Measuring and Modeling the Effect of Strip Cutting on the Water Table in Boreal Drained Peatland Pine Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements at Study Sites
2.2. Spatial Simulation of Hydrology
2.3. Parameterization of Study Sites
2.4. Parameterization of Strip Cut Layouts
2.5. Deduction of Hydrological Feasibility of Strip Cutting
2.6. Sensitivity Analysis
3. Results
3.1. Measured WT
3.2. Comparison of the Modeled and Measured WTs
3.3. Simulated Edge Effects between Unharvested Stands and Harvested Strips
3.4. Effect of Strip Cut Layout and LAI on the Share of Well-Drained Peatland Area
3.5. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Depth (m) | θs (m3 m−3) | θr (m3 m−3) | α | β | Ksat (m h−1) |
0.0–0.1 | 0.95 | 0.098 | 0.338 | 1.40 | 9.71 |
0.1–0.2 | 0.92 | 0.098 | 0.072 | 1.37 | 2.15 |
0.2–0.3 | 0.92 | 0.098 | 0.072 | 1.37 | 0.35 |
0.3–0.4 | 0.92 | 0.098 | 0.072 | 1.37 | 1.2 × 10−2 |
0.4–0.5 | 0.92 | 0.098 | 0.072 | 1.37 | 3.9 × 10−3 |
0.5–2.0 | 0.92 | 0.098 | 0.072 | 1.37 | 1.3 × 10−3–4.2 × 10−4 |
Depth (m) | θs (m3 m−3) | θr (m3 m−3) | α | β | Ksat (m h−1) |
0.0–0.1 | 0.94 | 0.002 | 0.202 | 1.35 | 5.37 |
0.1–0.2 | 0.87 | 0.198 | 0.030 | 1.49 | 2.31 |
0.2–0.3 | 0.87 | 0.198 | 0.030 | 1.49 | 0.75 |
0.3–0.4 | 0.87 | 0.198 | 0.030 | 1.49 | 4.8 × 10−2 |
0.4–0.5 | 0.87 | 0.198 | 0.030 | 1.49 | 3.1 × 10−2 |
0.5–2.0 | 0.87 | 0.198 | 0.030 | 1.49 | 2.0 × 10−2–4.2 × 10−4 |
Appendix B
Appendix C
Appendix D
References
- Päivänen, J.; Hånell, B. Peatland Ecology and Forestry—A Sound Approach; University of Helsinki, Department of Forest Sciences Publications 3: Helsinki, Finland, 2012. [Google Scholar]
- Nieminen, M.; Hökkä, H.; Laiho, R.; Juutinen, A.; Ahtikoski, A.; Pearson, M.; Kojola, S.; Sarkkola, S.; Launiainen, S.; Valkonen, S.; et al. Could continuous cover forestry be an economically and environmentally feasible management option on drained boreal peatlands? For. Ecol. Manag. 2018, 424, 78–84. [Google Scholar] [CrossRef]
- Ahtikoski, A.; Hökkä, H.; Siipilehto, J. Strip cutting management in Scots pine stands on peatlands—A financial comparison to rotation forestry. Scan. J. For. Res. 2022, 37, 119–129. [Google Scholar] [CrossRef]
- Juutinen, A.; Shanin, V.; Ahtikoski, A.; Rämö, J.; Mäkipää, R.; Laiho, R.; Sarkkola, S.; Laurén, A.; Penttilä, T.; Hökkä, H.; et al. Profitability of continuous cover forestry in Norway spruce-dominated peatland forest and the role of water table. Can. J. For. Res. 2020, 51, 859–870. [Google Scholar] [CrossRef]
- Leemans, R. Canopy gaps and establishment patterns of spruce (Picea abies (L.) Karst.) in two old-growth coniferous forests in central Sweden. Vegetatio 1991, 93, 157–165. [Google Scholar] [CrossRef]
- Sarkkola, S.; Hökkä, H.; Ahti, E.; Nieminen, M.; Koivusalo, H. Depth of water table prior to ditch network maintenance is a key factor for tree growth response. Scan. J. For. Res. 2012, 27, 649–658. [Google Scholar] [CrossRef]
- Hökkä, H.; Laurén, A.; Stenberg, L.; Launiainen, S.; Leppä, K.; Nieminen, M. Defining guidelines for ditch depth in drained Scots pine dominated peatland forests. Silva Fennica 2021, 55, 10494. [Google Scholar] [CrossRef]
- Saarinen, M.; Alenius, V.; Laiho, R. Effect of soil moisture conditions on seed germination and early seedling development in prepared microsites in peatland forest regeneration areas. Suo 2013, 64, 51–75. Available online: http://www.suo.fi/pdf/article9887.pdf (accessed on 4 July 2022). (In Finnish with English summary).
