Clarifying the Main Root Distribution of Trees in Varied Slope Environments Using Non-Destructive Root Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Site Description
2.2. Tree Morphometric
2.3. Physical Properties of Soil
2.4. Physical Properties of Root Mass
2.5. Root Detection Measurement
2.6. Root Architecture Analysis
2.7. Statistical Analysis
3. Results
3.1. Tree Morphometric
3.2. Soil Physic Properties
3.3. Physical Properties of Woody Root Biomass
3.4. Root Detection
3.5. Relationship of Tree Morphometric, Soil Physic, Woody Root Biomass, and Sonic Wave Propagation
3.6. Root Distribution
3.7. Principal Component Analysis
4. Discussion
4.1. Tree Morphometric
4.2. Soil Physic Properties
4.3. Physical Properties of Woody Root Biomass
4.4. Root Detection and Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Proto, A.R.; Di Iorio, A.; Abenavoli, L.M.; Sorgonà, A. A Sonic Root Detector for Revealing Tree Coarse Root Distribution. Sci. Rep. 2020, 10, 8075. [Google Scholar] [CrossRef] [PubMed]
- Sorgonà, A.; Abenavoli, M.R.; Cacco, G. A Comparative Study between Two Citrus Rootstocks: Effect of Nitrate on the Root Morpho-Topology and Net Nitrate Uptake. Plant Soil 2005, 270, 257–267. [Google Scholar] [CrossRef]
- Dupuy, L.; Fourcaud, T.; Stokes, A. A Numerical Investigation into the Influence of Soil Type and Root Architecture on Tree Anchorage. Plant Soil 2005, 278, 119–134. [Google Scholar] [CrossRef]
- Coutts, M.P. Developmental Processes in Tree Root Systems. Can. J. For. Res. 1987, 17, 761–767. [Google Scholar] [CrossRef]
- Niklas, K.J. Tree Biomechanics with Special Reference to Tropical Trees. In Tropical Tree Physiology; Goldstein, G., Santiago, L., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Kodrík, J.; Kodrík, M. Root Biomass of Beech as a Factor Influencing the Wind Tree Stability. J. For. Sci. 2002, 48, 549–564. [Google Scholar] [CrossRef]
- Nunes, L.; Tomé, J.; Tomé, M. Stability of Pure Even-Aged Conifer Stands in Portugal. In Proceedings of the IUFRO Conference, Mixed and Pure Forests in a Changing World, Vila Real, Portugal, 6–8 October 2010; University of Trás-os-Montes e Alto Douro: Vila Real, Portugal, 2010. [Google Scholar]
- Hairiah, K.; Widianto, W.; Suprayogo, D.; Van Noordwijk, M. Tree Roots Anchoring and Binding Soil: Reducing Landslide Risk in Indonesian Agroforestry. Land 2020, 9, 256. [Google Scholar] [CrossRef]
- Buza, Á.K.; Divós, F. Root Stability Evaluation with Non-Destructive Techniques. Acta Silv. Lignaria Hung. 2016, 12, 125–134. [Google Scholar] [CrossRef]
- Al Hagrey, S.A. Geophysical Imaging of Root-Zone, Trunk, and Moisture Heterogeneity. J. Exp. Bot. 2007, 58, 839–854. [Google Scholar] [CrossRef]
- Guo, L.; Chen, J.; Cui, X.; Fan, B.; Lin, H. Application of Ground Penetrating Radar for Coarse Root Detection and Quantification: A Review. Plant Soil 2013, 362, 1–23. [Google Scholar] [CrossRef]
- Hruska, J.; Cermák, J.; Sustek, S. Mapping Tree Root Systems with Ground-Penetrating Radar. Tree Physiol. 1999, 19, 125–130. [Google Scholar] [CrossRef]
- Butnor, J.R.; Doolittle, J.A.; Johnsen, K.H.; Samuelson, L.; Stokes, T.; Kress, L. Utility of Ground-Penetrating Radar as a Root Biomass Survey Tool in Forest Systems. Soil Sci. Soc. Am. J. 2003, 67, 1607–1615. [Google Scholar] [CrossRef]
- Chloupek, O. Evaluation of the Size of a Plant’s Root System Using Its Electrical Capacitance. Plant Soil 1977, 48, 525–532. [Google Scholar] [CrossRef]
