Macroscopic and Microscopic Anatomical Characteristics of Six Korean Oak Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Macroscopic Characteristics
2.2.2. Microscopic Characteristics
2.2.3. Data Analysis
3. Results and Discussion
3.1. Macroscopic Characteristics
3.1.1. Bark Morphology and Color
3.1.2. Wood Color
3.1.3. Heartwood–Sapwood Proportion
3.1.4. Wood-Bark Proportion
3.1.5. Growth Ring Width and Latewood Percentage
3.2. Microscopic Characteristics
3.2.1. Cross-Section
3.2.2. Radial Section
3.2.3. Tangential Section
3.3. Summary of Anatomical Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nixon, K.C. Global and Neotropical Distribution and Diversity of Oak (genus Quercus) and Oak Forests. In Ecology and Conservation of Neotropical Montane Oak Forests; Kappelle, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 3–13. ISBN 978-3-540-28909-8. [Google Scholar] [CrossRef]
- Bumgardner, M. Overview of oak markets and marketing. In Proceedings of the Oak Symposium: Sustaining Oak Forests in the 21st Century Through Science-Based Management, Knoxville, TN, USA, 24–26 October 2017; pp. 113–115. [Google Scholar] [CrossRef]
- Pasta, S.; de Rigo, D.; Caudullo, G. Quercus pubescens in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of European Union: Luxembourg, 2016; pp. 156–157. ISBN 978-92-76-17290-1. [Google Scholar] [CrossRef]
- Santos, J.A.; Carvalho, J.P.F.; Santos, J. Oak wood. In Oak: Ecology, Types and Management; Chuteira, C.A., Grão, A.B., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2012; pp. 119–150. ISBN 978-1-61942-492-0. [Google Scholar]
- Korea Forest Service. Statistical Yearbook of Forestry; Department of Forest Resources in Korea Forest Service: Daejeon, Republic of Korea, 2022. (In Korean) [Google Scholar]
- Son, Y.; Park, I.H.; Yi, M.J.; Jin, H.O.; Kim, D.Y.; Kim, R.H.; Hwang, J.K. Biomass, production and nutrient distribution of natural oak forest in central Korea. Ecol. Res. 2004, 19, 21–28. [Google Scholar] [CrossRef]
- Jozsa, L.A.; Middleton, G.R. A Discussion of Wood Quality Attributes and Their Practical Implications; Forintek Canada Corp.: Vancouver, BC, Canada, 1994; ISSN 0824-2119. [Google Scholar]
- Ruffinatto, F.; Crivellaro, A.; Wiedenhoeft, A.C. Review of macroscopic features for hardwood and softwood identification and a proposal for a new character list. IAWA J. 2015, 36, 208–241. [Google Scholar] [CrossRef]
- Oh, S.W. The relationship between anatomical characteristics and bending strength in major species of Korean Lepidobalanus. J. Korean Wood Sci. Techol. 1999, 27, 9–17. [Google Scholar]
- Tsuchiya, R.; Furukawa, I. Radial variation in the size of axial elements in relation to stem increment in Quercus serrata. IAWA J. 2009, 30, 15–26. [Google Scholar] [CrossRef]
- Eom, Y.G. Wood Anatomy of Korean Species; Media Wood Ltd.: Seoul, Republic of Korea, 2015; ISBN 978-89-97450-98-5-93480. [Google Scholar]
- Jeon, W.S.; Lee, H.M.; Park, J.H. Comparison of anatomical characteristics for wood damaged by oak wilt and sound wood from Quercus mongolica. J. Korean Wood Sci. Technol. 2020, 48, 807–819. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Guo, J.; Ren, H.; Wang, Y.; Zhang, Y.; Yin, Y. Characterization and comparison of the wood anatomical traits of plantation grown Quercus acutissima and Quercus variabilis. IAWA J. 2021, 42, 244–257. [Google Scholar] [CrossRef]
- Moya, R.; Soto Fallas, R.; Jiménez Bonilla, P.; Tenorio, C. Relationship between wood color parameters measured by the CIELab system and extractive and phenol content in Acacia mangium and Vochysia guatemalensis from fast-growth plantations. Molecules 2012, 17, 3639–3652. [Google Scholar] [CrossRef]
- IAWA Committee. IAWA list of microscopic features for hardwood identification. IAWA Bull. 1989, 10, 219–332. [Google Scholar]
