Predicting and Visualizing Human Soundscape Perception in Large-Scale Urban Green Spaces: A Case Study of the Chengdu Outer Ring Ecological Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. Measurements
2.2.1. Visual Landscape Composition
2.2.2. Sound Pressure Level
2.2.3. Functional Vitality
2.2.4. Satisfaction with Perceived Soundscape
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Manipulation Checks
3.2. Descriptive Analysis
3.2.1. Descriptive Analysis of Visual Landscape Composition
3.2.2. Descriptive Analysis of Sound Pressure Levels
3.2.3. Descriptive Analysis of Functional Vitality
3.3. Satisfaction with People’s Perceived Soundscape Predicted by Environmental Characteristics
3.3.1. The Influence of Sound Level Range on People’s Soundscape Satisfaction
3.3.2. Correlational Analysis between Soundscape Satisfaction and Visual and Aural Indicators
3.3.3. Prediction Models of Soundscape Satisfaction
4. Discussion
4.1. Predicting Large-Scale Soundscape Perceptions Based on Small-Scale Measurements
4.2. Applying Soundscape Perception Models and Maps in UGS Planning and Design
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 12913-1; I. Acoustics–Soundscape–Part 1: Definition and Conceptual Framework. Technical Report. International Organization for Standardization: Geneva, Switzerland, 2014.
- Raimbault, M.; Dubois, D. Urban soundscapes: Experiences and knowledge. Cities 2005, 22, 339–350. [Google Scholar] [CrossRef]
- Axelsson, Ö.; Nilsson, M.; Berglund, B. A principal components model of soundscape perception. J. Acoust. Soc. Am. 2010, 128, 2836–2846. [Google Scholar] [CrossRef]
- Cain, R.; Jennings, P.; Poxon, J. The development and application of the emotional dimensions of a soundscape. Appl. Acoust. 2013, 74, 232–239. [Google Scholar] [CrossRef]
- Aletta, F.; Axelsson, Ö.; Kang, J. Towards acoustic indicators for soundscape design. In Proceedings of the Forum Acusticum 2014 Conference, Kraków, Poland, 7–12 September 2014. [Google Scholar]
- Davies, W.J.; Adams, M.D.; Bruce, N.S.; Cain, R.; Carlyle, A.; Cusack, P.; Hall, D.A.; Hume, K.I.; Irwin, A.; Jennings, P. Perception of soundscapes: An interdisciplinary approach. Appl. Acoust. 2013, 74, 224–231. [Google Scholar] [CrossRef]
- ISO/TS 12913-2; 2018−Soundscape–Part 2: Data Collection and Reporting Requirements–What’s It all About. International Organization for Standardization: Geneva, Switzerland, 2018; pp. 55–57.
- Zhang, H.; Qiu, M.; Li, L.; Lu, Y.; Zhang, J. Exploring the dimensions of everyday soundscapes perception in spatiotemporal view: A qualitative approach. Appl. Acoust. 2021, 181, 108149. [Google Scholar] [CrossRef]
- Cao, J.; Kang, J. A Perceptual Structure of Soundscapes in Urban Public Spaces Using Semantic Coding Based on the Grounded Theory. Int. J. Environ. Res. Public Health 2023, 20, 2932. [Google Scholar] [CrossRef] [PubMed]
- Moreira, N.M.; Bryan, M. Noise annoyance susceptibility. J. Sound Vib. 1972, 21, 449–462. [Google Scholar] [CrossRef]
- Li, Z.; Kang, J. Sensitivity analysis of changes in human physiological indicators observed in soundscapes. Landsc. Urban Plan. 2019, 190, 103593. [Google Scholar] [CrossRef]
- Paiva, K.; Cardoso, M.-R.; Rodrigues, R. Noise pollution and annoyance: An urban soundscapes study. Noise Health 2015, 17, 125–133. [Google Scholar] [CrossRef]
- Navickas, E. Urban Soundscape: The Relationship between Sound Source Dominance and Perceptual Attributes along with Sound Pressure Levels; University of Groningen: Groningen, The Netherlands, 2020. [Google Scholar]