- Maenhout, P.; Sleutel, S.; Xu, H.; Van Hoorebeke, L.; Cnudde, V.; De Neve, S. Semi-Automated Segmentation and Visualization of Complex Undisturbed Root Systems with X-ray ΜCT. Soil Tillage Res. 2019, 192, 59–65. [Google Scholar] [CrossRef]
- Fang, S.; Yan, X.; Liao, H. 3D Reconstruction and Dynamic Modeling of Root Architecture in Situ and Its Application to Crop Phosphorus Research. Plant J. 2009, 60, 1096–1108. [Google Scholar] [CrossRef]
- Krainyukov, A.; Lyaksa, I. Detection of Tree Roots in an Urban Area with the Use of Ground Penetrating Radar. Transp. Telecommun. 2016, 17, 362–370. [Google Scholar] [CrossRef]
- Dalton, F.N. In-Situ Root Extent Measurements by Electrical Capacitance Methods. Plant Soil 1995, 173, 157–165. [Google Scholar] [CrossRef]
- Dietrich, R.C.; Bengough, A.G.; Jones, H.G.; White, P.J. Can Root Electrical Capacitance Be Used to Predict Root Mass in Soil? Ann. Bot. 2013, 112, 457–464. [Google Scholar] [CrossRef]
- Ellis, T.W.; Murray, W.; Paul, K.; Kavalieris, L.; Brophy, J.; Williams, C.; Maass, M. Electrical Capacitance as a Rapid and Non-Invasive Indicator of Root Length. Tree Physiol. 2013, 33, 3–17. [Google Scholar] [CrossRef]
- Rahman, M.M.; Adzkia, U.; Rachmadiyanto, A.N.; Dwiyanti, F.G.; Nandika, D.; Nugroho, N.; Siregar, I.Z.; Karlinasari, L. Coarse Root Distribution of Vatica pauciflora (Korth.) Blume in Different Soil Slopes as Revealed by Root Detector. IOP Conf. Ser. Earth Environ. Sci. 2021, 918, 012046. [Google Scholar] [CrossRef]
- James, K.R. A Dynamic Structural Analysis of Trees Subject to Wind Loading. Ph.D. Thesis, Melbourne School of Land and Environments, The University of Melbourne, Parkville, VIC, Australia, 2010. [Google Scholar]
- Syaufina, L.; Haneda, N.F.; Buliyansih, A. Diversity of Soil Arthropods in Gunung Walat Education Forest. Media Konserv. 2007, XII, 57–66. [Google Scholar]
- Mustari, A.H. Biodiversitas Pilar Utama Green Campus IPB University. Pros. Fahutan 2021, 2, 38–48. [Google Scholar]
- Barakat, M.; Mahfoud, I.; Kwyes, A.A. Study of Soil Erosion Risk in the Basin of Northern Al-Kabeer River at Lattakia-Syria Using Remote Sensing and GIS Techniques. Mesopotamian J. Mar. Sci. 2022, 29, 29–44. [Google Scholar] [CrossRef]
- Malinovski, R.A.; Nutto, L.; Wiese, W.S.; Brunsmeier, M. Non-Destructive Analysis of The Root System and Tree Growth Parameters. Rev. Árvore 2016, 40, 289–295. [Google Scholar] [CrossRef]
- Karlinasari, L.; Adzkia, U.; Fredisa, Y.; Rahman, M.M.; Nugroho, N.; Siregar, I.Z. Tree Form Morphometrics of Agathis dammara and Acacia mangium in the IPB’s Dramaga Landscape Campus, Bogor. IOP Conf. Ser. Earth Environ. Sci. 2021, 918, 012015. [Google Scholar] [CrossRef]
- Rahman, M.M.; Fredisa, Y.; Nandika, D.; Nugroho, N.; Siregar, I.Z.; Karlinasari, L. Inferring Vertical Tree Growth Direction of Samanea saman and Delonix regia Trees with the Pattern of Lateral Root Distribution Using the Root Detector. Forests 2023, 14, 427. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Rötzer, T.; Caldentey, J.; Koike, T.; van Con, T.; Chavanne, A.; Seifert, T.; et al. Crown Size and Growing Space Requirement of Common Tree Species in Urban Centres, Parks, and Forests. Urban For. Urban Green. 2015, 14, 466–479. [Google Scholar] [CrossRef]
- Wijayanto, N.; Rhahmi, I. Length and Depth Jabon’s Lateral Root in Cibening Village, Pamijahan, Bogor, West Java. J. Silvikultur Trop. 2013, 4, 23–29. [Google Scholar]
