculture and Rural Development of the Slovak Republic. Development Trends and Prospects. 2021. Available online: https://www.mpsr.sk/en/index.php?navID=24 (accessed on 30 June 2021).
- EIT Food Hub. Slovakia. 2021. Available online: https://www.eitfood.eu/in-your-country/country/slovakia (accessed on 22 September 2021).
- NAFC. Report on Agriculture and Food Sector in the Slovak Republic 2019—Green Report; Ministry of Agriculture and Rural Development of the Slovak Republic: Bratislava, Slovakia, 2020. [Google Scholar]
- MPSR Slovak. Basic Information on the Homepage of the Ministry of Agriculture and Rural Development of the Slovak Republic. Plant Production. 2021. Available online: https://www.mpsr.sk/en/index.php?navID=25 (accessed on 30 June 2021).
- Némethová, J.; Rybanský, L.U. Development Trends in the Crop Production in Slovakia after Accession to the European Union—Case Study, Slovakia. Sustainability 2021, 13, 8512. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skeg, J.; Buendia, E.C.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, S.; et al. Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In Technical Summary; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- Abolina, E.; Luzadis, V. Abandoned agricultural land and its potential for short rotation woody crops in Latvia. Land Use Policy 2015, 49, 435–445. [Google Scholar] [CrossRef]
- Pra, A.; Brotto, L.; Mori, P.; Buresti Lattes, E.; Masiero, M.; Andrighetto, N.; Pettenella, D. Profitability of timber plantations on agricultural land in the Po valley (northern Italy): A comparison between walnut, hybrid poplar and polycyclic plantations in the light of the European Union Rural Development Policy orientation. Eur. J. For. Res. 2019, 138, 473–494. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Olba-Zięty, E.; Rosenqvist, H.; Krzyżaniak, M. Economic efficiency of willow, poplar and black locust production using different soil amendments. Biomass-Bioenergy 2017, 106, 74–82. [Google Scholar] [CrossRef]
- Dale, V.H.; Kline, K.L.; Wiens, J.; Fargione, J. Biofuels: Implications for Land Use and Biodiversity, in Biofuels and Sustainability Reports; Ecological Society of America: Washington, DC, USA, 2010. [Google Scholar]
- Fehér, A. National Factsheets on Coppice Forests. Slovakia. In Innovative Management and Multifunctional Utilisation of Traditional Coppice Forests—An Answer to Future Ecological, Economic and Social Challenges in the European Forestry Sector; Lazdina, D., Celma, S., Eds.; COST Action FP1301 EuroCoppice; Albert Ludwig University: Freiburg, Germany, 2017. [Google Scholar]
- Gaduš, J.; Melišková, I.; Roháčiková, O. The Cultivation of Fast-Growing Trees on Agricultural Land in Slovakia and Czechia: Legal Comparison. Acta Reg. Environ. 2017, 14, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Wolbert-Haverkamp, M.; Musshoff, O. Are short rotation coppices an economically interesting form of land use? A real options analysis. Land Use Policy 2014, 38, 163–174. [Google Scholar] [CrossRef]
- Griffiths, N.A.; Rau, B.M.; Vaché, K.B.; Starr, G.; Bitew, M.M.; Aubrey, D.P.; Martin, J.A.; Benton, E.; Jackson, C.R. Environmental effects of short-rotation woody crops for bioenergy: What is and isn’t known. GCB Bioenergy 2019, 11, 554–572. [Google Scholar] [CrossRef] [Green Version]
- Ranacher, L.; Pollakova, B.; Schwarzbauer, P.; Liebal, S.; Weber, N.; Hesser, F. Farmers’ Willingness to Adopt Short Rotation Plantations. BioEnergy Res. 2021, 14, 357–373. [Google Scholar] [CrossRef]
- Bryan, B.A.; King, D.; Wang, E. Potential of woody biomass production for motivating widespread natural resource management under climate change. Land Use Policy 2010, 27, 713–725. [Google Scholar] [CrossRef]
- Döpke, K.; Moschner, C.R.; Hartung, E. Environmental aspects of short rotation coppices—A literature survey. Landtechnik 2013, 68, 33–37. [Google Scholar]
