Genetic Diversity and Population Structure Analysis of Tree Peony (Paeonia Section Moutan DC.) Germplasm Using Sixteen Functional SSR Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Genomic DNA Extraction
2.2. Source of Functional SSR Markers
2.3. Screening of Functional SSR Markers and Genotyping
2.4. Data Analysis
3. Results
3.1. Screening of Polymorphic Microsatellites
3.2. Genetic Diversity Analysis
3.3. Population Structure Analysis
3.4. Population Differentiation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hong, D.; Pan, K. Taxonomical history and revision of Paeonia Sect. Moutan (Paeoniaceae). Acta Phytotaxon. Sin. 1999, 37, 351–368. [Google Scholar]
- Li, Y.; Guo, L.; Wang, Z.; Zhao, D.; Guo, D.; Carlson, J.E.; Yin, W.; Hou, X. Genome-wide association study of 23 flowering phenology traits and 4 floral agronomic traits in tree peony (Paeonia section Moutan DC.) reveals five genes known to regulate flowering time. Hortic. Res. 2023, 10, uhac263. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Li, T.; Li, Z.; Sun, J.; Tao, J. Characteristics of Paeonia ostii seed oil body and OLE17.5 determining oil body morphology. Food. Chem. 2020, 319, 126548. [Google Scholar] [CrossRef]
- Zhao, D.; Luan, Y.; Shi, W.; Zhang, X.; Meng, J.; Tao, J. A Paeonia ostii caffeoyl-CoA O-methyltransferase confers drought stress tolerance by promoting lignin synthesis and ROS scavenging. Plant Sci. 2021, 303, 110765. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F. Advances in the breeding of tree peonies and a cultivar system for the cultivar group. Int. J. Plant Breed. 2007, 1, 89–104. [Google Scholar]
- Wang, X.; Liang, H.; Guo, D.; Guo, L.; Duan, X.; Jia, Q.; Hou, X. Integrated analysis of transcriptomic and proteomic data from tree peony (P. ostii) seeds reveals key developmental stages and candidate genes related to oil biosynthesis and fatty acid metabolism. Hortic. Res. 2019, 6, 111. [Google Scholar] [CrossRef]
- Anjani, K.; Raoof, M.A.; Prasad, M.S.L.; Duraimurugan, P.; Lucose, C.; Yadav, P.; Prasad, R.D.; Lal, J.J.; Sarada, C. Trait-specific accessions in global castor (Ricinus communis L.) germplasm core set for utilization in castor improvement. Ind. Crops Prod. 2018, 112, 766–774. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, M.; Li, S.; Chen, Q.; Teixeira da Silva, J.A.; Wang, A.; Yu, X.; Wang, L. Germplasm resources and genetic breeding of Paeonia: A systematic review. Hortic. Res. 2020, 7, 107. [Google Scholar] [CrossRef]
- Hou, X.; Yin, W.; Li, J.; Wang, H. AFLP analysis of genetic diversity of 30 tree peony (Paeonia suffruticosa Andr.) cultivars. Sci. Agric. Sin. 2006, 39, 1709–1715. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, B.; Zhang, X.; Jiang, D.; Xue, Q.; Wang, S. Assessment of genetic diversity and relationship of 89 tree peony cultivars from different provenances. Acta Hortic. Sin. 2012, 39, 2499–2506. [Google Scholar] [CrossRef]
- Su, X.; Zhang, H.; Dong, L.; Zhang, J.; Zhu, X.; Sun, K. RAPD classification and identification of Paeonia rockii varieties planted in Gansu province. Acta Bot. Boreali-Occident. Sin. 2006, 26, 696–701. [Google Scholar] [CrossRef]
- Gao, S.; Cong, R.; Gao, L.; Zhu, Y.; Meng, Y.; Zhou, Y. Genetic diversity analysis of phenotypic character and SRAP molecular markers in 45 tree peony cultivars. Braz. J. Bot. 2020, 43, 291–302. [Google Scholar] [CrossRef]