- Aber, J.S.; Marzolff, I.; Ries, J.B. Chapter 3—Photogrammetry. In Small-Format Aerial Photography; Elsevier: Amsterdam, The Netherlands, 2010; pp. 23–39. [Google Scholar] [CrossRef]
- Koeser, A.K.; Roberts, J.W.; Miesbauer, J.W.; Lopes, A.B.; Kling, G.J.; Lo, M.; Morgenroth, J. Testing the Accuracy of Imaging Software for Measuring Tree Root Volumes. Urban For. Urban Green. 2016, 18, 95–99. [Google Scholar] [CrossRef]
- Duryea, M.L.; Kampf, E.; Littell, R.C.; Rodríguez-Pedraza, C.D. Hurricanes and the Urban Forest: II. Effects on Tropical and Subtropical Tree Species. Arboric. Urban For. 2007, 33, 98–112. [Google Scholar] [CrossRef]
- Nimmo, J.R.; Perkins, K.S. Aggregate Stability and Size Distribution. In Methods of Soil Analysis, Part 4: Physical Methods; Soil Science Society of America, Inc.: Madison, WI, USA, 2018. [Google Scholar]
- Bucur, V. Acoustics of Wood; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Schober, P.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Akuoma Mabel, O.; Samuel Olayemi, O. A Comparison of Principal Component Analysis, Maximum Likelihood and the Principal Axis in Factor Analysis. Am. J. Math. Stat. 2020, 10, 44–54. [Google Scholar]
- Lawrence, S.D.; Johnson, K.N.; Bettinger, P.; Howard, T. Forest Management; McGraw Hill: New York, NY, USA, 2000. [Google Scholar]
- Aldafiana, S.; Murniyati, A. Measurement of Diameter, Height and Volume of the Sengon Tree (Paraserianthes Falcataria) 10 Years Old In Desa Perdana, Kecamatan Kembang Janggut, Kutai Kartanegara. J. Eboni 2021, 3, 73–78. [Google Scholar]
- De Vries, D.P. ROOTSTOCKS | Scion–Rootstock Relationships. In Encyclopedia of Rose Science; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Lockhart, B.R.; Weih, R.C., Jr.; Smith, K. Crown Radius and Diameter at Breast Height Relationships for Six Bottomland Hardwood Species. J. Ark. Acad. Sci. 2005, 59, 110–115. [Google Scholar]
- Ritchie, M.W.; Hann, D.W. Equations for Predicting Height to Crown Base for Fourteen Tree Species in Southwest Oregon; Forest Research Laboratory, College of Forestry, Oregon State University: Corvallis, OR, USA, 1987. [Google Scholar]
- Zhao, D.; Kane, M.; Borders, B.E. Crown Ratio and Relative Spacing Relationships for Loblolly Pine Plantations. Open J. For. 2012, 2, 101–115. [Google Scholar] [CrossRef]
- Andrian, S.; Purba, M. The Effect of Elevation and Slope on Rubber (Hevea brasiliensis Muell. Arg.) Production in PTPN III Hapesong Farm of South Tapanuli. J. Online Agroteknologi 2014, 2, 981. [Google Scholar]
- Chen, K.; Pan, Y.; Li, Y.; Cheng, J.; Lin, H.; Zhuo, W.; He, Y.; Fang, Y.; Jiang, Y. Slope Position- Mediated Soil Environmental Filtering Drives Plant Community Assembly Processes in Hilly Shrublands of Guilin, China. Front. Plant Sci. 2023, 13, 1074191. [Google Scholar] [CrossRef]
- Li, Y.; Tullberg, J.N.; Freebairn, D.M. Traffic and Residue Cover Effects on Infiltration. Aust. J. Soil Res. 2001, 39, 239–247. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil Compaction in Cropping Systems: A Review of the Nature, Causes and Possible Solutions. Soil Tillage Res 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Raper, R.L.; Kirby, J. Mac Soil Compaction: How to Do It, Undo It, or Avoid Doing It. Agric. Equip. Technol. Conf. 2006. [Google Scholar]
- Chan, K.Y.; Oates, A.; Swan, A.D.; Hayes, R.C.; Dear, B.S.; Peoples, M.B. Agronomic Consequences of Tractor Wheel Compaction on a Clay Soil. Soil Tillage Res 2006, 89, 13–21. [Google Scholar] [CrossRef]