- Hall, D.; House, J. Biomass energy in Western Europe to 2050. Land Use Policy 1995, 12, 37–48. [Google Scholar] [CrossRef]
- Langeveld, H.; Quist-Wessel, F.; Dimitriou, I.; Aronsson, P.; Baum, C.; Schulz, U.; Bolte, A.; Baum, S.; Köhn, J.; Weih, M.; et al. Assessing Environmental Impacts of Short Rotation Coppice (SRC) Expansion: Model Definition and Preliminary Results. BioEnergy Res. 2012, 5, 621–635. [Google Scholar] [CrossRef]
- Lasch, P.; Kollas, C.; Rock, J.; Suckow, F. Potentials and impacts of short-rotation coppice plantation with aspen in Eastern Germany under conditions of climate change. Reg. Environ. Chang. 2010, 10, 83–94. [Google Scholar] [CrossRef]
- Qin, Z.; Dunn, J.B.; Kwon, H.; Mueller, S.; Wander, M.M. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence. GCB Bioenergy 2016, 8, 66–80. [Google Scholar] [CrossRef] [Green Version]
- Rowe, R.L.; Keith, A.M.; Elias, D.M.O.; McNamara, N.P. Soil carbon stock impacts following reversion of Miscanthus x giganteus and short rotation coppice willow commercial plantations into arable cropping. GCB Bioenergy 2020, 12, 68–693. [Google Scholar] [CrossRef]
- Whitaker, J.; Field, J.L.; Bernacchi, C.J.; Cerri, C.E.P.; Ceulemans, R.; Davies, C.A.; DeLucia, E.H.; Donnison, I.S.; McCalmont, J.P.; Paustian, K.; et al. Consensus, uncertainties and challenges for perennial bioenergy crops and land use. GCB Bioenergy 2018, 10, 150–164. [Google Scholar] [CrossRef]
- Eleftheriadis, I.; Mergner, R.; Rutz, D. Short Rotation Woody Crops (SCR) for Local Supply Chains and Heat Use. Benefits of SRC for Farmers; Saving, C.F.R.E.S.A., Energies, W.-R., Eds.; SRC+: Pikermi Attiki, Greece, 2014. [Google Scholar]
- Malkamäki, A.; D’Amato, D.; Hogarth, N.; Kanninen, M.; Pirard, R.; Toppinen, A.; Zhou, W. A systematic review of the socio-economic impacts of large-scale tree plantations, worldwide. Glob. Environ. Chang. 2018, 53, 90–103. [Google Scholar] [CrossRef]
- Mitra, S.; Ghose, A.; Gujre, N.; Senthilkumar, S.; Borah, P.; Paul, A.; Rangan, L. A review on environmental and socioeconomic perspectives of three promising biofuel plants Jatropha curcas, Pongamia pinnata and Mesua ferrea. Biomass Bioenergy 2021, 151, 106173. [Google Scholar] [CrossRef]
- Warren, C.; Burton, R.; Buchanan, O.; Birnie, R.V. Limited adoption of short rotation coppice: The role of farmers’ socio-cultural identity in influencing practice. J. Rural Stud. 2016, 45, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Thiele, J.C.; Busch, G. A decision support system to link stakeholder perception with regional renewable energy goals for woody biomass. In Bioenergy from Dendromass for the Sustainable Development of Rural Areas; Bemmann, A., Ed.; Wiley-VCH Verlag GmbH & Co KGaA: Weinheim, Germany, 2015; pp. 331–346. [Google Scholar]
- Boll, T.; Haaren, C.V.; Rode, M. The effects of short rotation coppice on the visual landscape. In Bioenergy from Dendromass for the Sustainable Development of Rural Areas; Bemmann, A., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 105–119. [Google Scholar]
- Coppola, G.; Costantini, M.; Orsi, L.; Facchinetti, D.; Santoro, F.; Pessina, D.; Bacenetti, J. A Comparative Cost-Benefit Analysis of Conventional and Organic Hazelnuts Production Systems in Center Italy. Agriculture 2020, 10, 409. [Google Scholar] [CrossRef]
- Lantz, V.A.; Chang, W.-Y.; Pharo, C. Benefit-cost analysis of hybrid willow crop production on agricultural land in eastern Canada: Assessing opportunities for on-farm and off-farm bioenergy use. Biomass-Bioenergy 2014, 63, 257–267. [Google Scholar] [CrossRef]
- Boardman, A.E.; Greenberg, D.H.; Vining, A.R.; Weimer, D.L. Cost-Benefit Analysis. Concepts and Practice, 5th ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Bruce, C. Social Cost-Benefit Analysis: A Guide for Country and Project Economists to the Derivation and Application of Economic and Social Accounting Prices; Bank, I.W., Ed.; Bank Staff Working Paper No. 239; International Bank for Reconstruction and Development: Washington DC, USA, 1976. [Google Scholar]