- Hou, X.G.; Guo, D.L.; Wang, J. Development and characterization of EST-SSR markers in Paeonia suffruticosa (Paeoniaceae). Am. J. Bot. 2011, 98, e303–e305. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Cheng, F.; Zhong, Y. Genetic diversity of Paeonia rockii (flare tree peony) germplasm accessions revealed by phenotypic traits, EST-SSR markers and chloroplast DNA sequences. Forests 2020, 11, 672. [Google Scholar] [CrossRef]
- Liu, N.; Cheng, F. Association mapping for yield traits in Paeonia rockii based on SSR markers within transcription factors of comparative transcriptome. BMC Plant Biol. 2020, 20, 245. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, M.V.; Beuzon, C.; González-Plaza, J.J.; Fernández-Ocaña, A.M. Identification of an olive (Olea europaea L.) core collection with a new set of SSR markers. Genet. Resour. Crop Evol. 2020, 68, 117–133. [Google Scholar] [CrossRef]
- Zhou, Q.; Mu, K.M.; Ni, Z.X.; Liu, X.H.; Li, Y.G.; Xu, L.A. Analysis of genetic diversity of ancient Ginkgo populations using SSR markers. Ind. Crops Prod. 2020, 145, 111942. [Google Scholar] [CrossRef]
- Guan, C.F.; Zhang, P.X.; Hu, C.Q.; Chachar, S.; Riaz, A.; Wang, R.; Yang, Y. Genetic diversity, germplasm identification and population structure of Diospyros kaki Thunb. from different geographic regions in China using SSR markers. Sci. Hortic. 2019, 251, 233–240. [Google Scholar] [CrossRef]
- Duan, H.J.; Cao, S.; Zheng, H.Q.; Hu, D.H.; Lin, J.; Cui, B.B.; Lin, H.Z.; Hu, R.Y.; Wu, B.; Sun, Y.H. Genetic characterization of chinese fir from six provinces in southern china and construction of a core collection. Sci. Rep. 2017, 7, 13814. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, H.; Yue, C.; Ye, C.; Li, W.; Yang, P. Molecular markers and phenotypic identification reveal the genetic diversity and structure of four local tea plant populations in China. Genet. Resour. Crop Evol. 2023. [Google Scholar] [CrossRef]
- Jiang, M.; Yan, S.; Ren, W.; Xing, N.; Li, H.; Zhang, M.; Liu, M.; Liu, X.; Ma, W. Genetic diversity of the Chinese medicinal plant astragali radix based on transcriptome-derived SSR markers. Electron. J. Biotechnol. 2023, 62, 13–20. [Google Scholar] [CrossRef]
- Su, M.; Zhang, C.; Feng, S. Identification and genetic diversity analysis of hybrid offspring of azalea based on EST-SSR markers. Sci. Rep. 2022, 12, 15239. [Google Scholar] [CrossRef] [PubMed]
- Makrickiene, E.; Danusevičius, D.; Brazaitis, G.; Manton, M. Morphological and genetic differentiation of wolf trees in Scots pine stands based on chloroplast microsatellite markers. Eur. J. For. Res. 2019, 138, 527–537. [Google Scholar] [CrossRef]
- Zou, J.; He, R.; Rao, H.; Luo, X.; Chen, L. Genetic diversity and population genetic structure in Kadsura coccinea (Schisandraceae), an evergreen woody vine from Hunan, China. J. For. Res. 2023, 28, 364–373. [Google Scholar] [CrossRef]
- Lattier, J.D.; Ballard, H.E.; Kramer, M.; Pooler, M.R. Genome size, ploidy levels, and development of novel SSR primer to evaluate genetic diversity of Corylopsis Siebold & Zucc. germplasm collections. Genet. Resour. Crop Evol. 2022, 69, 2203–2216. [Google Scholar] [CrossRef]