- Radford, B.J.; Yule, D.F.; McGarry, D.; Playford, C. Amelioration of Soil Compaction Can Take 5 Years on a Vertisol under No till in the Semi-Arid Subtropics. Soil Tillage Res 2007, 97, 249–255. [Google Scholar] [CrossRef]
- Horn, R.; Holthusen, D.; Dörner, J.; Mordhorst, A.; Fleige, H. Scale-Dependent Soil Strengthening Processes—What Do We Need to Know and Where to Head for a Sustainable Environment? Soil Tillage Res 2019, 195, 104388. [Google Scholar] [CrossRef]
- Keller, T.; Sandin, M.; Colombi, T.; Horn, R.; Or, D. Historical Increase in Agricultural Machinery Weights Enhanced Soil Stress Levels and Adversely Affected Soil Functioning. Soil Tillage Res 2019, 194, 104293. [Google Scholar] [CrossRef]
- Indoria, A.K.; Sharma, K.L.; Reddy, K.S. Hydraulic Properties of Soil under Warming Climate. In Climate Change and Soil Interactions; 2020. 473-508. [CrossRef]
- Indoria, A.K.; Sharma, K.L.; Sammi Reddy, K.; Srinivasa Rao, C. Role of Soil Physical Properties in Soil Health Management and Crop Productivity in Rainfed Systems-I: Soil Physical Constraints and Scope. Curr Sci 2017, 112, 2405–2414. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Bowman, B.T.; Drury, C.F.; Tan, C.S.; Lu, X. Indicators of Good Soil Physical Quality: Density and Storage Parameters. Geoderma 2002, 110, 131–146. [Google Scholar] [CrossRef]
- Pagliai, M.; Vignozzi, N. The Soil Pore System as an Indicator of Soil Quality. Adv. GeoEcology 2002, 35. [Google Scholar]
- Luxmoore, R.J. Comments and Letters to the Editor: Micro-, Meso-, and Macroporosity of Soil. Soil Sci. Soc. Am. J. 1981, 45. [Google Scholar] [CrossRef]
- Kutílek, M.; Jendele, L. The Structural Porosity in Soil Hydraulic Functions—A Review. Soil Water Res. 2008, 3, S7–S20. [Google Scholar] [CrossRef]
- Keller, T. Soil Compaction and Soil Tillage-Studies in Agricultural Soil Mechanics; Department of Soil Sciences, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2004; Volume 489. [Google Scholar]
- Lynch, J.; Marschner, P.; Rengel, Z. Effect of Internal and External Factors on Root Growth and Development. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Chiatante, D.; Scippa, S.G.; Di Iorio, A.; Sarnataro, M. The Influence of Steep Slopes on Root System Development. J. Plant Growth Regul. 2002, 21, 247–260. [Google Scholar] [CrossRef]
- Tanaka, K.; Hashimoto, S. Plant Canopy Effects on Soil Thermal and Hydrological Properties and Soil Respiration. Ecol. Model. 2006, 196, 34–44. [Google Scholar] [CrossRef]
- Solgi, A.; Najafi, A. The Impacts of Ground-Based Logging Equipment on Forest Soil. J. Sci. 2014, 60, 28–34. [Google Scholar] [CrossRef]
- Wubie, M.A.; Assen, M. Effects of Land Cover Changes and Slope Gradient on Soil Quality in the Gumara Watershed, Lake Tana Basin of North–West Ethiopia. Model Earth Syst Environ. 2020, 6, 85–97. [Google Scholar] [CrossRef]
- Guo, L.; Lin, H.; Fan, B.; Cui, X.; Chen, J. Impact of Root Water Content on Root Biomass Estimation Using Ground Penetrating Radar: Evidence from Forward Simulations and Field Controlled Experiments. Plant Soil 2013, 371, 503–520. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, X.; Jiang, J.; Wei, Y.; Ma, J.; Hallett, P.D. Root Moisture Content Influence on Root Tensile Tests of Herbaceous Plants. Catena 2019, 172, 140–147. [Google Scholar] [CrossRef]
- Dale, A.G.; Frank, S.D. Water Availability Determines Tree Growth and Physiological Response to Biotic and Abiotic Stress in a Temperate North American Urban Forest. Forests 2022, 13, 1012. [Google Scholar] [CrossRef]
