Turbulent Energy and Carbon Fluxes in an Andean Montane Forest—Energy Balance and Heat Storage
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Site
2.2. Instrumentation
2.3. EC Raw Data Processing
2.4. Processing the Half Hourly Data
2.4.1. Energy Flux Data
2.4.2. NEE Data Filtering
2.5. Correction for Global Radiation
2.6. Heat and Moisture Changes in Canopy Air
3. Results
3.1. Wind Field
3.2. Vertical Heat and Moisture Effects
3.3. Energy Balance Closure
3.4. Energy Balance Closure as a Function of Time
3.5. Energy Balance Closure and Its Relation to Thermodynamic Conditions
3.6. Diurnal Cycles of CO2 Fluxes
3.7. Light-Response and Carbon Exchange Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malhi, Y.; Nobre, A.D.; Grace, J.; Kruijt, B.; Pereira, M.G.P.; Culf, A.; Scott, S. Carbon Dioxide Transfer over a Central Amazonian Rain Forest. J. Geophys. Res. 1998, 103, 31593–31612. [Google Scholar] [CrossRef]
- Kosugi, Y.; Takanashi, S.; Ohkubo, S.; Matsuo, N.; Tani, M.; Mitani, T.; Tsutsumi, D.; Nik, A.R. CO2 Exchange of a Tropical Rainforest at Pasoh in Peninsular Malaysia. Agric. For. Meteorol. 2008, 148, 439–452. [Google Scholar] [CrossRef]
- Tóta, J.; Roy Fitzjarrald, D.; Da Silva Dias, M.A.F. Amazon Rainforest Exchange of Carbon and Subcanopy Air Flow: Manaus LBA Site—A Complex Terrain Condition. Sci. World J. 2012, 2012, 165067. [Google Scholar] [CrossRef] [PubMed]
- Tóta, J.; Fitzjarrald, D.R.; Staebler, R.M.; Sakai, R.K.; Moraes, O.M.M.; Acevedo, O.C.; Wofsy, S.C.; Manzi, A.O. Amazon Rain Forest Subcanopy Flow and the Carbon Budget: Santarém LBA-ECO Site. J. Geophys. Res. 2008, 113, 2007JG000597. [Google Scholar] [CrossRef]
- Botía, S.; Komiya, S.; Marshall, J.; Koch, T.; Gałkowski, M.; Lavric, J.; Gomes-Alves, E.; Walter, D.; Fisch, G.; Pinho, D.M.; et al. The CO2 Record at the Amazon Tall Tower Observatory: A New Opportunity to Study Processes on Seasonal and Inter-annual Scales. Glob. Chang. Biol. 2022, 28, 588–611. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Munger, J.W.; Saleska, S.R.; Gottlieb, E.; Daube, B.C.; Dunn, A.L.; Amaral, D.F.; De Camargo, P.B.; Wofsy, S.C. Seasonal Controls on the Exchange of Carbon and Water in an Amazonian Rain Forest. J. Geophys. Res. 2007, 112, 2006JG000365. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, Y.; Yu, G.; Sha, L.; Tang, J.; Deng, X.; Song, Q. Carbon Balance of a Primary Tropical Seasonal Rain Forest. J. Geophys. Res. 2010, 115, 2009JD012913. [Google Scholar] [CrossRef]
- Miller, S.D.; Goulden, M.L.; Menton, M.C.; Da Rocha, H.R.; De Freitas, H.C.; Figueira, A.M.E.S.; Dias De Sousa, C.A. Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol. Appl. 2004, 14, 114–126. [Google Scholar] [CrossRef]
- Kunert, N.; Aparecido, L.M.T. Ecosystem Carbon Fluxes Are Tree Size-Dependent in an Amazonian Old-Growth Forest. Agric. For. Meteorol. 2024, 346, 109895. [Google Scholar] [CrossRef]
- Banbury Morgan, R.; Herrmann, V.; Kunert, N.; Bond-Lamberty, B.; Muller-Landau, H.C.; Anderson-Teixeira, K.J. Global Patterns of Forest Autotrophic Carbon Fluxes. Glob. Chang. Biol. 2021, 27, 2840–2855. [Google Scholar] [CrossRef]
- Costa, G.B.; Santos E Silva, C.M.; Mendes, K.R.; Dos Santos, J.G.M.; Neves, T.T.A.T.; Silva, A.S.; Rodrigues, T.R.; Silva, J.B.; Dalmagro, H.J.; Mutti, P.R.; et al. WUE and CO2 Estimations by Eddy Covariance and Remote Sensing in Different Tropical Biomes. Remote Sens. 2022, 14, 3241. [Google Scholar] [CrossRef]
