Abundance and Distribution of Foliage on Balsam Fir and White Spruce in Reference to Spruce Budworm Ecology and Absolute Population Density Estimation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Trees
2.2. Analysis
2.2.1. Description of Sample Trees
2.2.2. Nodal and Internodal Foliage
2.2.3. Total Foliage Area, Weight and Number of Buds
2.2.4. Bud Density and Clustering
3. Results
3.1. Description of Sample Trees
3.2. Estimation of Missing Foliage Weights
3.3. Internodal to Nodal Ratios
3.4. Whole-Tree Foliage Area, Weight and Buds
3.5. Bud Density and Grouping
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, R.F. The dynamics of epidemic spruce budworm populations. Mem. Entomol. Soc. Can. 1963, 95, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Royama, T. Population dynamics of the spruce budworm, Choristoneura fumiferana. Ecol. Monogr. 1984, 54, 429–462. [Google Scholar] [CrossRef] [Green Version]
- Royama, T. Analytical Population Dynamics; Chapman & Hall: New York, NY, USA, 1992; p. 371. [Google Scholar] [CrossRef]
- Nealis, V.G. Comparative ecology of conifer-feeding spruce budworms (Lepidoptera: Tortricidae). Can. Entomol. 2016, 148 (Suppl. S1), S22–S57. [Google Scholar] [CrossRef] [Green Version]
- Pureswaran, D.S.; Johns, R.; Heard, S.B.; Quiring, D. Paradigms in eastern spruce budworm (Lepidoptera: Tortricidae) population ecology: A century of debate. Environ. Entomol. 2016, 45, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Royama, T.; Eveleigh, E.S.; Morin, J.R.B.; Pollock, S.J.; McCarthy, P.C.; McDougall, G.A.; Lucarotti, C.J. Mechanisms underlying spruce budworm outbreak processes as elucidated by a 14-year study in New Brunswick, Canada. Ecol. Monogr. 2017, 87, 600–631. [Google Scholar] [CrossRef]
- Johns, R.C.; Bowden, J.J.; Carleton, D.R.; Cooke, B.J.; Edwards, S.; Emilson, E.J.S.; James, P.M.A.; Kneeshaw, D.; MacLean, D.A.; Martel, V.; et al. Conceptual framework for the spruce budworm early intervention strategy: Can outbreaks be stopped? Forests 2019, 10, 910. [Google Scholar] [CrossRef] [Green Version]
- MacLean, D.A.; Amireault, P.; Amos-Binks, L.; Carleton, D.; Hennigar, C.; Johns, R.; Régnière, J. Positive results of an early intervention strategy to suppress a spruce budworm outbreak after five years of trials. Forests 2019, 10, 448. [Google Scholar] [CrossRef] [Green Version]
- Cooke, B.J.; Nealis, V.G.; Régnière, J. Insect defoliators as periodic disturbances in northern forest ecosystems. In Plant Disturbance Ecology, 2nd ed.; Johnson, E.A., Miyanishi, K., Eds.; Academic Press: Amsterdam, The Netherlands, 2020; pp. 423–461. [Google Scholar] [CrossRef]
- Greenbank, D.O. Host species and the spruce budworm. Mem. Entomol. Soc. Can. 1963, 31, 219–223. [Google Scholar] [CrossRef]
- Blais, J.R. Some relationships of the spruce budworm, Choristoneura fumiferana (Clem.) to black spruce, Picea mariana (Moench) Voss. For. Chron. 1957, 33, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Nealis, V.G.; Régnière, J. Insect-host relationships influencing disturbance by the spruce budworm in a boreal mixedwood forest. Can. J. For. Res. 2004, 34, 1870–1882. [Google Scholar] [CrossRef] [Green Version]
- Régnière, J.; Saint-Amant, R.; Duval, P. Predicting insect distributions under climate change based on physiological responses: Spruce budworm as an example. Biol. Inv. 2012, 14, 1–16. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; De Grandpré, L.; Paré, D.; Taylor, A.; Barrette, M.; Morin, H.; Régnière, J.; Kneeshaw, D. Climate-induced changes in host-insect phenology may drive ecological state-shift in boreal forests. Ecology 2015, 96, 1480–1491. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; Neau, M.; Marchand, M.; De Grandpré, L.; Kneeshaw, D. Phenological synchrony between eastern spruce budworm and its host trees increases with warmer temperatures in the boreal forest. Ecol. Evol. 2019, 9, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Hennigar, C.R.; MacLean, D.A.; Quiring, D.T.; Kershaw, J.A., Jr. Differences in spruce budworm defoliation among balsam fir and white, red, and black spruce. For. Sci. 2008, 54, 158–166. [Google Scholar] [CrossRef]
- Sanders, C.J. A Summary of Current Techniques for Sampling Spruce Budworm Populations and Estimating Defoliation in Eastern Canada. Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, ON, Canada., Information Report O-X-306. 33p. 1980. Available online: https://cfs.nrcan.gc.ca/publications/download-pdf/8982 (accessed on 29 March 2022).