- Rozenberg, P.; Cahalan, C. Spruce and Wood Quality: Genetic Aspects (a review). Silvae Genet 1997, 46, 270–279. [Google Scholar]
- Gryc, V.; Vavrčík, H.; Horn, K. Density of Juvenile and Mature Wood of Selected Coniferous Species. J. Sci. 2011, 57, 123–130. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Mydlarz, K. The Influence of Habitat Conditions on the Properties of Pinewood. Forests 2021, 12, 1311. [Google Scholar] [CrossRef]
- Rossi, S.; Cairo, E.; Krause, C.; Deslauriers, A. Growth and Basic Wood Properties of Black Spruce along an Alti-Latitudinal Gradient in Quebec, Canada. Ann Sci 2015, 72, 77–87. [Google Scholar] [CrossRef]
- Camarero, J.J. Wood Density as a Proxy of Drought-Induced Forest Dieback in Silver Fir. Dendrochronologia 2022, 76, 126027. [Google Scholar] [CrossRef]
- Sanginés de Cárcer, P.; Mederski, P.S.; Magagnotti, N.; Spinelli, R.; Engler, B.; Seidl, R.; Eriksson, A.; Eggers, J.; Bont, L.G.; Schweier, J. The Management Response to Wind Disturbances in European Forests. Curr. For. Rep. 2021, 7, 167–180. [Google Scholar] [CrossRef]
- Mahajan, S. Encyclopedia of Materials: Science and Technology; Pergamon: San Diego, CA, USA, 2001. [Google Scholar]
- Siau, J.F. Transport Processes in Wood; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Bao, F.; Lu, J.; Avramidis, S. On the Permeability of Main Wood Species in China. Holzforschung 1999, 53, 350–354. [Google Scholar] [CrossRef]
- de Oliveira, F.G.R.; de Campos, J.A.O.; Sales, A. Ultrasonic Measurements In Brazilian Hardwood. Mat. Res. 2002, 5, 51–55. [Google Scholar] [CrossRef]
- Karlinasari, L.; Nawawi, D.S.; Widyani, M. Study of Anatomic and Mechanical Properties of Wood Relation With Acoustical Properties. Bionatura J. Ilmu-Ilmu Hayati Dan Fis. 2010, 12, 110–116. [Google Scholar]
- Rahardjo, H.; Harnas, F.R.; Indrawan, I.G.B.; Leong, E.C.; Tan, P.Y.; Fong, Y.K.; Ow, L.F. Understanding the Stability of Samanea Saman Trees through Tree Pulling, Analytical Calculations and Numerical Models. Urban Urban Green 2014, 13, 355–364. [Google Scholar] [CrossRef]
- Liu, R.; Pan, Y.; Bao, H.; Liang, S.; Jiang, Y.; Tu, H.; Nong, J.; Huang, W. Variations in Soil Physico-Chemical Properties along Slope Position Gradient in Secondary Vegetation of the Hilly Region, Guilin, Southwest China. Sustainability 2020, 12, 1303. [Google Scholar] [CrossRef]
- Ghestem, M.; Sidle, R.C.; Stokes, A. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability. Bioscience 2011, 61, 869–879. [Google Scholar] [CrossRef]
- Stokes, A.; Atger, C.; Bengough, A.G.; Fourcaud, T.; Sidle, R.C. Desirable Plant Root Traits for Protecting Natural and Engineered Slopes against Landslides. Plant Soil 2009, 324, 1–30. [Google Scholar] [CrossRef]
- Sadono, R.; Soeprijadi, D.; Herningtyas, W.; Rahmadwiati, R. Growing Space Requirement, Diameter and Height Growth of Two Generative Teak Clones in Perhutani-the Indonesia State Forest Enterprise. Adv. Environ. Biol 2016, 10, 273–282. [Google Scholar]
- Campoe, O.C.; Stape, J.L.; Nouvellon, Y.; Laclau, J.-P.; Bauerle, W.L.; Binkley, D.; Le Maire, G. Stem Production, Light Absorption and Light Use Efficiency between Dominant and Non-Dominant Trees of Eucalyptus grandis across a Productivity Gradient in Brazil. Ecol. Manag. 2013, 288, 14–20. [Google Scholar] [CrossRef]
- Stokes, A.; Fitter, A.H.; Coutts, M.P. Responses of Young Trees To Wind: Effects on Root Architecture and Anchorage Strength. J. Exp. Bot. 1995, 46, 1139–1146. [Google Scholar] [CrossRef]