- Gasi, F.; Pojskić, N.; Stroil, B.K.; Frøynes, O.; Fotirić Akšić, M.; Meland, M. Determining pollinizer success rates among several apple (Malus domestica L.) cultivars using microsatellite markers. Agronomy 2023, 13, 1106. [Google Scholar] [CrossRef]
- Khefifi, H.; Dumont, D.; Costantino, G.; Doligez, A.; Brito, A.C.; Bérard, A.; Morillon, R.; Ollitrault, P.; Luro, F. Mapping of QTLs for citrus quality traits throughout the fruit maturation process on clementine (Citrus reticulata × C. sinensis) and mandarin (C. reticulata Blanco) genetic maps. Tree Genet. Genomes 2022, 18, 40. [Google Scholar] [CrossRef]
- Cheng, B.; Wan, H.; Han, Y.; Yu, C.; Luo, L.; Pan, H.; Zhang, Q. Identification and QTL analysis of flavonoids and carotenoids in tetraploid roses based on an ultra-high-density genetic map. Front. Plant Sci. 2021, 12, 682305. [Google Scholar] [CrossRef]
- Testolin, R.; Messina, R.; Cipriani, G.; De Mori, G. SSR-based DNA fingerprinting of fruit crops. Crop Sci. 2023, 63, 390–459. [Google Scholar] [CrossRef]
- Lv, J.B.; Li, C.G.; Zhou, C.P.; Chen, J.B.; Li, F.G.; Weng, Q.J.; Li, M.; Wang, Y.Q.; Chen, S.K.; Chen, J.C. Genetic diversity analysis of a breeding population of Eucalyptus cloeziana F. Muell. (Myrtaceae) and extraction of a core germplasm collection using microsatellite markers. Ind. Crops Prod. 2020, 145, 112157. [Google Scholar] [CrossRef]
- Pachakkil, B.; Yamanaka, S.; Girma, G.; Matsumoto, R.; Tamiru-Oli, M.; Bhattacharjee, R.; Abberton, M.; Muranaka, S.; Asiedu, R.; Terauchi, R.; et al. Simple sequence repeat-based mini-core collection for white Guinea yam (Dioscorea rotundata) germplasm. Crop Sci. 2021, 61, 1268–1279. [Google Scholar] [CrossRef]
- Cai, C. High-Density Genetic Linkage Map Construction and QTLs Analyses for Phenotypic Traits in Tree Peony. Master’s Thesis, Beijing Forestry University, Beijing, China, 2015. [Google Scholar]
- Guo, Q.; Guo, L.; Zhang, L.; Zhang, L.; Ma, H.; Guo, D.; Hou, X. Construction of a genetic linkage map in tree peony (Paeonia Sect. Moutan) using simple sequence repeat (SSR) markers. Sci. Hortic. 2017, 219, 294–301. [Google Scholar] [CrossRef]
- Feng, S.; Jiao, K.; Zhang, Z.; Yang, S.; Gao, Y.; Jin, Y.; Shen, C.; Lu, J.; Zhan, X.; Wang, H. Development of chloroplast microsatellite markers and evaluation of genetic diversity and population structure of cutleaf groundcherry (Physalis angulata L.) in China. Plants 2023, 12, 1755. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, H.E.; Prom, L.K. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan sorghum core collection. BMC Genom. 2020, 21, 88. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. The integrative species concept and species on the speciation way. Biodivers. Sci. 2016, 24, 1004–1008. [Google Scholar] [CrossRef]
- Kang, X. Research progress and prospect of forest genetics and tree breeding. J. Nanjing For. Univ. Nat. Sci. Ed. 2020, 44, 1–10. [Google Scholar] [CrossRef]
- Liu, N.; Cheng, F.Y.; Guo, X.; Zhong, Y. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq. J. Integr. Agric. 2021, 20, 1832–1848. [Google Scholar] [CrossRef]
- Guo, Q.; Guo, L.; Li, Y.; Yang, H.; Hu, X.; Song, C.; Hou, X. Development and characterization of microsatellite markers based on the chloroplast genome of tree peony. Genes 2022, 13, 1543. [Google Scholar] [CrossRef]