- Sanders, C.J. Monitoring spruce budworm population density with sex pheromone traps. Can. Entomol. 1988, 120, 175–183. [Google Scholar] [CrossRef]
- Régnière, J.; Lysyk, T.J.; Auger, M. Population density estimation of spruce budworm, Chorsitoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) on balsam fir and white spruce from 45-cm mid-crown branch tips. Can. Entomol. 1989, 121, 267–281. [Google Scholar] [CrossRef]
- Allen, D.C.; Dorais, L.; Kettela, E.G. Survey and detection. In Managing the Spruce Budworm in Eastern North America. Spruce Budworms Handbook; Schmitt, D.M., Grimble, D., Searcy, J.L., Eds.; US Department of Agriculture, Forest Service, Cooperative State Research Service: Chicago, IL, USA, 1984; 620, pp. 23–36. Available online: https://handle.nal.usda.gov/10113/CAT89231731 (accessed on 29 March 2022).
- Morris, R.F. The development of sampling techniques for forest insect defoliators, with particular reference to the spruce budworm. Can. J. Zool. 1955, 33, 225–294. [Google Scholar] [CrossRef]
- Régnière, J.; Nealis, V.G. Ecological mechanisms of population change during outbreaks of the spruce budworm. Ecol. Entomol. 2007, 32, 461–477. [Google Scholar] [CrossRef]
- Nealis, V.; Régnière, J. Ecology of outbreak populations of the western spruce budworm. Ecosphere 2021, 12, e03667. [Google Scholar] [CrossRef]
- Jennings, D.T.; Houseweart, M.W.; Dimond, J.B. Dispersal losses of early-instar spruce budworm (Lepidoptera: Tortricidae) larvae in strip clearcut and dense spruce-fir forests of Maine. Environ. Entomol. 1983, 12, 1787–1792. [Google Scholar] [CrossRef]
- Nealis, V.G.; Régnière, J. The risk of dispersal in western spruce budworm. Agric. For. Entomol. 2009, 11, 213–223. [Google Scholar] [CrossRef]
- Morris, R.F.; Cheshire, W.F.; Miller, C.A.; Mott, G.D. The numerical response of avian and mammalian predators during a gradation of the spruce budworm. Ecology 1958, 39, 487–494. [Google Scholar] [CrossRef]
- Régnière, J.; Venier, L.; Welsh, D. Avian predation in a declining outbreak population of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Insects 2021, 12, 720. [Google Scholar] [CrossRef] [PubMed]
- Régnière, J.; Nealis, V.G. The fine-scale population dynamics of spruce budworm: Survival of early instars related to forest condition. Ecol. Entomol. 2008, 33, 362–373. [Google Scholar] [CrossRef]
- Miller, C.A. The feeding impact of spruce budworm on balsam fir. Can. J. For. Res. 1977, 7, 76–84. [Google Scholar] [CrossRef]
- Kleinschmidt, S.; Baskerville, G.L.; Solomon, D.S. Foliage Weight Distribution in the Upper Crown of Balsam Fir; USDA Forest Service, Northeastern Forest Experiment Station: Broomann, PA, USA, 1980. [CrossRef]
- Régnière, J.; Cooke, B.J.; Béchard, A.; Dupont, A.; Therrien, P. Dynamics and management of rising outbreak spruce budworm populations. Forests 2019, 10, 748. [Google Scholar] [CrossRef] [Green Version]
- Lethiecq, J.-L.; Régnière, J. Comparative Description of the Physical Environment and Vegetation of Six Sites Used by the Canadian Forestry Service in the Study of Spruce Budworm Population Dynamics. Natural Resources Canada, Canadian Forest Service, Quebec City, QC, Canada., Information Report LAU-X-83, 1988, 46p. Available online: https://cfs.nrcan.gc.ca/publications/download-pdf/21262 (accessed on 29 March 2022).