- Lavandier, C.; Defréville, B. The contribution of sound source characteristics in the assessment of urban soundscapes. Acta Acust. United Acust. 2006, 92, 912–921. [Google Scholar]
- Schultz, T.J. Synthesis of social surveys on noise annoyance. J. Acoust. Soc. Am. 1978, 64, 377–405. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kang, J. Soundscape design in city parks: Exploring the relationships between soundscape composition parameters and physical and psychoacoustic parameters. J. Environ. Eng. Landsc. Manag. 2015, 23, 102–112. [Google Scholar] [CrossRef]
- Yilmazer, S.; Davies, P.; Yilmazer, C. A virtual reality tool to aid in soundscapes in the built environment (SiBE) through machine learning. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Glasgow, Scotland, 20–23 August 2023; pp. 737–747. [Google Scholar]
- Sudarsono, A.S.; Lam, Y.W.; Davies, W.J. The validation of acoustic environment simulator to determine the relationship between sound objects and soundscape. Acta Acust. United Acust. 2017, 103, 657–667. [Google Scholar] [CrossRef]
- Moors, A.; Ellsworth, P.C.; Scherer, K.R.; Frijda, N.H. Appraisal theories of emotion: State of the art and future development. Emot. Rev. 2013, 5, 119–124. [Google Scholar] [CrossRef]
- Ode, Å.; Fry, G.; Tveit, M.S.; Messager, P.; Miller, D. Indicators of perceived naturalness as drivers of landscape preference. J. Environ. Manag. 2009, 90, 375–383. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, T.; Cao, L.; Biljecki, F. Water View Imagery: Perception and evaluation of urban waterscapes worldwide. Ecol. Indic. 2022, 145, 109615. [Google Scholar] [CrossRef]
- Palmer, S.E.; Schloss, K.B.; Sammartino, J. Visual aesthetics and human preference. Annu. Rev. Psychol. 2013, 64, 77–107. [Google Scholar] [CrossRef]
- Weitkamp, G.; Bregt, A.; Van Lammeren, R. Measuring visible space to assess landscape openness. Landsc. Res. 2011, 36, 127–150. [Google Scholar] [CrossRef]
- Grahn, P.; Stigsdotter, U.K. The relation between perceived sensory dimensions of urban green space and stress restoration. Landsc. Urban Plan. 2010, 94, 264–275. [Google Scholar] [CrossRef]
- Yin, Y.; Shao, Y.; Meng, Y.; Hao, Y. The effects of the natural visual-aural attributes of urban green spaces on human behavior and emotional response. Front. Psychol. 2023, 14, 1186806. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-O.; Shelby, B. Effects of soundscapes on perceived crowding and encounter norms. Environ. Manag. 2011, 48, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Herranz-Pascual, K.; García, I.; Diez, I.; Santander, A.; Aspuru, I. Analysis of field data to describe the effect of context (Acoustic and Non-Acoustic Factors) on urban soundscapes. Appl. Sci. 2017, 7, 173. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, M.; Zhao, B. Audio-visual interactive evaluation of the forest landscape based on eye-tracking experiments. Landsc Urban Plan 2019, 46, 126476. [Google Scholar] [CrossRef]
- Peschardt, K.K.; Stigsdotter, U.K.; Schipperrijn, J. Identifying features of pocket parks that may be related to health promoting use. Landsc. Res. 2016, 41, 79–94. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, W.; Lu, T. Landscape characteristics of university campus in relation to aesthetic quality and recreational preference. Urban For. Urban Green. 2021, 66, 127389. [Google Scholar] [CrossRef]
- Khachatryan, H.; Rihn, A.; Hansen, G.; Clem, T. Landscape aesthetics and maintenance perceptions: Assessing the relationship between homeowners’ visual attention and landscape care knowledge. Land Use Policy 2020, 95, 104645. [Google Scholar] [CrossRef]