- Zhou, J. Classification of natural types of Quercus variabilis. Plant Dis. Pests 2023, 14, 23–26. [Google Scholar] [CrossRef]
- Junikka, L. Survey of English macroscopic bark terminology. IAWA J. 1994, 15, 3–45. [Google Scholar] [CrossRef]
- Savero, A.M.; Kim, J.H.; Purusatama, B.D.; Prasetia, D.; Park, S.H.; Kim, N.H. A comparative study on the anatomical characteristics of Acacia mangium and Acacia hybrid grown in Vietnam. Forests 2022, 13, 1700. [Google Scholar] [CrossRef]
- Vetter, R.E.; Coradin, V.R.; Martino, E.C.; Camargos, J.A.A. Wood colour—A comparison between determination methods. IAWA Bull. 1990, 11, 429–439. [Google Scholar] [CrossRef]
- Wheeler, E.A.; Baas, P. Wood identification—A review. IAWA J. 1998, 19, 241–264. [Google Scholar] [CrossRef]
- Bernal, R.A.; Coradin, V.; Camargos, J.; Costa, C.; Pissarra, J. Wood anatomy of Lecythidaceae species called “Tauari”. IAWA J. 2011, 32, 97–112. [Google Scholar] [CrossRef]
- Arisandi, R.; Marsoem, S.N.; Sutapa, J.P.G.; Lukmandaru, G. A Review of the factors influencing variations in the heartwood proportion for solid wood. South-East Eur. For. 2023, 14, 1–9. [Google Scholar] [CrossRef]
- Savero, A.M.; Wahyudi, I.; Rahayu, I.S.; Yunianti, A.D.; Ishiguri, F. Investigating the anatomical and physical-mechanical properties of the 8-year-old superior teakwood planted in Muna Island, Indonesia. J. Korean Wood Sci. Technol. 2020, 48, 618–630. [Google Scholar] [CrossRef]
- Ivković, M.; Gapare, W.; Wu, H.; Espinoza, S.; Rozenberg, P. Influence of cambial age and climate on ring width and wood density in Pinus radiata families. Ann. For. Sci. 2013, 70, 525–534. [Google Scholar] [CrossRef]
- Zubizarreta-Gerendiain, A.; Gort-Oromi, J.; Mehtätalo, L.; Peltola, H.; Venäläinen, A.; Pulkkinen, P. Effects of cambial age, clone and climatic factors on ring width and ring density in Norway spruce (Picea abies) in southeastern Finland. For. Ecol. Manag. 2012, 263, 9–16. [Google Scholar] [CrossRef]
- Zhang, S.Y. Variations and correlations of various ring width and ring density features in European oak: Implications in dendroclimatology. Wood Sci. Technol. 1997, 31, 63–72. [Google Scholar] [CrossRef]
- Sousa, V.B.; Louzada, J.S.; Pereira, H. Variation of ring width and wood density in two unmanaged stands of the Mediterranean oak Quercus faginea. Forests 2018, 9, 44. [Google Scholar] [CrossRef]
- Konukcu, A.C.; Quin, F.; Zhang, J. Effect of growth rings on fracture toughness of wood. Eur. J. Wood Wood Prod. 2021, 79, 1495–1506. [Google Scholar] [CrossRef]
Trade Name | Scientific Name | Diameter (cm) * | Age (Years) * |
---|---|---|---|
Oriental Cork Oak | Quercus variabilis Blume | 24.9 (3.9) | 63 (1.5) |
Jolcham Oak | Quercus serrata Murray | 26.7 (3.5) | 72 (19.7) |
Mongolian Oak | Quercus mongolica Fisch. ex Ledeb | 23.1 (1.9) | 64 (1.0) |
Korean Oak | Quercus dentata Thunb. | 22.2 (1.3) | 73 (8.3) |
Oriental White Oak | Quercus aliena Blume | 20.4 (4.3) | 48 (3.2) |
Sawtooth Oak | Quercus acutissima Carruth. | 21.7 (4.6) | 48 (0.0) |
Color Parameter | Species | |||||
---|---|---|---|---|---|---|
Q. variabilis | Q. serrata | Q. mongolica | Q. dentata | Q. aliena | Q. acutissima | |
L* | 43.37 a (3.33) | 45.06 a (10.40) | 38.77 b (4.25) | 33.48 c (2.04) | 37.60 b (3.83) | 33.71 c (2.75) |
a* | 4.45 ab (1.14) | 3.62 a (1.99) | 5.13 b (1.44) | 6.07 c (1.27) | 7.66 d (1.08) | 4.19 ab (1.59) |
b* | 9.87 ab (1.50) | 9.91 ab (1.52) | 11.50 c (1.42) | 10.70 bc (1.15) | 13.05 d (1.53) | 9.05 a (1.50) |
Wood | Color Parameter | Species | |||||
---|---|---|---|---|---|---|---|
Q. variabilis | Q. serrata | Q. mongolica | Q. dentata | Q. aliena | Q. acutissima | ||
Heartwood | L* | 56.92 a (1.53) | 62.19 b (2.14) | 59.21 c (3.87) | 55.06 d (2.53) | 58.44 c (2.56) | 58.70 c (1.96) |