- Ojanen, P.; Minkkinen, K.; Alm, J.; Penttilä, T. Soil-atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands. For. Ecol. Manag. 2010, 260, 411–421. [Google Scholar] [CrossRef]
- Korkiakoski, M.; Tuovinen, J.-P.; Penttilä, T.; Sarkkola, S.; Ojanen, P.; Minkkinen, K.; Rainne, J.; Laurila, T.; Lohila, A. Greenhouse gas and energy fluxes in a boreal peatland forest after clear-cutting. Biogeosciences 2019, 16, 3703–3723. [Google Scholar] [CrossRef] [Green Version]
- Kaila, A.; Asam, Z.; Koskinen, M.; Uusitalo, R.; Smolander, A.; Kiikkilä, O.; Sarkkola, S.; O’Driscoll, C.; Kitunen, V.; Fritze, H.; et al. Impact of re-wetting of forestry-drained peatlands on water quality–a laboratory approach assessing the release of P, N, Fe, and dissolved organic carbon. Water Air Soil Pollut. 2016, 227, 292. [Google Scholar] [CrossRef]
- Leppä, K.; Hökkä, H.; Laiho, R.; Launiainen, S.; Lehtonen, A.; Mäkipää, R.; Peltoniemi, M.; Saarinen, M.; Sarkkola, S.; Nieminen, M. Selection Cuttings as a Tool to Control Water Table Level in Boreal Drained Peatland Forests. Front. Earth Sci. 2020, 8, 576510. [Google Scholar] [CrossRef]
- Sarkkola, S.; Hökkä, H.; Koivusalo, H.; Nieminen, M.; Ahti, E.; Päivänen, J.; Laine, J. Role of tree stand evapotranspiration in maintaining satisfactory drainage conditions in drained peatlands. Can. J. For. Res. 2010, 40, 1485–1496. [Google Scholar] [CrossRef]
- Laurén, A.; Palviainen, M.; Launiainen, S.; Leppä, K.; Stenberg, L.; Urzainki, I.; Nieminen, M.; Laiho, R.; Hökkä, H. Drainage and Stand Growth Response in Peatland Forests—Description, Testing, and Application of Mechanistic Peatland Simulator SUSI. Forests 2021, 12, 293. [Google Scholar] [CrossRef]
- Haahti, K.; Koivusalo, H.; Hökkä, H.; Nieminen, M.; Sarkkola, S. Factors affecting the spatial variability of water table depth within a drained peatland forest in northern Finland. Suo 2012, 63, 107–121. Available online: http://www.suo.fi/pdf/article9883.pdf (accessed on 4 July 2022). (In Finnish with English summary).