- Boutin-Ganache, I.; Raposo, M.; Raymond, M.; Deschepper, C.F. M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. BioTechniques 2001, 31, 25–28. [Google Scholar] [CrossRef]
- Rod, P.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2005, 6, 288–295. [Google Scholar] [CrossRef]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.S.; Regnaut, S.J.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; Vonholdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Rosenberg, N.A. Distruct: A program for the graphical display of population structure. Mol. Ecol. Resour. 2003, 4, 137–138. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, F.; Cai, C.; Zhong, Y.; Jie, X. Association mapping for floral traits in cultivated Paeonia rockii based on SSR markers. Mol. Genet. Genom. 2017, 292, 187–200. [Google Scholar] [CrossRef]
- Peng, L.P.; Cheng, F.Y.; Hu, X.G.; Mao, J.F.; Xu, X.X.; Zhong, Y.; Li, S.Y.; Xian, H.L. Modelling environmentally suitable areas for the potential introduction and cultivation of the emerging oil crop Paeonia ostii in China. Sci. Rep. 2019, 9, 3213. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, R.; Xue, J.; Wang, S.; Zhang, X. Genetic diversity and relatedness analysis of nine wild species of tree peony based on simple sequence repeats markers. Hortic. Plant J. 2021, 7, 579–588. [Google Scholar] [CrossRef]
- Zhai, L.; Shi, Q.; Li, X.; Luo, X.; Niu, L.; Zhang, Y. Analysis of genetic diversity of tree peony in wanhua mountain in Yan’an city based on phenotypic traits and conserved DNA-derived polymorphism marker. Jiangsu Agric. Sci. 2019, 47, 95–101. [Google Scholar] [CrossRef]
- Guo, D.L.; Hou, X.G.; Zhang, J. Sequence-related amplified polymorphism analysis of tree peony (Paeonia suffruticosa Andrews) cultivars with different flower colours. J. Hortic. Sci. Biotechnol. 2015, 84, 131–136. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Luo, J.; Yao, Z.; Yu, Q.; Wang, Y.; Zhang, S.; Liu, Z.; Zhang, M.; Shen, Y. Development of EST-SSR markers and their application in an analysis of the genetic diversity of the endangered species Magnolia sinostellata. Mol. Genet. Genom. 2019, 294, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.L.; Zou, X.H.; Zhou, Z.Q.; Liu, J.; Xu, C.; Yu, J.; Wang, Q.; Zhang, D.M.; Wang, X.Q.; Ge, S.; et al. Multiple species of wild tree peonies gave rise to the ‘king of flowers’, Paeonia suffruticosa Andrews. Proc. Biol. Sci. 2014, 281, 20141687. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Wang, B.; Wei, Z.; Zhang, D.; Li, B. Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. J. Hered. 2012, 103, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Li, M.; Guo, D.; Ma, H.; Zhang, L.; Hou, X. Genetic diversity assessment and cluster analysis of phenotypic traits of Paeonia suffruticosa cultivar groups based on SSR marker. Acta Agric. 2018, 34, 43–49. [Google Scholar] [CrossRef]
- Yuan, J.H.; Cornille, A.; Giraud, T.; Cheng, F.Y.; Hu, Y.H. Independent domestications of cultivated tree peonies from different wild peony species. Mol. Ecol. 2014, 23, 82–95. [Google Scholar] [CrossRef]
- Jin, Y.Q.; Ma, Y.P.; Wang, S.; Hu, X.G.; Huang, L.S.; Li, Y.; Wang, X.R.; Mao, J.F. Genetic evaluation of the breeding population of a valuable reforestation conifer Platycladus orientalis (Cupressaceae). Sci. Rep. 2016, 6, 34821. [Google Scholar] [CrossRef]