- Duque, A.; Peña, M.A.; Cuesta, F.; González-Caro, S.; Kennedy, P.; Phillips, O.L.; Calderón-Loor, M.; Blundo, C.; Carilla, J.; Cayola, L.; et al. Mature Andean Forests as Globally Important Carbon Sinks and Future Carbon Refuges. Nat. Commun. 2021, 12, 2138. [Google Scholar] [CrossRef] [PubMed]
- González-Jaramillo, V.; Fries, A.; Rollenbeck, R.; Paladines, J.; Oñate-Valdivieso, F.; Bendix, J. Assessment of Deforestation during the Last Decades in Ecuador Using NOAA-AVHRR Satellite Data. Erdkunde 2016, 70, 217–235. [Google Scholar] [CrossRef]
- Curatola Fernández, G.; Obermeier, W.; Gerique, A.; López Sandoval, M.; Lehnert, L.; Thies, B.; Bendix, J. Land Cover Change in the Andes of Southern Ecuador—Patterns and Drivers. Remote Sens. 2015, 7, 2509–2542. [Google Scholar] [CrossRef]
- Wright, S.J. Tropical Forests in a Changing Environment. Trends Ecol. Evol. 2005, 20, 553–560. [Google Scholar] [CrossRef]
- Baldocchi, D.D. Assessing the Eddy Covariance Technique for Evaluating Carbon Dioxide Exchange Rates of Ecosystems: Past, Present and Future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef]
- Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Aubinet, M.; Vesala, T.; Papale, D. (Eds.) Springer: Dordrecht, The Netherlands, 2012; ISBN 978-94-007-2350-4. [Google Scholar]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a Standardized Processing of Net Ecosystem Exchange Measured with Eddy Covariance Technique: Algorithms and Uncertainty Estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef]
- Foken, T.; Gockede, M.; Mauder, M.; Mahrt, L.; Amiro, B.; Munger, W. Post-Field Data Quality Control. In Handbook of Micrometeorology; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Trachte, K.; Bendix, J. Katabatic Flows and Their Relation to the Formation of Convective Clouds—Idealized Case Studies. J. Appl. Meteorol. Climatol. 2012, 51, 1531–1546. [Google Scholar] [CrossRef]
- Trachte, K.; Nauss, T.; Bendix, J. The Impact of Different Terrain Configurations on the Formation and Dynamics of Katabatic Flows: Idealised Case Studies. Bound. Layer Meteorol. 2010, 134, 307–325. [Google Scholar] [CrossRef]
- Foken, T.; Leuning, R.; Oncley, S.R.; Mauder, M.; Aubinet, M. Corrections and Data Quality Control. In Eddy Covariance; Aubinet, M., Vesala, T., Papale, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 85–131. ISBN 978-94-007-2350-4. [Google Scholar]
- Mauder, M.; Foken, T.; Cuxart, J. Surface-Energy-Balance Closure over Land: A Review. Bound. Layer Meteorol. 2020, 177, 395–426. [Google Scholar] [CrossRef]
- Kanda, M.; Inagaki, A.; Letzel, M.O.; Raasch, S.; Watanabe, T. LES Study of the Energy Imbalance Problem with Eddy Covariance Fluxes. Bound. Layer Meteorol. 2004, 110, 381–404. [Google Scholar] [CrossRef]
- Novick, K.A.; Oishi, A.C.; Miniat, C.F. Cold Air Drainage Flows Subsidize Montane Valley Ecosystem Productivity. Glob. Chang. Biol. 2016, 22, 4014–4027. [Google Scholar] [CrossRef] [PubMed]
- Mammarella, I.; Kolari, P.; Rinne, J.; Keronen, P.; Pumpanen, J.; Vesala, T. Determining the Contribution of Vertical Advection to the Net Ecosystem Exchange at Hyytiälä Forest, Finland. Tellus B Chem. Phys. Meteorol. 2007, 59, 900. [Google Scholar] [CrossRef]