- Anderson, T.W.; Darling, D.A. Asymptotic theory f certain “goodness-of-fit” criteria based on stochastic processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Wu, Y.; MacLean, D.A.; Hennigar, C.; Taylor, A.R. Interactions among defoliation level, species, and soil richness determine foliage production during and after simulated spruce budworm attack. Can. J. For. Res. 2020, 50, 565–580. [Google Scholar] [CrossRef]
- Wellington, W.G. The light reactions of the spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Toritricidae). Can. Entomol. 1948, 80, 56–82. [Google Scholar] [CrossRef]
- Powell, G.R. Patterns of development in Abies balsamea crowns and effects of megastrobilus production on shoots and buds. Can. J. For. Res. 1977, 7, 498–509. [Google Scholar] [CrossRef]
- Powell, G.R. Postdormancy development and growth of microsporangiate and megasporangiate strobili of Abies balsamea. Can. J. Bot. 1970, 48, 419–428. [Google Scholar] [CrossRef]
- Talerico, R.L. Summary of life history and hosts of the spruce budworms. In Proceedings. Forest Defoliator-Host Interactions: A Comparison between Gypsy Moth and Spruce Budworms; General Technical Report NE-85; USDA Forest Service, Northeastern Station: Radnor, PA, USA, 1979; pp. 1–4. Available online: https://www.fs.fed.us/nrs/pubs/gtr/gtr_ne85.pdf (accessed on 29 March 2022).
- Régnière, J.; You, M. A simulation model of spruce budworm (Lepidoptera: Tortricidae) feeding on balsam fir and white spruce. Ecol. Model. 1991, 54, 277–297. [Google Scholar] [CrossRef]
- Mattson, W.J.; Haack, R.A.; Lawrence, R.K.; Slocum, S.S. Considering the nutritional ecology of the spruce budworm in its management. For. Ecol. Manag. 1991, 39, 183–210. [Google Scholar] [CrossRef]
- Lysyk, T.J. Stochastic model of eastern spruce budworm (Lepidoptera: Tortricidae) phenology on white spruce and balsam fir. J. Econ. Entomol. 1989, 82, 1161–1168. [Google Scholar] [CrossRef]
- Piene, H. The sensitivity of young white spruce to budworm defoliation. North. J. Appl. For. 1991, 8, 168–171. [Google Scholar] [CrossRef]
- Piene, H.; MacLean, D.A. Spruce budworm defoliation and growth loss in young balsam fir: Patterns of shoot, needle and foliage weight production over a nine-year outbreak cycle. For. Ecol. Manag. 1999, 123, 115–133. [Google Scholar] [CrossRef]
- Piene, H.; MacLean, D.A.; Landry, M. Spruce budworm defoliation and growth loss in young balsam fir: Relationships between volume growth and foliage weight in spaced and unspaced, defoliated and protected stands. For. Ecol. Manag. 2003, 179, 37–53. [Google Scholar] [CrossRef]
Variable | Source | Coefficient | SE | t | p |
---|---|---|---|---|---|
Height | Intercept | 1.342 | 0.073 | 18.4 | <0.001 |
(Figure 1a) | D | 0.592 | 0.013 | 46.8 | <0.001 |
AD = 0.50, p = 0.20 | Spruce × Closed | −5.64 | 2.78 | −2.03 | 0.047 |
D2 | −0.188 | 0.011 | −16.6 | <0.001 | |
D × Spruce × Closed | 0.567 | 0.245 | 2.31 | 0.025 | |
D2 × Spruce | −0.0046 | 0.001 | −7.65 | <0.001 | |