Parameter | Tree Species | |
---|---|---|
Samanea saman (n = 12) | Agathis loranthifolia (n = 12) | |
Diameter (cm) | 49.58 ± 5.91 | 47.25 ± 6.37 |
Height (m) | 18.83 ± 3.41 | 22.42 ± 1.89 |
LCR (%) | 48.28 ± 13.28 | 50.41 ± 28.38 |
DCR (m) | 14.67 ± 2.35 | 5.96 ± 1.29 |
Slope Class | Species | Slope Position | Parameter | |||
---|---|---|---|---|---|---|
BD (g·cm−3) | Po (%) | MCs (%) | RH (%) | |||
1 (0–5%) | Samanea saman (n = 3) | NA | 1.05 | 60.44 | 46.57 | 82.00 |
Agathis loranthifolia (n = 3) | NA | 0.77 | 70.85 | 81.29 | 72.50 | |
2 (6–15%) | Samanea saman (n = 3) | Up-slope | 0.93 | 65.08 | 50.34 | 93.33 |
Down-slope | 0.95 | 63.98 | 47.02 | 88.33 | ||
Agathis loranthifolia (n = 3) | Up-slope | 0.82 | 69.11 | 77.27 | 96.67 | |
Down-slope | 0.83 | 68.49 | 68.00 | 100.00 | ||
3 (16–30%) | Samanea saman (n = 3) | Up-slope | 1.03 | 61.08 | 43.67 | 100.00 |
Down-slope | 0.92 | 65.43 | 48.43 | 96.67 | ||
Agathis loranthifolia (n = 3) | Up-slope | 0.76 | 71.25 | 81.28 | 98.33 | |
Down-slope | 0.80 | 69.89 | 73.20 | 96.67 | ||
4 (≥31%) | Samanea saman (n = 3) | Up-slope | 0.98 | 63.16 | 41.57 | 90.00 |
Down-slope | 0.91 | 65.48 | 42.15 | 98.33 | ||
Agathis loranthifolia (n = 3) | Up-slope | 0.74 | 72.25 | 88.77 | 96.67 | |
Down-slope | 0.76 | 71.37 | 69.99 | 90.00 |
Parameter | Tree Species | p-Value | |
---|---|---|---|
Samanea saman (n = 12) | Agathis loranthifolia (n = 12) | ||
BD (g·cm−3) | 0.98 ± 0.08 | 0.78 ± 0.04 | 0.000 * |
Po (%) | 63.14 ± 3.17 | 70.51 ± 1.64 | 0.000 * |
MCs (%) | 45.79 ± 4.90 | 77.64 ± 6.33 | 0.000 * |
RH (%) | 91.38 ± 9.95 | 90.42 ± 14.68 | 0.813 |
Slope Class | Species | Position | Parameter | |||
---|---|---|---|---|---|---|
MCr (%) | ρ (g·cm−3) | V (m·s−1) | Vroot (m·s−1) | |||
1 (0–5%) | Samanea saman (n = 3) | NA | 73.96 | 1.08 | 914.15 | 1407.10 |
Agathis loranthifolia (n = 3) | NA | 55.81 | 0.97 | 864.39 | 1687.83 | |
2 (6–15%) | Samanea saman (n = 3) | Up-slope | 102.98 | 0.99 | 756.94 | 1603.42 |
Down-slope | 89.72 | 0.96 | 1025.10 | 1683.40 | ||
Agathis loranthifolia (n = 3) | Up-slope | 132.88 | 0.91 | 852.98 | 1949.91 | |
Down-slope | 126.69 | 1.05 | 1187.24 | 1800.50 | ||
3 (16–30%) | Samanea saman (n = 3) | Up-slope | 97.13 | 0.99 | 792.74 | 1581.93 |
Down-slope | 95.20 | 0.98 | 876.47 | 1352.21 | ||
Agathis loranthifolia (n = 3) | Up-slope | 109.86 | 0.85 | 815.89 | 1527.34 | |
Down-slope | 115.51 | 0.87 | 910.68 | 1535.32 | ||
4 (≥31%) | Samanea saman (n = 3) | Up-slope | 99.67 | 1.00 | 773.12 | 1394.83 |
Down-slope | 83.91 | 1.00 | 919.67 | 1783.19 | ||
Agathis loranthifolia (n = 3) | Up-slope | 138.56 | 1.08 | 647.18 | 1798.29 | |
Down-slope | 142.48 | 1.02 | 939.20 | 1738.51 |
Parameter | Tree Species | p-Value | |
---|---|---|---|
Samanea saman (n = 12) | Agathis loranthifolia (n = 12) | ||
MCr (%) | 89.57 ± 11.25 | 134.70 ± 21.98 | 0.000 * |
(g·cm−3) | 1.01 ± 0.06 | 0.97 ± 0.10 | 0.162 |
V (m·s−1) | 871.54 ± 144.24 | 910.25 ± 117.48 | 0.495 |
Vroot (m·s−1) | 1526.65 ± 183.30 | 1709.45 ± 264.77 | 0.046 * |
Parameter | Tree Species | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
BD | Samanea saman | Slope class | 3 | 0.04479 | 0.014930 | 1.72 | 0.404 |
Slope position | 3 | 0.02682 | 0.008942 | 0.89 | 0.467 | ||
Agathis loranthifolia | Slope class | 3 | 0.019921 | 0.006640 | 0.00 | 0.000 * | |
Slope position | 3 | 0.003180 | 0.001060 | 0.15 | 0.930 | ||
Po | Samanea saman | Slope class | 3 | 63.78 | 21.26 | 1.72 | 0.404 |