- Hoogmartens, R.; Van Passel, S.; Van Acker, K.; Dubois, M. Bridging the gap between LCA, LCC and CBA as sustainability assessment tools. Environ. Impact Assess. Rev. 2014, 48, 27–33. [Google Scholar] [CrossRef]
- Valenza, A.; Vignetti, S. Social Cost-Benefit Analysis for Infrastructure Projects: A Case Study in the War Affected Areas of Croatia; Working Paper Series, Issue; Csil Centre for Industrial Studies: Milano, Italy, 2009. [Google Scholar]
- Beria, P.; Maltese, I.; Mariotti, I. Multicriteria versus Cost Benefit Analysis: A comparative perspective in the assessment of sustainable mobility. Eur. Transp. Res. Rev. 2012, 4, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Creswell, J.W.; Plano Clark, V.L. Designing and Conducting Mixed Methods Research, 3rd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Ivankova, N.V.; Creswell, J.W.; Stick, S.L. Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice. Field Methods 2006, 18, 3–20. [Google Scholar] [CrossRef]
- Dimitriou, I.; Rutz, D. Sustainable Short Rotation Coppice: A Handbook; Plus, S., Ed.; WIP Renewable Energies: München, Germany, 2015. [Google Scholar]
- Schils, R.; Olesen, J.E.; Kersebaum, K.-C.; Rijk, B.; Oberforster, M.; Kalyada, V.; Khitrykau, M.; Gobin, A.; Kirchev, H.; Manolova, V.; et al. Cereal yield gaps across Europe. Eur. J. Agron. 2018, 101, 109–120. [Google Scholar] [CrossRef]
- Takáč, I.; Lazíková, J.; Rumanovská, L.; Bandlerová, A.; Lazíková, Z. The Factors Affecting Farmland Rental Prices in Slovakia. Land 2020, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- KTBL. KTBL Calculator: Output-Cost Accounting for Crop Production. 2021. Available online: https://daten.ktbl.de/dslkrpflanze/postHv.html (accessed on 6 December 2021).
- European Comission. Guide to Cost-Benefit Analysis of Investment Projects. Economic Appraisal Tool for Cohesion Policy 2014–2020; European Comission: Brussels, Belgium, 2015. [Google Scholar]
- Drèze, J.; Stern, N. The Theory of Cost-Benefit Analysis. In Handbook of Public Economics; Auerbach, A.J., Feldstein, M., Eds.; Elsevier Science Publishers B.V (North-Holland): Amsterdam, The Netherlands, 1987; Volume II, pp. 909–989. [Google Scholar]
- Rosenqvist, H.; Dawson, M. Economics of willow growing in Northern Ireland. Biomass Bioenergy 2005, 28, 7–14. [Google Scholar] [CrossRef]
- Ericsson, K.; Rosenqvist, H.; Nilsson, L.J. Energy crop production costs in the EU. Biomass Bioenergy 2009, 33, 1577–1586. [Google Scholar] [CrossRef] [Green Version]
- Turnock, D. Rural diversification in Eastern Europe: Introduction. GeoJournal 1999, 46, 171–181. [Google Scholar] [CrossRef]
- Kozáková, J.; Savov, R.; Lančarič, Š. Sustainable development in rural regions of Slovakia: The role of the National Rural Development Programm. Rural. Areas Dev. 2018, 15, 25–38. [Google Scholar]
- Hoffmann, D. Creation of regional added value by regional bioenergy resources. Renew. Sustain. Energy Rev. 2009, 13, 2419–2429. [Google Scholar] [CrossRef]
- Van Staden, C. The relevance of theories of political economy to the understanding of financial reporting in South Africa: The case of value added statements. Account. Forum 2003, 27, 224–245. [Google Scholar] [CrossRef]
- Haller, A.; Staden, C.J.V.; Landis, C. Value Added as part of Sustainability Reporting: Reporting on Distributional Fairness or Obfuscation? J. Bus. Ethics 2018, 152, 763–781. [Google Scholar] [CrossRef]
- Haller, A. Wertschöpfungsrechnung: Ein Instrument zur Steigerung der Aussagefähigkeit von Unternehmensabschlüssen im Internationalen Kontext; Schäffer-Poeschel Verlag: Stuttgart, Germany, 1997. [Google Scholar]