- Hökkä, H.; Uusitalo, J.; Lindeman, H.; Ala-Ilomäki, H. Performance of weather parameters in predicting growing season water table depth variations on drained forested peatlands—A case study from southern Finland. Silva Fennica 2016, 50, 1687. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, L.; Haahti, K.; Hökkä, H.; Launiainen, S.; Nieminen, M.; Laurén, A.; Koivusalo, H. Hydrology of Drained Peatland Forest: Numerical Experiment on the Role of Tree Stand Heterogeneity and Management. Forests 2018, 9, 645. [Google Scholar] [CrossRef] [Green Version]
- Kubota, T.; Kagawa, A.; Abe, T.; Hosoda, I. Effects of clear-cutting, meteorological, and physiological factors on evapo-transpiration in the Kamabuchi experimental watershed in northern Japan. Hydrol. Processes 2021, 35, e14111. [Google Scholar] [CrossRef]
- Kozii, N.; Haahti, K.; Tor-ngern, P.; Chi, J.; Hasselquist, E.M.; Laudon, H.; Launiainen, S.; Oren, R.; Peichl, M.; Wallerman, J.; et al. Partitioning growing season water balance within a forested boreal catchment using sap flux, eddy covariance, and a process-based model. Hydrol. Earth Syst. Sci. 2020, 24, 2999–3014. [Google Scholar] [CrossRef]
- Leppä, K.; Korkiakoski, M.; Nieminen, M.; Laiho, R.; Hotanen, J.-P.; Kieloaho, A.-J.; Korpela, L.; Laurila, T.; Lohila, A.; Minkkinen, K.; et al. Vegetation controls of water and energy balance of a drained peatland forest: Responses to alternative harvesting practices. Agric. For. Meteorol. 2020, 295, 108198. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Gordon, D.A.; Van Stan, J.T., II. A Global Synthesis of Throughfall and Stemflow Hydrometeorology. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, J.T., II, Gutmann, E., Friesen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 49–70. [Google Scholar] [CrossRef]
- Launiainen, S.; Guan, M.; Salmivaara, A.; Kieloaho, A.-J. Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: A spatial approach. Hydrol. Earth Syst. Sci. 2019, 23, 3457–3480. [Google Scholar] [CrossRef] [Green Version]
- Urzainki, I.; Laurén, A.; Palviainen, M.; Haahti, K.; Budiman, A.; Basuki, I.; Netzer, M.; Hökkä, H. Canal blocking optimization in restoration of drained peatlands. Biogeosciences 2020, 17, 4769–4784. [Google Scholar] [CrossRef]
- Vasander, H.; Laine, J. Site Type Classification on Drained Peatlands. In Finland—Fenland: Research and Sustainable Utilisation of Mires and Peat; Korhonen, R., Korpela, L., Sarkkola, S., Eds.; Finnish Peatland Society, Maahenki Ltd.: Helsinki, Finland, 2008; pp. 146–151. [Google Scholar]
- Päivänen, J. Hydraulic conductivity and water retention in peat soils. Acta For. Fenn. 1973, 129, 1–70. [Google Scholar] [CrossRef] [Green Version]
- Aalto, J.; Pirinen, P.; Heikkinen, J.; Venäläinen, A. Spatial interpolation of monthly climate data for Finland: Comparing the performance of kriging and generalized additive models. Theor. Appl. Climatol. 2013, 112, 99–111. [Google Scholar] [CrossRef]
- Ťupek, B.; Mäkipää, R.; Heikkinen, J.; Peltoniemi, M.; Ukonmaanaho, L.; Hokkanen, T.; Nöjd, P.; Nevalainen, S.; Lindgren, M.; Lehtonen, A. Foliar turnover rates in Finland—Comparing estimates from needle-cohort and litterfall-biomass methods. Boreal Environ. Res. 2015, 20, 283–304. Available online: http://hdl.handle.net/10138/228149 (accessed on 4 July 2022).