Slope position | 3 | 38.20 | 12.73 | 0.89 | 0.467 | ||
Agathis loranthifolia | Slope class | 3 | 28.367 | 9.456 | 0.00 | 0.000 * | |
Slope position | 3 | 4.529 | 1.510 | 0.15 | 0.930 | ||
MCs | Samanea saman | Slope class | 3 | 146.94 | 48.98 | 3.72 | 0.335 |
Slope position | 3 | 51.02 | 17.01 | 0.53 | 0.671 | ||
Agathis loranthifolia | Slope class | 3 | 249.3 | 83.11 | 0.29 | 0.831 | |
Slope position | 3 | 756.3 | 252.10 | 2.10 | 0.139 | ||
RH | Samanea saman | Slope class | 3 | 847.8 | 282.60 | 8.32 | 0.316 |
Slope position | 3 | 158.3 | 52.78 | 0.41 | 0.746 | ||
Agathis loranthifolia | Slope class | 3 | 2654.17 | 884.72 | 0.00 | 0.000 * | |
Slope position | 3 | 87.50 | 29.17 | 0.17 | 0.918 | ||
MCr | Samanea saman | Slope class | 3 | 2028.7 | 676.2 | 3.08 | 0.254 |
Slope position | 3 | 641.9 | 214.0 | 1.12 | 0.369 | ||
Agathis loranthifolia | Slope class | 3 | 5929.7 | 1976.57 | 0.00 | 0.000 * | |
Slope position | 3 | 128.4 | 42.81 | 0.09 | 0.963 | ||
ρ | Samanea laman | Slope class | 3 | 0.046268 | 0.015423 | 0.00 | 0.000 |
Slope position | 3 | 0.001007 | 0.000336 | 0.08 | 0.968 | ||
Agathis loranthifolia | Slope class | 3 | 0.10594 | 0.03531 | 2.88 | 0.288 | |
Slope position | 3 | 0.03792 | 0.01264 | 0.90 | 0.463 |
Tree Species | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Samanea saman | Slope class | 3 | 67,036 | 22,345 | 2.77 | 0.044 * |
Agathis loranthifolia | Slope class | 3 | 18,116 | 6039 | 0.62 | 0.606 |
Soil Slope Class | Samanea saman | Agathis loranthifolia | ||
---|---|---|---|---|
Sonic Velocity (m·s−1) | Angular Value (radians) | Sonic Velocity (m·s−1) | Angular Value (radians) | |
1 (0–5%)—flat | 934.06 | 177.8 a | 889.06 | 169.3 a |
2 (6–15%)—gentle | 668.41 | 127.3 b | 1002.58 | 190.9 a |
3 (16–30)—steep | 823.23 | 156.7 ab | 1053.44 | 200.6 a |
4 (≥31%)—very steep | 973.60 | 185.4 a | 945.57 | 180.0 a |
Parameter | Tree Species | p-Value | |
---|---|---|---|
Samanea saman (n = 12) | Agathis loranthifolia (n = 12) | ||
∑root root detector | 5.00 ± 2.00 | 6.00 ± 2.00 | 0.538 |
∑root photogrammetry | 4.00 ± 1.00 | 3.00 ± 1.00 | 0.198 |
Parameter | BD | Po | MCs | RH | LCR | DCR | ∑root | MCr | ρ | V | Vroot |
---|---|---|---|---|---|---|---|---|---|---|---|
BD | 1 | ||||||||||
Po | −1.000 * | 1 | |||||||||
MCs | −0.525 * | 0.525 * | 1 | ||||||||
RH | 0.263 | −0.263 | −0.412 * | 1 | |||||||
LCR | −0.170 | 0.170 | 0.310 | −0.568 * | 1 | ||||||
DCR | −0.121 | 0.121 | 0.676 * | −0.106 | 0.161 | 1 | |||||
∑root | −0.294 | 0.294 | 0.439 * | −0.310 | 0.144 | 0.322 | 1 | ||||
MCr | −0.190 | 0.190 | −0.177 | 0.143 | −0.101 | 0.047 | −0.002 | 1 | |||
ρ | 0.323 | −0.323 | 0.013 | −0.361 | 0.245 | −0.203 | 0.013 | −0.386 | 1 | ||
V | 0.022 | −0.022 | 0.090 | −0.075 | 0.066 | −0.042 | 0.660 * | −0.183 | 0.126 | 1 | |
Vroot | −0.111 | 0.111 | 0.036 | 0.147 | −0.198 | −0.141 | 0.124 | −0.327 | 0.129 | 0.517 * | 1 |
Parameter | BD | Po | MCs | RH | LCR | DCR | ∑root | MCr | ρ | V | Vroot |
---|---|---|---|---|---|---|---|---|---|---|---|
BD | 1 | ||||||||||
Po | −1.000 * | 1 | |||||||||
MCs | −0.863 * | 0.863 * | 1 | ||||||||
RH | −0.068 | 0.068 | 0.182 | 1 | |||||||
LCR | 0.059 | −0.059 | 0.095 | −0.273 | 1 | ||||||
DCR | 0.171 | −0.171 | −0.014 | 0.574 * | 0.344 | 1 | |||||
∑root | 0.124 | −0.124 | −0.208 | 0.315 | −0.198 | 0.047 | 1 | ||||
MCr | −0.132 | 0.132 | 0.127 | −0.190 | 0.493 * | −0.033 | −0.071 | 1 | |||
ρ | −0.042 | 0.042 | 0.110 | 0.205 | 0.246 | 0.187 | 0.042 | 0.372 | 1 | ||