a* | 7.88 a (1.04) | 6.29 b (0.66) | 6.41 b* (0.37) | 7.93 a (0.71) | 6.57 b (0.46) | 7.95 a (0.92) | |
b* | 12.37 a (1.33) | 14.92 b* (1.02) | 16.04 c (1.22) | 16.57 c* (1.52) | 16.59 c* (2.13) | 13.01 a (0.68) | |
Sapwood | L* | 67.78 a (1.95) | 74.67 b (2.19) | 72.56 c (3.22) | 69.57 d (2.46) | 71.88 c (2.01) | 67.31 a (2.49) |
a* | 8.94 a (0.66) | 5.51 b (0.47) | 6.20 c* (0.72) | 6.45 c (0.50) | 5.65 b (0.46) | 9.19 a (1.44) | |
b* | 16.24 a (1.14) | 14.88 b* (0.89) | 15.24 b (1.27) | 16.52 a* (0.84) | 16.15 a* (1.09) | 16.42 a (1.29) |
Parameter | Species | |||||
---|---|---|---|---|---|---|
Q. variabilis | Q. serrata | Q. mongolica | Q. dentata | Q. aliena | Q. acutissima | |
Growth ring width (mm) | 1.98 ab (0.57) | 1.62 bc (0.85) | 1.77 b (0.50) | 1.47 c (0.64) | 2.10 a (0.63) | 2.20 a (0.60) |
Latewood percentage (%) | 75.01 ac (6.13) | 65.10 b (13.23) | 74.13 c (9.54) | 69.63 d (7.11) | 75.11 ac (6.44) | 78.16 a (5.96) |
Parameter | Species | |||||
---|---|---|---|---|---|---|
Q. variabilis | Q. serrata | Q. mongolica | Q. dentata | Q. aliena | Q. acutissima | |
Growth ring | Distinct (1) | |||||
Porosity | Wood ring-porous (3) | |||||
* Latewood vessel arrangement | Diagonal pattern (7) | Dendritic pattern (8) | Diagonal pattern (7) | |||
* Latewood solitary vessel outline | Round | Angular (12) | Round | |||
Vessel groupings | Exclusively solitary (9) | |||||
Perforation plates | Simple (13) | |||||
Intervessel pits | Alternate (22) | |||||
Vestured pits | Absent | |||||
Vessel-ray pitting | Much reduced borders, pits rounded or angular (31), pits horizontal (scalariform, gash-like) to vertical (palisade) (32) | |||||
Tyloses | Present (56) | |||||
Tracheids | Vasicentric tracheids are present (60) | |||||
Fibers pits | Simple to minutely bordered pits (61) | |||||
Septate fibers | Non-septate (66) | |||||
Apotracheal axial parenchyma | Diffuse (76) and diffuse-in-aggregates (77) | |||||
* Paratracheal axial parenchyma in latewood | Vasicentric (79), confluent (83), and unilateral paratracheal (84) | Absent | Vasicentric (79), confluent (83), and unilateral paratracheal (84) | |||
Banded parenchyma | In narrow bands or lines up to three cells wide (86) | |||||
Ray width | Exclusively uniseriate (96) and larger rays commonly > 10-seriate (99) | |||||
Rays of two distinct sizes | Present (103) | |||||
Ray composition | All cells procumbent (104) | |||||
Prismatic crystals | Present (136), in procumbent ray cells (138), and in chambered axial parenchyma cells (142) | |||||
Other diagnostic crystal features | Crystals in enlarged cells (156) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savero, A.M.; Kim, J.-H.; Purusatama, B.D.; Prasetia, D.; Wahyudi, I.; Iswanto, A.H.; Park, B.-H.; Lee, S.-H.; Kim, N.-H. Macroscopic and Microscopic Anatomical Characteristics of Six Korean Oak Species. Forests 2023, 14, 2449. https://doi.org/10.3390/f14122449
Savero AM, Kim J-H, Purusatama BD, Prasetia D, Wahyudi I, Iswanto AH, Park B-H, Lee S-H, Kim N-H. Macroscopic and Microscopic Anatomical Characteristics of Six Korean Oak Species. Forests. 2023; 14(12):2449. https://doi.org/10.3390/f14122449
Chicago/Turabian StyleSavero, Alvin Muhammad, Jong-Ho Kim, Byantara Darsan Purusatama, Denni Prasetia, Imam Wahyudi, Apri Heri Iswanto, Byung-Ho Park, Seung-Hwan Lee, and Nam-Hun Kim. 2023. "Macroscopic and Microscopic Anatomical Characteristics of Six Korean Oak Species" Forests 14, no. 12: 2449. https://doi.org/10.3390/f14122449
APA StyleSavero, A. M., Kim, J. -H., Purusatama, B. D., Prasetia, D., Wahyudi, I., Iswanto, A. H., Park, B. -H., Lee, S. -H., & Kim, N. -H. (2023). Macroscopic and Microscopic Anatomical Characteristics of Six Korean Oak Species. Forests, 14(12), 2449. https://doi.org/10.3390/f14122449