- Zube, E.H.; Sell, J.L.; Taylor, J.G. Landscape perception: Research, application and theory. Landsc. Plan. 1982, 9, 1–33. [Google Scholar] [CrossRef]
- Liu, F.; Kang, J. Relationship between street scale and subjective assessment of audio-visual environment comfort based on 3D virtual reality and dual-channel acoustic tests. Build. Environ. 2018, 129, 35–45. [Google Scholar] [CrossRef]
- Wang, X. Research on spatial acoustic landscape optimization of green spaces in street parks. Build. Environ. 2014, 169, 106544. [Google Scholar] [CrossRef]
- Brambilla, G.; Gallo, V.; Asdrubali, F.; D’Alessandro, F. The perceived quality of soundscape in three urban parks in Rome. J. Acoust. Soc. Am. 2013, 134, 832–839. [Google Scholar] [CrossRef]
- Liu, J.; Kang, J.; Luo, T.; Behm, H. Landscape effects on soundscape experience in city parks. Sci. Total Environ. 2013, 454, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, L.; Xiong, Y.; Yang, Y. Effects of soundscape perception on visiting experience in a renovated historical block. Build. Environ. 2019, 165, 106375. [Google Scholar] [CrossRef]
- Gidlöf-Gunnarsson, A.; Öhrström, E. Noise and well-being in urban residential environments: The potential role of perceived availability to nearby green areas. Landsc. Urban Plan. 2007, 83, 115–126. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. Effect of the appropriateness of sound environment on urban soundscape assessment. Build. Environ. 2020, 179, 106975. [Google Scholar] [CrossRef]
- Yu, L.; Kang, J. Modeling subjective evaluation of soundscape quality in urban open spaces: An artificial neural network approach. J. Acoust. Soc. Am. 2009, 126, 1163–1174. [Google Scholar] [CrossRef]
- Schirpke, U.; Tappeiner, G.; Tasser, E.; Tappeiner, U. Using conjoint analysis to gain deeper insights into aesthetic landscape preferences. Ecol. Indic. 2019, 96, 202–212. [Google Scholar] [CrossRef]
- Lindeberg, T. Scale-space theory: A basic tool for analyzing structures at different scales. J. Appl. Stat. 1994, 21, 225–270. [Google Scholar] [CrossRef]
- Nilsson, M.; Botteldooren, D.; De Coensel, B. Acoustic indicators of soundscape quality and noise annoyance in outdoor urban areas. In Proceedings of the 19th International Congress on Acoustics, Madrid, Spain, 2–7 September 2007. [Google Scholar]
- Song, X.; Lv, X.; Yu, D.; Wu, Q. Spatial-temporal change analysis of plant soundscapes and their design methods. Urban For. Urban Green. 2018, 29, 96–105. [Google Scholar] [CrossRef]
- Gulliver, J.; Morley, D.; Vienneau, D.; Fabbri, F.; Bell, M.; Goodman, P.; Beevers, S.; Dajnak, D.; Kelly, F.J.; Fecht, D. Development of an open-source road traffic noise model for exposure assessment. Environ. Model. Softw. 2015, 74, 183–193. [Google Scholar] [CrossRef]
- Gehl, J. A changing street life in a changing society. Places 1989, 6, 8–17. [Google Scholar]
- Li, Q.; Cui, C.; Liu, F.; Wu, Q.; Run, Y.; Han, Z. Multidimensional urban vitality on streets: Spatial patterns and influence factor identification using multisource urban data. ISPRS Int. J. Geo-Inf. 2021, 11, 2. [Google Scholar] [CrossRef]
- Meng, Y.; Xing, H. Exploring the relationship between landscape characteristics and urban vibrancy: A case study using morphology and review data. Cities 2019, 95, 102389. [Google Scholar] [CrossRef]
- Yang, W.; Kang, J. Acoustic comfort evaluation in urban open public spaces. Appl. Acoust. 2005, 66, 211–229. [Google Scholar] [CrossRef]