V | 0.171 | −0.171 | −0.174 | 0.262 | 0.132 | 0.088 | 0.239 | 0.187 | 0.098 | 1 | |
Vroot | 0.323 | −0.323 | −0.228 | −0.152 | 0.238 | 0.099 | −0.505 | −0.005 | −0.137 | 0.453 * | 1 |
Soil Slope Class | Tree Code | Soil Slope Position with the Number of Roots (∑root) | Tree Growth Direction | Relative Direction Main Roots to Slope/Crown | ||
---|---|---|---|---|---|---|
Down Slope | Up Slope | Crown Direction | Root Distribution | |||
1 (0–5%) | SS 1 | (6) | NE, SE | NW, SW, SE | Opposite to crown | |
SS 2 | (5) | Distributed | Distributed | Opposite to crown | ||
SS 3 | (4) | Distributed | NW, SE, S, SE | Opposite to crown | ||
AL 1 | (6) | SW | NW, SW, S, SE | Opposite to crown | ||
AL 2 | (4) | Distributed | NW, NE, SE | Distributed | ||
AL 3 | (7) | NW | Distributed | in line to crown | ||
2 (6–15%) | SS 4 | SW, S, E (4) | NW, N, NE (2) | W, S | W, S, SE, NE | Spread in down slope |
SS 5 | NW, W, SW (1) | NE, E, SE (1) | W | SW, NE | Opposite to slope | |
SS 6 | W, NW, N (5) | S, SE, E (4) | Distributed | Distributed | Spread in down slope | |
AL 4 | W, NW, N (4) | S, SE, E (1) | Distributed | NW, W, SW, SE | Spread in down slope | |
AL 5 | W, NW, N (4) | S, SE, E (1) | SW, NE | SW, NW, NE | Spread in down slope | |
AL 6 | SW, W, NW (4) | NE, E, SE (3) | S | Distributed | Spread in down slope | |
3 (16–30%) | SS 7 | W, SW, S (4) | N, NE, E (1) | NE, E | SW, S, SE, NE | Spread in down slope |
SS 8 | W, SW, S (4) | N, NE, E (3) | S | Distributed | Spread in down slope | |
SS 9 | W, SW, S (2) | N, NE, E (3) | N | NW, SE, E | Spread in up slope | |
AL 7 | W, NW, N (4) | S, SE, E (4) | SW, NE | Distributed | in line to slope | |
AL 8 | W, NW, N (2) | S, SE, E (3) | NW, NE, SE | SE, NW | Spread in up slope | |
AL 9 | W, NW, N (4) | S, SE, E (4) | NE | Distributed | in line to slope | |
4 (≥31%) | SS 10 | NW, W, SW (2) | NE, E, SE (3) | E | Distributed | Spread in up slope |
SS 11 | NW, W, SW (2) | NE, E, SE (2) | S, SE | Distributed | in line to slope | |
SS 12 | W, SW, S (4) | N, NE, E (1) | N, NE | N, NE, S | Spread in down slope | |
AL 10 | W, NW, N (4) | S, SE, E (3) | W, NW | Distributed | Spread in down slope | |
AL 11 | W, NW, N (4) | S, SE, E (2) | Distributed | Distributed | Spread in down slope | |
AL 12 | W, NW, N (2) | S, SE, E (1) | SW, S | SW, SE, NW | Spread in down slope |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taufiqurrachman, M.; Syafitri, U.D.; Rahman, M.M.; Siregar, I.Z.; Karlinasari, L. Clarifying the Main Root Distribution of Trees in Varied Slope Environments Using Non-Destructive Root Detection. Forests 2023, 14, 2434. https://doi.org/10.3390/f14122434
Taufiqurrachman M, Syafitri UD, Rahman MM, Siregar IZ, Karlinasari L. Clarifying the Main Root Distribution of Trees in Varied Slope Environments Using Non-Destructive Root Detection. Forests. 2023; 14(12):2434. https://doi.org/10.3390/f14122434
Chicago/Turabian StyleTaufiqurrachman, Mochammad, Utami Dyah Syafitri, Mohamad Miftah Rahman, Iskandar Z. Siregar, and Lina Karlinasari. 2023. "Clarifying the Main Root Distribution of Trees in Varied Slope Environments Using Non-Destructive Root Detection" Forests 14, no. 12: 2434. https://doi.org/10.3390/f14122434
APA StyleTaufiqurrachman, M., Syafitri, U. D., Rahman, M. M., Siregar, I. Z., & Karlinasari, L. (2023). Clarifying the Main Root Distribution of Trees in Varied Slope Environments Using Non-Destructive Root Detection. Forests, 14(12), 2434. https://doi.org/10.3390/f14122434