- Coleman, K.; Jenkinson, D.S. RothC-26.3—A Model for the turnover of carbon in soil. In Evaluation of Soil Organic Matter Models. NATO ASI Series (Series I: Global Environmental Change); Powlson, D.S., Smith, P., Smith, J.U., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 237–246. [Google Scholar]
- Grogan, P.; Matthews, R. A modelling analysis of the potential for soil carbon sequestration under short rotation coppice willow bioenergy plantations. Soil Use Manag. 2002, 18, 175–183. [Google Scholar] [CrossRef]
- Todorovic, G.R.; Stemmer, M.; Tatzber, M.; Katzlberger, C.; Spiegel, H.; Zehetner, F.; Gerzabek, M.H. Soil-carbon turnover under different crop management: Evaluation of RothC-model predictions under Pannonian climate conditions. J. Plant Nutr. Soil Sci. 2010, 173, 662–670. [Google Scholar] [CrossRef]
- Ziller, A.; Phibbs, P. Integrating social impacts into cost-benefit analysis: A participative method: Case study: The NSW area assistance scheme. Impact Assess. Proj. Apprais. 2003, 21, 141–146. [Google Scholar] [CrossRef]
- Fürtner, D.; Ranacher, L.; Echenique, E.A.P.; Schwarzbauer, P.; Hesser, F. Locating Hotspots for the Social Life Cycle Assessment of Bio-Based Products from Short Rotation Coppice. BioEnergy Res. 2021, 14, 510–533. [Google Scholar] [CrossRef]
- Lindegaard, K.N.; Adams, P.W.R.; Holley, M.; Lamley, A.; Henriksson, A.; Larsson, S.; Von Engelbrechten, H.-G.; Lopez, G.E.; Pisarek, M. Short rotation plantations policy history in Europe: Lessons from the past and recommendations for the future. Food Energy Secur. 2016, 5, 125–152. [Google Scholar] [CrossRef]
- Gusenbauer, I.; Bartel-Kratochvil, R.; Markut, T.; Hörtenhuber, S.; Schermer, M.; Ausserladscheider, V.; Lindenthal, T. How a region benefits from regionally labelled cheese products in Austria: A model-based empirical assessment along different value chains. Org. Agric. 2018, 9, 13–27. [Google Scholar] [CrossRef]
- Faasch, R.J.; Patenaude, G. The economics of short rotation coppice in Germany. Biomass Bioenergy 2012, 45, 27–40. [Google Scholar] [CrossRef]
- Hauk, S.; Knoke, T.; Wittkopf, S. Economic evaluation of short rotation coppice systems for energy from biomass—A review. Renew. Sustain. Energy Rev. 2014, 29, 435–448. [Google Scholar] [CrossRef]
- Soldatos, P.; Lychnaras, V.; Panoutsou, C.; Cosentino, S.L. Economic viability of energy crops in the EU: The farmer’s point of view. Biofuels Bioprod. Biorefining 2010, 4, 637–657. [Google Scholar] [CrossRef]
- Busch, G. A spatial explicit scenario method to support participative regional land-use decisions regarding economic and ecological options of short rotation coppice (SRC) for renewable energy production on arable land: Case study application for the Göttingen district, Germany. Energy Sustain. Soc. 2017, 7, 372. [Google Scholar] [CrossRef] [Green Version]
- Fuertes, A.; Oliveira, N.; Cañellas, I.; Sixto, H.; Rodríguez-Soalleiro, R. An economic overview of Populus spp. in Short Rotation Coppice systems under Mediterranean conditions: An assessment tool for decision-making. Renew. Sustain. Energy Rev. 2021, 151, 111577. [Google Scholar] [CrossRef]
- Oliveira, N.; Pérez-Cruzado, C.; Cañellas, I.; Rodríguez-Soalleiro, R.; Sixto, H. Poplar Short Rotation Coppice Plantations under Mediterranean Conditions: The Case of Spain. Forests 2020, 11, 1352. [Google Scholar] [CrossRef]
- Garten, C.T.; Wullschleger, S.D.; Classen, A.T. Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass Bioenergy 2011, 35, 214–226. [Google Scholar] [CrossRef]
- Brandão, M.; i Canals, L.M.; Clift, R. Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 2011, 35, 2323–2336. [Google Scholar] [CrossRef]
- Takáč, J.; Šiška, B.; Píš, V. Evaluation of Adaptive Measures to Reduce Climate Change Impact on Soil Organic Carbon Stock In Žitný Ostrov Region. Agriculture 2011, 57, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, L.; Hodges, L.; Helmers, G.A.; Brandle, J.R.; Francis, C.A. Labor Availability in an Integrated Agricultural System. J. Sustain. Agric. 2010, 34, 532–548. [Google Scholar] [CrossRef]