- Wang, X. Research on Optimization of Sound Landscape of Green Space in Street Park; Tianjin University: Tianjin China, 2014. [Google Scholar]
- Shao, Y.; Yin, Y.; Xue, Z.; Ma, D. Assessing and Comparing the Visual Comfort of Streets across Four Chinese Megacities Using AI-Based Image Analysis and the Perceptive Evaluation Method. Land 2023, 12, 834. [Google Scholar] [CrossRef]
- Wen, X.; Lu, G.; Lv, K.; Jin, M.; Shi, X.; Lu, F.; Zhao, D. Impacts of traffic noise on roadside secondary schools in a prototype large Chinese city. Appl. Acoust. 2019, 151, 153–163. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Botteldooren, D. On the choice between walls and berms for road traffic noise shielding including wind effects. Landsc. Urban Plan. 2012, 105, 199–210. [Google Scholar] [CrossRef]
- Bendtsen, H. Noise Barrier Design: Danish and Some European Examples; University of California Pavement Research Center: Davis, CA, USA, 2010. [Google Scholar]
- Jo, H.I.; Jeon, J.Y. Overall environmental assessment in urban parks: Modelling audio-visual interaction with a structural equation model based on soundscape and landscape indices. Build. Environ. 2021, 204, 108166. [Google Scholar] [CrossRef]
- Tan, J.K.A.; Hasegawa, Y.; Lau, S.-K.; Tang, S.-K. The effects of visual landscape and traffic type on soundscape perception in high-rise residential estates of an urban city. Appl. Acoust. 2022, 189, 108580. [Google Scholar] [CrossRef]
- Brown, A.L. Soundscape planning as a complement to environmental noise management. In Proceedings of the Inter-Noise and NOISE-CON Congress and Conference Proceedings, Melbourne, Australia, 16–19 November 2014; pp. 5894–5903. [Google Scholar]
- Guan, H.; Hu, S.; Lu, M.; He, M.; Mao, Z.; Liu, G. People’s subjective and physiological responses to the combined thermal-acoustic environments. Build. Environ. 2020, 172, 106709. [Google Scholar] [CrossRef]
Measurement Spot (No.) | Waterscape (Wa) | Woodland (Wo) | Grassland (G) | Buildings (B) | Pavement (P) | Sound Level (LAeq) | Functional Vitality (V) | Soundscape Satisfaction (S) | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | Mean | 0.00% | 0.96% | 20.89% | 14.80% | 15.33% | 76.00 | 3.00 | Mean | 3.50 |
Std. Dev. | 0.52 | |||||||||
2 | Mean | 0.00% | 0.00% | 88.27% | 0.00% | 11.73% | 78.00 | 1.00 | Mean | 4.00 |
Std. Dev. | 0.00 | |||||||||
3 | Mean | 4.07% | 0.00% | 79.51% | 0.00% | 16.42% | 71.00 | 1.00 | Mean | 2.57 |
Std. Dev. | 0.51 | |||||||||
4 | Mean | 6.02% | 0.29% | 74.85% | 1.70% | 8.96% | 76.00 | 1.00 | Mean | 4.00 |
Std. Dev. | 0.00 | |||||||||
5 | Mean | 6.23% | 0.21% | 76.16% | 1.69% | 8.35% | 82.00 | 3.00 | Mean | 3.00 |
Std. Dev. | 0.00 | |||||||||
6 | Mean | 6.10% | 0.12% | 74.56% | 1.64% | 8.57% | 79.00 | 0.00 | Mean | 4.00 |
Std. Dev. | 0.00 | |||||||||
7 | Mean | 0.00% | 17.23% | 57.51% | 0.00% | 0.20% | 66.00 | 2.00 | Mean | 4.41 |
Std. Dev. | 0.51 | |||||||||
8 | Mean | 27.71% | 16.26% | 48.92% | 0.07% | 1.54% | 84.00 | 1.00 | Mean | 4.00 |
Std. Dev. | 0.00 | |||||||||
9 | Mean | 19.75% | 15.20% | 51.59% | 0.68% | 11.41% | 96.00 | 2.00 | Mean | 3.53 |
Std. Dev. | 0.52 | |||||||||
10 | Mean | 15.75% | 13.84% | 53.60% | 0.54% | 11.95% | 76.00 | 1.00 | Mean | 3.53 |
Std. Dev. | 0.51 | |||||||||
11 | Mean | 15.53% | 15.75% | 53.22% | 0.52% | 11.63% | 77.00 | 0.00 | Mean | 4.00 |
Std. Dev. | 0.00 | |||||||||
12 | Mean | 0.00% | 22.64% | 52.63% | 2.60% | 14.16% | 69.00 | 4.00 | Mean | 3.63 |
Std. Dev. | 0.50 | |||||||||
13 | Mean | 0.00% | 20.61% | 67.87% | 0.00% | 8.48% | 90.00 | 2.00 | Mean | 4.00 |
Std. Dev. | 0.00 | |||||||||