D2 × Spruce × Closed | −0.0104 | 0.005 | −2.04 | 0.046 | |
Crown length | Intercept | 0.687 | 0.115 | 5.99 | <0.001 |
(Figure 1b) | Spruce | 0.281 | 0.124 | 2.27 | 0.027 |
AD = 0.21, p = 0.85 | Closed | −4.364 | 0.245 | −17.8 | <0.001 |
D | 0.613 | 0.026 | 23.78 | <0.001 | |
D2 | −0.004 | 0.001 | −4.13 | <0.001 | |
D × Spruce | −0.101 | 0.018 | −5.58 | <0.001 | |
D × Spruce × Closed | 0.078 | 0.016 | 4.81 | <0.001 | |
D2 × Closed | −0.005 | 0.001 | −7.45 | <0.001 | |
Crown length | H | 0.834 | 0.007 | 113.2 | <0.001 |
(Figure 1c) | H × Closed | −0.340 | 0.009 | −36.1 | <0.001 |
AD = 0.20, p = 0.88 | |||||
Nodes | Intercept | 4.484 | 0.635 | 7.06 | <0.001 |
(Figure 1d) | H | 1.473 | 0.095 | 15.6 | <0.001 |
AD = 0.28, p = 0.65 |
Variable | Source | Coefficient | SE | t | p |
---|---|---|---|---|---|
Nodal branches | Intercept | 4.924 | 0.262 | 18.82 | <0.001 |
(Figure 2a) | i (spruce) | −0.476 | 0.152 | −3.14 | 0.003 |
AD = 0.81, p = 0.03 | k (node) | −0.232 | 0.091 | −2.53 | 0.015 |
k2 | 0.022 | 0.009 | 2.50 | 0.016 | |
k3 | −0.0007 | 0.0002 | −2.77 | 0.008 | |
Internodal branches | k (node) | 5.924 | 0.280 | 21.18 | 0.000 |
(Figure 2b) | k2 | −0.892 | 0.061 | −14.68 | 0.000 |
AD = 0.62, p = 0.1 | k3 | 0.0463 | 0.0042 | 11.06 | 0.000 |
k4 | −0.0008 | 0.0001 | −8.83 | 0.000 | |
i × k2 (spruce) | −0.033 | 0.011 | −3.14 | 0.003 | |
i × k3 (spruce) | 0.0016 | 0.0006 | 2.98 | 0.005 | |
Log nodal weight * | Intercept | −0.425 | 0.108 | −3.92 | <0.001 |
(Figure 2d) | i (spruce) | −0.620 | 0.159 | −3.90 | <0.001 |
AD = 0.19, p = 0.90 | k (node) | 0.0818 | 0.0157 | 5.22 | <0.001 |
k2 | −0.0018 | 0.0005 | −3.82 | <0.001 | |
i × k (spruce) | 0.082 | 0.025 | 3.21 | 0.002 | |
i × k2 (spruce) | −0.0023 | 0.0009 | −2.72 | 0.009 | |
Log internodal weight * | Intercept | −0.811 | 0.188 | −4.31 | <0.001 |
(Figure 2e) | k (node) | 0.1128 | 0.0264 | 4.27 | <0.001 |
AD = 0.91, p = 0.02 | k2 | −0.0024 | 0.0008 | −3.04 | 0.004 |
i × k (spruce) | −0.074 | 0.027 | −2.78 | 0.008 | |
i × k2 (spruce) | 0.0028 | 0.0013 | 2.23 | 0.030 | |
Log nodal area | Intercept | −0.8312 | 0.0957 | −8.68 | <0.001 |
(Figure 2g) | i (spruce) | −0.323 | 0.108 | −2.99 | 0.004 |
AD = 0.29, p = 0.61 | k (node) | 0.1032 | 0.0128 | 8.08 | <0.001 |
k2 | −0.0022 | 0.0004 | −5.68 | <0.001 | |
i × k (spruce) | 0.0204 | 0.0066 | 3.10 | 0.003 | |
Log internodal area | Intercept | −1.321 | 0.147 | −8.96 | <0.001 |
(Figure 2h) | k (node) | 0.134 | 0.020 | 6.58 | <0.001 |
AD = 0.87, p = 0.02 | k2 | −0.0027 | 0.0006 | −4.30 | <0.001 |
Log nodal buds | Intercept | 1.9329 | 0.0710 | 27.23 | <0.001 |
(Figure 2j) | k (node) | 0.075 | 0.012 | 6.53 | <0.001 |
AD = 0.38, p = 0.39 | k2 | −0.0022 | 0.0004 | −6.05 | <0.001 |
i × k | 0.0206 | 0.0032 | 6.46 | <0.001 | |
Log internodal buds | Intercept | 2.249 | 0.068 | 33.27 | <0.001 |
(Figure 2k) | k (node) | −0.493 | 0.162 | −3.05 | 0.004 |
AD = 0.77, p = 0.04 | i × k (spruce) | 0.043 | 0.010 | 4.30 | <0.001 |
Variable | Source | Coefficient | SE | t | p |
---|---|---|---|---|---|