- Xiang, X.; Li, C.; Li, L.; Bian, Y.; Kwan, H.S.; Nong, W.; Cheung, M.K.; Xiao, Y. Genetic diversity and population structure of Chinese Lentinula edodes revealed by InDel and SSR markers. Mycol. Prog. 2016, 15, 37. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, F.; Li, S.; Tian, D.; Dong, L.; Chen, Y.; Su, Y. Genetic diversity of the wild Asian lotus (Nelumbo nucifera) from Northern China. Hortic. Plant J. 2021, 7, 488–500. [Google Scholar] [CrossRef]
- Tang, Q.; Zeng, X.; Liao, A.; Pan, G.; Zha, X.; Gong, J.; Ciren, Z. SRAP analysis of genetic diversity of Paeonia ludlowii in Tibet. Sci. Silvae Sin. 2012, 48, 70–76. [Google Scholar]
- Peng, L.; Li, Y.; Tan, W.; Wu, S.; Hao, Q.; Tong, N.; Wang, Z.; Liu, Z.; Shu, Q. Combined genome-wide association studies and expression quantitative trait locus analysis uncovers a genetic regulatory network of floral organ number in a tree peony (Paeonia suffruticosa Andrews) breeding population. Hortic. Res. 2023, 10, uhad110. [Google Scholar] [CrossRef] [PubMed]
Primer ID | Primer Sequence (5′-3′) | Primer (3′-5′) | Annealing Temperature (°C) | Expected Size (bp) | Repeat Motif |
---|---|---|---|---|---|
PS371 | CATTGAGCCACCCATAGA | GCAACAATCCTGGTAGTGA | 58 | 219 | (CAC)5 |
PS119 | GCAAAGACAACAGCCTCG | CTCACCATCCAATCCCAC | 57 | 289 | (CAG)6 |
49A | TCTGGGTGATAGGTGGAGCTGGTGC | GGAAGACGCCCACAATGAAATCACA | 55 | 314 | (TGC)5 |
PS308 | ACTACTCTATTGCGAAACC | GTCTTATGGCGGCTATGT | 53 | 189 | (TC)7 |
PS074 | TGCCTTGCTCCTCCTTGT | CGGTTAGCCATGAATCCC | 57 | 236 | (CT)7 |
PS052 | CAAATCTGCTAATTAAAGAC | GATAGAAGGGAAAGGAAG | 49 | 235 | (CT)7 |
PS118 | CGTAGCCGTGCTTCTTTC | CCCATCAACCCATAATCC | 54.5 | 199 | (TGG)5 |
PS068 | CTTTGGCATTCTCATTCA | GGTGGTATTGGGCTTCTT | 52.5 | 174 | (TC)7 |
PS311 | AACGCCACCATCACCTTT | CCTCCTCCCTGTTCTTCT | 60 | 277 | (TTC)6 |
PS144 | CAACCTACAATCCGACAATG | TGTGGGTAGTGGTTTGTTAG | 54.5 | 317 | (TGC)5 |
PS24 | TTGAGCAATCAGGTTCATTAGG | TAGCCTCCGGTTCTGAATTG | 56.4 | 155 | (CAA)5 |
PS36 | TCCAAGCTACTCCATGCCTTA | GAATACTCACTCGCGGCTTC | 58.8 | 277 | (TCT)5 |
PS47 | TCTCAGCTTCTAATCTTCTCCTCA | ATGTCATGCCTCCAATCTCC | 57.5 | 246 | (AG)6 |
PS50 | TTACAGCAGGCCACGACTG | CATGACATCATGTGGTCCAA | 55.9 | 262 | (AGC)6 |
PS57 | GCGACAGTACATTCCATCAA | GTCAACCACACGTCTGCAAG | 57.7 | 128 | (TC)7 |
PS64 | GATTCTGTCTGGCATTGACG | CCATCTGTCTGGATCGACCT | 58.1 | 293 | (GA)6 |
Locus | N | Na | Ne | I | Ho | He | H | PIC | FIS | FIT | FST | Nm |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PS57 | 28 | 5.800 | 2.699 | 1.002 | 0.948 | 0.577 | 0.757 | 0.722 | −0.642 | −0.577 | 0.040 | 6.040 |
PS074 | 27 | 5.400 | 2.138 | 0.930 | 0.620 | 0.512 | 0.644 | 0.599 | −0.211 | −0.160 | 0.042 | 5.702 |
PS36 | 20 | 4.000 | 1.721 | 0.632 | 0.330 | 0.340 | 0.595 | 0.536 | 0.030 | 0.182 | 0.156 | 1.349 |
PS24 | 22 | 4.800 | 2.156 | 0.953 | 0.659 | 0.525 | 0.623 | 0.601 | −0.254 | −0.181 | 0.058 | 4.032 |
PS47 | 19 | 3.800 | 1.703 | 0.754 | 0.372 | 0.396 | 0.597 | 0.542 | 0.061 | 0.356 | 0.314 | 0.546 |
PS119 | 17 | 3.600 | 1.740 | 0.643 | 0.393 | 0.354 | 0.587 | 0.544 | −0.110 | 0.450 | 0.504 | 0.246 |
PS068 | 29 | 6.000 | 2.254 | 1.033 | 0.680 | 0.531 | 0.432 | 0.421 | −0.280 | −0.197 | 0.064 | 3.627 |