- Lehtonen, A.; Heikkinen, J.; Petersson, H.; Ťupek, B.; Liski, E.; Mäkelä, A. Scots pine and Norway spruce foliage biomass in Finland and Sweden—Testing traditional models vs. the pipe model theory. Can. J. For. Res. 2020, 50, 146–154. [Google Scholar] [CrossRef]
- Härkönen, S.; Lehtonen, A.; Manninen, T.; Tuominen, S.; Peltoniemi, M. Estimating forest leaf area index using satellite images: Comparison of k-NN based Landsat-NFI LAI with MODIS-RSR based LAI product for Finland. Boreal Environ. Res. 2015, 20, 181–195. [Google Scholar]
- Korhonen, L.; Korhonen, K.T.; Stenberg, P.; Maltamo, M.; Rautiainen, M. Local models for forest canopy cover with beta regression. Silva Fennica 2007, 41, 671–685. [Google Scholar] [CrossRef] [Green Version]
- Cermák, J.; Riguzzi, F.; Ceulemans, R. Scaling up from the individual tree to the stand level in Scots pine. I. Needle distribution, overall crown and root geometry. Ann. For. Sci. 1998, 55, 63–88. [Google Scholar] [CrossRef] [Green Version]
- Nagel, J.; Albert, M.; Schmidt, M. Das waldbauliche Prognose-und Entscheidungsmodell BWINPro 6.1. Forst Holz 2002, 57, 486–493. [Google Scholar]
- Venäläinen, A.; Tuomenvirta, H.; Pirinen, P.; Drebs, A. A Basic Finnish Climate Data Set 1961–2000—Description and Illustrations; Reports 2005:5; Finnish Meteorological Institute: Helsinki, Finland. [CrossRef]
- Cienciala, E.; Mellander, P.-E.; Kučera, J.; Opluštilová, M.; Ottosson-Löfvenius, M.; Bishop, K. The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Can. J. For. Res. 2002, 32, 693–702. [Google Scholar] [CrossRef]
- Ringgaard, R.; Herbst, M.; Friborg, T. Partitioning of forest evapotranspiration: The impact of edge effects and canopy structure. Agric. For. Meteorol. 2012, 166–167, 86–97. [Google Scholar] [CrossRef]
- Lagergren, F.; Lindroth, A. Variation in sapflow and stem growth in relation to tree size, competition and thinning in a mixed forest of pine and spruce in Sweden. For. Ecol. Manage. 2004, 188, 51–63. [Google Scholar] [CrossRef]
- Schwärzel, K.; Šimumek, J.; van Genuchten, M.T.; Wessolek, G. Measurement and modeling of soil-water dynamics and evapotranspiration of drained peatland soils. J. Plant Nutr. Soil Sci. 2006, 169, 762–774. [Google Scholar] [CrossRef]
- Nikolova, P.S.; Geyer, J.; Brang, P.; Cherubini, P.; Zimmermann, S.; Gärtner, H. Changes in Root-Shoot Allometric Relations in Alpine Norway Spruce Trees After Strip Cutting. Front. Plant Sci. 2021, 12, 703674. [Google Scholar] [CrossRef]
- Siipilehto, J. Height Distributions of Scots Pine Sapling Stands Affected by Retained Tree and Edge Stand Competition. Silva Fennica 2006, 40, 331. [Google Scholar] [CrossRef] [Green Version]
- Alignier, A.; Deconchat, M. Patterns of forest vegetation responses to edge effect as revealed by a continuous approach. Ann. For. Sci. 2013, 70, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, L.; Tuukkanen, T.; Finér, L.; Marttila, H.; Piirainen, S.; Kløve, B.; Koivusalo, H. Ditch erosion processes and sediment transport in a drained peatland forest. Ecol. Eng. 2015, 75, 421–433. [Google Scholar] [CrossRef]
- Ojanen, P.; Minkkinen, K. The dependence of net soil CO2 emissions on water table depth in boreal peatlands drained for forestry. Mires Peat 2019, 24, 1–8. [Google Scholar] [CrossRef]
- Saarinen, M.; Valkonen, S.; Sarkkola, S.; Nieminen, M.; Penttilä, T.; Laiho, R. Jatkuvapeitteisen metsänkasvatuksen mahdollisuudet ojitetuilla turvemailla. Metsätieteen Aikakauskirja (In Finnish). 2020, 10372. [Google Scholar] [CrossRef]