Log buds | Intercept | 3.084 | 0.062 | 50.00 | <0.001 |
Equation (12) | Spruce | −0.198 | 0.041 | −4.86 | <0.001 |
(Figure 3a) | Closed | 2.221 | 0.976 | 2.28 | 0.027 |
AD = 0.60, p = 0.11 | Log D | −1.837 | 0.595 | −3.09 | 0.003 |
Log K × Closed | −2.311 | 0.860 | −2.69 | 0.009 | |
Log D × Log K | 2.372 | 0.527 | 4.50 | <0.001 | |
Log buds | Intercept | 3.002 | 0.054 | 55.98 | <0.001 |
Equation (13) | i (spruce) | −0.190 | 0.047 | −4.03 | <0.001 |
(Figure 3b) | Log D | 0.703 | 0.053 | 13.20 | <0.001 |
AD = 0.24, p = 0.77 | |||||
Log area | Intercept | 0.011 | 0.202 | 0.05 | 0.957 |
Equation (14) | Log D | −0.792 | 0.373 | −2.12 | 0.038 |
(Figure 3c) | Log K | 0.730 | 0.218 | 3.35 | 0.001 |
AD = 0.21, p = 0.86 | Spruce × Closed | 1.212 | 0.592 | 2.05 | 0.045 |
Log D × Closed | 0.672 | 0.320 | 2.10 | 0.041 | |
Log K × Closed | −1.277 | 0.347 | −3.68 | 0.001 | |
Log D × Log K | 1.528 | 0.362 | 4.22 | 0.000 | |
Log D × Spruce × Closed | −0.932 | 0.454 | −2.05 | 0.045 | |
Log area | Intercept | 0.544 | 0.053 | 10.19 | <0.001 |
Equation (15) | Closed | −0.337 | 0.082 | −4.09 | <0.001 |
(Figure 3d) | Log D | 1.111 | 0.088 | 12.68 | <0.001 |
AD = 0.49, p = 0.21 | |||||
Log weight | Intercept | 0.071 | 0.134 | 0.53 | 0.600 |
Equation (16) | Log K | 0.867 | 0.155 | 5.59 | <0.001 |
(Figure 3e) | Log K × Closed | −1.228 | 0.243 | −5.05 | <0.001 |
AD = 0.36, p = 0.43 | Log D × Log K | 0.707 | 0.062 | 11.38 | <0.001 |
Log D × Log K × Closed | 0.633 | 0.192 | 3.30 | 0.002 | |
Log weight | Intercept | 0.780 | 0.050 | 15.61 | 0.000 |
Equation (17) | Closed | −1.641 | 0.459 | −3.57 | 0.001 |
(Figure 3f) | Log D | 0.986 | 0.082 | 11.97 | 0.000 |
AD = 0.48, p = 0.23 | Log D × Closed | 1.060 | 0.360 | 2.95 | 0.005 |
Term | Coefficient | SE | Wald’s χ2 | p |
---|---|---|---|---|
Intercept | −7.211 | 0.943 | ||
Node | 0.411 | 0.119 | 11.95 | 0.001 |
Cluster | 0.869 | 0.294 | 8.73 | 0.003 |
Node × Cluster | −0.0823 | 0.0378 | 4.75 | 0.029 |
AICc = 148.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Régnière, J.; Sanders, C.J. Abundance and Distribution of Foliage on Balsam Fir and White Spruce in Reference to Spruce Budworm Ecology and Absolute Population Density Estimation. Forests 2022, 13, 534. https://doi.org/10.3390/f13040534
Régnière J, Sanders CJ. Abundance and Distribution of Foliage on Balsam Fir and White Spruce in Reference to Spruce Budworm Ecology and Absolute Population Density Estimation. Forests. 2022; 13(4):534. https://doi.org/10.3390/f13040534
Chicago/Turabian StyleRégnière, Jacques, and Chris J. Sanders. 2022. "Abundance and Distribution of Foliage on Balsam Fir and White Spruce in Reference to Spruce Budworm Ecology and Absolute Population Density Estimation" Forests 13, no. 4: 534. https://doi.org/10.3390/f13040534
APA StyleRégnière, J., & Sanders, C. J. (2022). Abundance and Distribution of Foliage on Balsam Fir and White Spruce in Reference to Spruce Budworm Ecology and Absolute Population Density Estimation. Forests, 13(4), 534. https://doi.org/10.3390/f13040534