PS118 | 21 | 4.400 | 2.820 | 1.136 | 0.351 | 0.637 | 0.647 | 0.595 | 0.449 | 0.540 | 0.165 | 1.263 |
PS308 | 54 | 12.600 | 4.294 | 1.727 | 0.540 | 0.732 | 0.834 | 0.820 | 0.262 | 0.301 | 0.053 | 4.496 |
PS50 | 25 | 5.000 | 1.406 | 0.444 | 0.183 | 0.198 | 0.502 | 0.485 | 0.071 | 0.187 | 0.124 | 1.762 |
PS64 | 36 | 7.600 | 3.445 | 1.444 | 0.712 | 0.696 | 0.775 | 0.741 | −0.023 | 0.123 | 0.143 | 1.495 |
PS052 | 14 | 2.800 | 1.381 | 0.442 | 0.028 | 0.242 | 0.387 | 0.359 | 0.883 | 0.894 | 0.093 | 2.448 |
PS311 | 24 | 4.800 | 1.973 | 0.767 | 0.169 | 0.388 | 0.284 | 0.278 | 0.565 | 0.738 | 0.397 | 0.380 |
PS144 | 7 | 1.400 | 1.073 | 0.101 | 0.000 | 0.056 | 0.012 | 0.012 | 1.000 | 1.000 | 0.102 | 2.193 |
PS371 | 30 | 6.000 | 1.820 | 0.686 | 0.266 | 0.302 | 0.331 | 0.323 | 0.122 | 0.266 | 0.164 | 1.272 |
49A | 18 | 3.800 | 1.855 | 0.772 | 0.388 | 0.421 | 0.501 | 0.469 | 0.079 | 0.518 | 0.477 | 0.274 |
Mean | 5.113 | 2.155 | 0.842 | 0.415 | 0.432 | 0.532 | 0.503 | 0.125 | 0.277 | 0.181 | 2.320 |
Subpopulation | Japan | Jiangnan | Northwest | Southwest | Zhongyuan | Total | Mean Q-Value |
---|---|---|---|---|---|---|---|
Ⅰ | 12 | 11 | 53 | 7 | 17 | 100 | 0.939 |
Ⅱ | 0 | 0 | 1 | 1 | 220 | 222 | 0.938 |
Total | 12 | 11 | 54 | 8 | 237 | 322 | - |
Population | Japan | Jiangnan | Northwest | Southwest | Zhongyuan |
---|---|---|---|---|---|
Japan | 0.175 | 0.178 | 0.180 | 0.355 | |
Jiangnan | 0.839 | 0.164 | 0.209 | 0.411 | |
Northwest | 0.837 | 0.849 | 0.103 | 0.231 | |
Southwest | 0.835 | 0.812 | 0.902 | 0.215 | |
Zhongyuan | 0.701 | 0.663 | 0.794 | 0.806 |
Population | Japan | Jiangnan | Northwest | Southwest | Zhongyuan |
---|---|---|---|---|---|
Japan | * | NS | NS | * | |
Jiangnan | 0.155 | * | * | * | |
Northwest | 0.077 | 0.134 | NS | * | |
Southwest | 0.093 | 0.167 | 0.051 | * | |
Zhongyuan | 0.145 | 0.223 | 0.087 | 0.096 |
Source | d.f. | SS | MS | Est. Var. | % Variation | p |
---|---|---|---|---|---|---|
Among pops | 4 | 263.401 | 65.850 | 0.865 | 16 | <0.01 |
Within pops | 317 | 2915.192 | 9.152 | 4.576 | 84 | <0.01 |
Total | 322 | 3178.593 | 5.441 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Xue, X.; Hu, X.; He, Y.; Wei, S.; Liu, S.; Zhao, G.; Wang, Z.; Hou, X. Genetic Diversity and Population Structure Analysis of Tree Peony (Paeonia Section Moutan DC.) Germplasm Using Sixteen Functional SSR Markers. Forests 2023, 14, 1945. https://doi.org/10.3390/f14101945
Guo Q, Xue X, Hu X, He Y, Wei S, Liu S, Zhao G, Wang Z, Hou X. Genetic Diversity and Population Structure Analysis of Tree Peony (Paeonia Section Moutan DC.) Germplasm Using Sixteen Functional SSR Markers. Forests. 2023; 14(10):1945. https://doi.org/10.3390/f14101945
Chicago/Turabian StyleGuo, Qi, Xian Xue, Xiaoliang Hu, Yinglong He, Shuo Wei, Shaodan Liu, Guodong Zhao, Zhanying Wang, and Xiaogai Hou. 2023. "Genetic Diversity and Population Structure Analysis of Tree Peony (Paeonia Section Moutan DC.) Germplasm Using Sixteen Functional SSR Markers" Forests 14, no. 10: 1945. https://doi.org/10.3390/f14101945
APA StyleGuo, Q., Xue, X., Hu, X., He, Y., Wei, S., Liu, S., Zhao, G., Wang, Z., & Hou, X. (2023). Genetic Diversity and Population Structure Analysis of Tree Peony (Paeonia Section Moutan DC.) Germplasm Using Sixteen Functional SSR Markers. Forests, 14(10), 1945. https://doi.org/10.3390/f14101945