14 | Mean | 21.66% | 12.15% | 46.64% | 0.77% | 14.96% | 100.00 | 1.00 | Mean | 3.58 |
Std. Dev. | 0.51 | |||||||||
15 | Mean | 0.84% | 34.15% | 51.80% | 0.00% | 13.21% | 76.00 | 3.00 | Mean | 3.00 |
Std. Dev. | 0.00 | |||||||||
16 | Mean | 2.12% | 17.25% | 64.50% | 0.00% | 16.12% | 76.00 | 3.00 | Mean | 3.00 |
Std. Dev. | 0.00 | |||||||||
17 | Mean | 5.78% | 21.51% | 56.76% | 0.00% | 15.96% | 75.00 | 3.00 | Mean | 2.68 |
Std. Dev. | 0.48 | |||||||||
18 | Mean | 13.84% | 28.27% | 45.41% | 0.39% | 12.10% | 71.00 | 3.00 | Mean | 3.50 |
Std. Dev. | 0.51 | |||||||||
19 | Mean | 6.70% | 5.83% | 77.70% | 0.00% | 9.76% | 75.00 | 0.00 | Mean | 2.79 |
Std. Dev. | 0.42 | |||||||||
20 | Mean | 18.30% | 3.03% | 65.50% | 0.00% | 13.17% | 77.00 | 2.00 | Mean | 3.00 |
Std. Dev. | 0.00 | |||||||||
21 | Mean | 16.68% | 17.53% | 54.22% | 0.12% | 11.45% | 79.00 | 3.00 | Mean | 3.00 |
Std. Dev. | 0.00 | |||||||||
22 | Mean | 14.17% | 30.39% | 48.88% | 0.00% | 6.56% | 78.00 | 3.00 | Mean | 3.33 |
Std. Dev. | 0.48 | |||||||||
23 | Mean | 52.33% | 2.25% | 30.56% | 1.95% | 1.66% | 76.00 | 1.00 | Mean | 3.42 |
Std. Dev. | 0.51 | |||||||||
24 | Mean | 48.43% | 0.00% | 33.13% | 5.20% | 0.00% | 69.00 | 2.00 | Mean | 3.48 |
Std. Dev. | 0.51 | |||||||||
25 | Mean | 48.60% | 0.03% | 33.49% | 4.59% | 0.00% | 72.00 | 3.00 | Mean | 3.88 |
Std. Dev. | 0.34 | |||||||||
Sum | Mean | 14.70% | 11.70% | 55.45% | 1.60% | 9.63% | 77.33 | 1.91 | Mean | 3.46 |
Std. Dev. | 0.62 |
Groups | Wo | Wa | G | B | P | LAeq | V | |
---|---|---|---|---|---|---|---|---|
<75 dBA N = 153 | Correlation (Pearson’s r) | 0.145 | 0.192 * | −0.471 ** | 0.309 ** | −0.572 ** | 0.330 ** | −0.600 ** |
Significant (p) | 0.073 | 0.017 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
>75 dBA N = 240 | Correlation (Pearson’s r) | −0.211 ** | −0.083 | 0.202 ** | 0.004 | −0.180 ** | 0.120 | −0.548 ** |
Significant (p) | 0.001 | 0.203 | 0.002 | 0.953 | 0.005 | 0.062 | 0.000 |
Group | Model Fit (R2) | Attribute | Estimate B | Standard Error | t-Value | p-Value |
---|---|---|---|---|---|---|
<75 dBA (N = 153) | 0.572 | G | 0.013 | 0.008 | 1.699 | 0.091 |
B | −0.079 | 0.034 | −2.319 | 0.022 | ||
P | −0.089 | 0.014 | −6.513 | 0.000 | ||
LAeq | −0.059 | 0.019 | −3.132 | 0.002 | ||
V | 0.368 | 0.078 | 4.701 | 0.000 | ||
>75 dBA (N = 240) | 0.312 | Wo | 0.002 | 0.003 | 0.624 | 0.624 |
G | 0.003 | 0.002 | 1.618 | 1.618 | ||
P | −0.007 | 0.007 | −1.110 | −1.110 | ||
V | −0.253 | 0.030 | −8.333 | −8.333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Shao, Y.; Lu, H.; Hao, Y.; Jiang, L. Predicting and Visualizing Human Soundscape Perception in Large-Scale Urban Green Spaces: A Case Study of the Chengdu Outer Ring Ecological Zone. Forests 2023, 14, 1946. https://doi.org/10.3390/f14101946
Yin Y, Shao Y, Lu H, Hao Y, Jiang L. Predicting and Visualizing Human Soundscape Perception in Large-Scale Urban Green Spaces: A Case Study of the Chengdu Outer Ring Ecological Zone. Forests. 2023; 14(10):1946. https://doi.org/10.3390/f14101946
Chicago/Turabian StyleYin, Yuting, Yuhan Shao, Huilin Lu, Yiying Hao, and Like Jiang. 2023. "Predicting and Visualizing Human Soundscape Perception in Large-Scale Urban Green Spaces: A Case Study of the Chengdu Outer Ring Ecological Zone" Forests 14, no. 10: 1946. https://doi.org/10.3390/f14101946
APA StyleYin, Y., Shao, Y., Lu, H., Hao, Y., & Jiang, L. (2023). Predicting and Visualizing Human Soundscape Perception in Large-Scale Urban Green Spaces: A Case Study of the Chengdu Outer Ring Ecological Zone. Forests, 14(10), 1946. https://doi.org/10.3390/f14101946