Study Site | Latitude | Longitude | Ditch Depth 1 | Area (ha) | BA (m2 ha−1) | Ntubes | LAIconif | LAIdecid 2 | Tree Height (m) | DBH (cm) |
---|---|---|---|---|---|---|---|---|---|---|
Häädetjärvi 1 | 62°02′13″ | 22°43′18″ | 0.6 m | 0.52 | 17.0 | 9 | 3.2 (3.0) | 0.7 (1.1) | 15.1 (3.5) | 18.6 (5.7) |
Häädetjärvi 2 | 62°02′8″ | 22°43′21″ | 0.6 m | 0.53 | 16.3 | 9 | 2.2 (3.1) | 0.6 (1.1) | 17.9 (3.4) | 20.5 (6.4) |
Häädetjärvi 3 | 62°02′2″ | 22°43′24″ | 0.6 m | 0.46 | 19.8 | 9 | 2.8 (2.9) | 0.5 (0.7) | 19.7 (1.5) | 24.5 (3.8) |
Jaakkoinsuo | 62°03′7″ | 24°28′58″ | 0.7 m | 0.89 | 12.0 | 25 | 1.9 (2.6) | 0.5 (0) | 17.2 (1.3) | 18.0 (3.7) |
Katila | 60°27′21″ | 24°57′18″ | 0.4 m | 0.54 | 9.6 | 22 | 2.2 (0.4) | 0.5 (0) | 20.6 (0.1) | 25.2 (4.5) |
LAIconif (m2 m−2) | LAIdecid (m2 m−2) | Hdom (m) | fc (−) |
---|---|---|---|
0 | 0.5 | 0.5 | 0.10 |
1 | 0.5 | 16 | 0.40 |
2 | 0.5 | 16 | 0.55 |
3 | 0.5 | 16 | 0.58 |
4 | 0.5 | 16 | 0.62 |
Study Site | Diffobs (m) | Diffmod (m) | MAE (m) | RMSE (m) | Ntubes |
---|---|---|---|---|---|
Häädetjärvi 1 | 0.12 (0.08) | 0.10 (0.07) | 0.09 (0.03) | 0.12 (0.04) | 9 |
Häädetjärvi 2 | 0.12 (0.04) | 0.09 (0.06) | 0.08 (0.03) | 0.09 (0.03) | 9 |
Häädetjärvi 3 | 0.06 (0.05) | 0.11 (0.08) | 0.10 (0.04) | 0.13 (0.05) | 9 |
Jaakkoinsuo | 0.12 (0.03) | 0.06 (0.03) | 0.18 (0.08) | 0.21 (0.07) | 25 |
Katila | 0.10 (0.07) | 0.11 (0.09) | 0.08 (0.03) | 0.10 (0.04) | 22 |
Carex Peat | Sphagnum Peat | |||
---|---|---|---|---|
LAIdecid | LAIconif = 1 | LAIconif = 4 | LAIconif = 1 | LAIconif = 4 |
0.4 | −0.39 | −0.50 | −0.24 | −0.33 |
0.5 | −0.40 | −0.51 | −0.25 | −0.33 |
0.6 | −0.41 | −0.51 | −0.25 | −0.34 |
Location | LAIconif = 1 | LAIconif = 4 | LAIconif = 1 | LAIconif = 4 |
Nurmijärvi (60°27′ N) | −0.46 | −0.62 | −0.29 | −0.42 |
Parkano (62°02′ N) | −0.40 | −0.51 | −0.25 | −0.33 |
Rovaniemi (66°40′ N) | −0.39 | −0.46 | −0.24 | −0.29 |
Ditch depth (m) | LAIconif = 1 | LAIconif = 4 | LAIconif = 1 | LAIconif = 4 |
−0.48 | −0.35 | −0.45 | −0.24 | −0.32 |
−0.60 | −0.40 | −0.51 | −0.25 | −0.33 |
−0.72 | −0.44 | −0.54 | −0.26 | −0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stenberg, L.; Leppä, K.; Launiainen, S.; Laurén, A.; Hökkä, H.; Sarkkola, S.; Saarinen, M.; Nieminen, M. Measuring and Modeling the Effect of Strip Cutting on the Water Table in Boreal Drained Peatland Pine Forests. Forests 2022, 13, 1134. https://doi.org/10.3390/f13071134
Stenberg L, Leppä K, Launiainen S, Laurén A, Hökkä H, Sarkkola S, Saarinen M, Nieminen M. Measuring and Modeling the Effect of Strip Cutting on the Water Table in Boreal Drained Peatland Pine Forests. Forests. 2022; 13(7):1134. https://doi.org/10.3390/f13071134
Chicago/Turabian StyleStenberg, Leena, Kersti Leppä, Samuli Launiainen, Annamari (Ari) Laurén, Hannu Hökkä, Sakari Sarkkola, Markku Saarinen, and Mika Nieminen. 2022. "Measuring and Modeling the Effect of Strip Cutting on the Water Table in Boreal Drained Peatland Pine Forests" Forests 13, no. 7: 1134. https://doi.org/10.3390/f13071134
APA StyleStenberg, L., Leppä, K., Launiainen, S., Laurén, A., Hökkä, H., Sarkkola, S., Saarinen, M., & Nieminen, M. (2022). Measuring and Modeling the Effect of Strip Cutting on the Water Table in Boreal Drained Peatland Pine Forests. Forests, 13(7), 1134. https://doi.org/10.3390/f13071134