- Kurdyś-Kujawska, A.; Strzelecka, A.; Zawadzka, D. The Impact of Crop Diversification on the Economic Efficiency of Small Farms in Poland. Agriculture 2021, 11, 250. [Google Scholar] [CrossRef]
- Ajanovic, A. Biofuels versus food production: Does biofuels production increase food prices? Energy 2011, 36, 2070–2076. [Google Scholar] [CrossRef]
- Patel, B.; Patel, A.; Alam Syed, B.; Gami, B.; Patel, P. Assessing economic feasibility of bio-energy feedstock cultivation on marginal lands. Biomass-Bioenergy 2021, 154, 106273. [Google Scholar] [CrossRef]
- O’Brien, M.; Bringezu, S. European Timber Consumption: Developing a Method to Account for Timber Flows and the EU’s Global Forest Footprint. Ecol. Econ. 2018, 147, 322–332. [Google Scholar] [CrossRef]
- Lasák, R. Biodiversity Monitoring: Methodology and Preliminary Results. Deliverable 1.6 EU Horizon 2020 BBI Project “Dendromass4Europe” under Grant Agreement No. 745874; Technische Universität Dresden: Dresden, Germany, 2020. [Google Scholar]
Crop Type | Amount ha−1 year−1 | Reference |
---|---|---|
Poplar wood logs from SRC | 5.20 tDM * | Experts consolidation |
Poplar wood residues from SRC | 4.01 tDM * | Experts consolidation |
Grain maize, 86% dry matter | 7,32 tDM | KTBL (cost calculation for crop cultivation) |
Wheat (winter rye) | 3,94 tDM | KTBL (cost calculation for crop cultivation) |
Parameter | Value |
---|---|
Initial SOC | 37.8 |
Clay Content (%) | 4.9 |
Depth (topsoil) | 30 cm |
Elevation ASL (m) | 149 |
S_2 (Low Clay Content) | S_3 (Intermediate Clay Content) | S_4 (High Clay Content) | |
---|---|---|---|
Clay (%) | 3.7 | 4.2 | 10.6 |
Sand (%) | 83.7 | 90.7 | 71.7 |
Interview Partner | Operating Country | Ha Managed | Tree Species Managed | Rotation Period of Managed Plantations | SRC Experience Since |
---|---|---|---|---|---|
A | Slovakia | 1300 | Poplar | 5 years | 2015 |
B | Poland/Romania | 7000 | Poplar, (Willow) | 7–8 years | 2011 |
C | Hungary | 3000 | Poplar, (Black Locust) | 5–20 years | 2007 |
D | Romania | 800 | Poplar, (Salix, Miscanthus) | 10 years | 2009 |
Land Use Scenario | eNPV [€ ha−1] | PBT [years−1] | IRR [%] | BCR [ratio] |
---|---|---|---|---|
Poplar SRC Plantation | 2210.00 | 14.13 | 9.35 | 1.22 |
Corn Maize Crop | 12,156.00 | NA | NA | 1.86 |
Winter Rye Crop | 9763,00 | NA | NA | 2.16 |
Carbon Pool | Initial Amounts (tC ha−1) |
---|---|
DPM | 1.38 |
RPM | 11.71 |
BIO | 1.08 |
HUM | 20.5 |
IOM | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fürtner, D.; Perdomo Echenique, E.A.; Hörtenhuber, S.J.; Schwarzbauer, P.; Hesser, F. Beyond Monetary Cost-Benefit Analyses: Combining Economic, Environmental and Social Analyses of Short Rotation Coppice Poplar Production in Slovakia. Forests 2022, 13, 349. https://doi.org/10.3390/f13020349
Fürtner D, Perdomo Echenique EA, Hörtenhuber SJ, Schwarzbauer P, Hesser F. Beyond Monetary Cost-Benefit Analyses: Combining Economic, Environmental and Social Analyses of Short Rotation Coppice Poplar Production in Slovakia. Forests. 2022; 13(2):349. https://doi.org/10.3390/f13020349
Chicago/Turabian StyleFürtner, Daniela, Enrique Alejandro Perdomo Echenique, Stefan J. Hörtenhuber, Peter Schwarzbauer, and Franziska Hesser. 2022. "Beyond Monetary Cost-Benefit Analyses: Combining Economic, Environmental and Social Analyses of Short Rotation Coppice Poplar Production in Slovakia" Forests 13, no. 2: 349. https://doi.org/10.3390/f13020349
APA StyleFürtner, D., Perdomo Echenique, E. A., Hörtenhuber, S. J., Schwarzbauer, P., & Hesser, F. (2022). Beyond Monetary Cost-Benefit Analyses: Combining Economic, Environmental and Social Analyses of Short Rotation Coppice Poplar Production in Slovakia. Forests, 13(2), 349. https://doi.org/10.3390/f13020349