- Turnipseed, A.A.; Blanken, P.D.; Anderson, D.E.; Monson, R.K. Energy Budget above a High-Elevation Subalpine Forest in Complex Topography. Agric. For. Meteorol. 2002, 110, 177–201. [Google Scholar] [CrossRef]
- Novick, K.; Brantley, S.; Miniat, C.F.; Walker, J.; Vose, J.M. Inferring the Contribution of Advection to Total Ecosystem Scalar Fluxes over a Tall Forest in Complex Terrain. Agric. For. Meteorol. 2014, 185, 1–13. [Google Scholar] [CrossRef]
- Baldocchi, D.D. How Eddy Covariance Flux Measurements Have Contributed to Our Understanding of Global Change Biology. Glob. Chang. Biol. 2020, 26, 242–260. [Google Scholar] [CrossRef]
- Wang, T.; Alfieri, J.; Mallick, K.; Arias-Ortiz, A.; Anderson, M.; Fisher, J.B.; Girotto, M.; Szutu, D.; Verfaillie, J.; Baldocchi, D. How Advection Affects the Surface Energy Balance and Its Closure at an Irrigated Alfalfa Field. Agric. For. Meteorol. 2024, 357, 110196. [Google Scholar] [CrossRef]
- Cuxart, J.; Wrenger, B.; Martínez-Villagrasa, D.; Reuder, J.; Jonassen, M.O.; Jiménez, M.A.; Lothon, M.; Lohou, F.; Hartogensis, O.; Dünnermann, J.; et al. Estimation of the Advection Effects Induced by Surface Heterogeneities in the Surface Energy Budget. Atmos. Chem. Phys. 2016, 16, 9489–9504. [Google Scholar] [CrossRef]
- McGloin, R.; Šigut, L.; Havránková, K.; Dušek, J.; Pavelka, M.; Sedlák, P. Energy Balance Closure at a Variety of Ecosystems in Central Europe with Contrasting Topographies. Agric. For. Meteorol. 2018, 248, 418–431. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, H.; Katul, G.G.; Foken, T. Non-Closure of the Surface Energy Balance Explained by Phase Difference between Vertical Velocity and Scalars of Large Atmospheric Eddies. Environ. Res. Lett. 2017, 12, 034025. [Google Scholar] [CrossRef]
- Moderow, U.; Aubinet, M.; Feigenwinter, C.; Kolle, O.; Lindroth, A.; Mölder, M.; Montagnani, L.; Rebmann, C.; Bernhofer, C. Available Energy and Energy Balance Closure at Four Coniferous Forest Sites across Europe. Theor. Appl. Clim. 2009, 98, 397–412. [Google Scholar] [CrossRef]
- Lindroth, A.; Mölder, M.; Lagergren, F. Heat Storage in Forest Biomass Improves Energy Balance Closure. Biogeosciences 2010, 7, 301–313. [Google Scholar] [CrossRef]
- Swenson, S.C.; Burns, S.P.; Lawrence, D.M. The Impact of Biomass Heat Storage on the Canopy Energy Balance and Atmospheric Stability in the Community Land Model. J. Adv. Model Earth Syst. 2019, 11, 83–98. [Google Scholar] [CrossRef]
- Meier, R.; Davin, E.L.; Swenson, S.C.; Lawrence, D.M.; Schwaab, J. Biomass Heat Storage Dampens Diurnal Temperature Variations in Forests. Environ. Res. Lett. 2019, 14, 084026. [Google Scholar] [CrossRef]
- Hammerle, A.; Haslwanter, A.; Schmitt, M.; Bahn, M.; Tappeiner, U.; Cernusca, A.; Wohlfahrt, G. Eddy Covariance Measurements of Carbon Dioxide, Latent and Sensible Energy Fluxes above a Meadow on a Mountain Slope. Bound. Layer Meteorol. 2007, 122, 397–416. [Google Scholar] [CrossRef]
- Hiller, R.; Zeeman, M.J.; Eugster, W. Eddy-Covariance Flux Measurements in the Complex Terrain of an Alpine Valley in Switzerland. Bound. Layer Meteorol. 2008, 127, 449–467. [Google Scholar] [CrossRef]
- Del Castillo, E.G.; Paw U, K.T.; Sánchez-Azofeifa, A. Turbulence Scales for Eddy Covariance Quality Control over a Tropical Dry Forest in Complex Terrain. Agric. For. Meteorol. 2018, 249, 390–406. [Google Scholar] [CrossRef]
- Turnipseed, A.A.; Anderson, D.E.; Burns, S.; Blanken, P.D.; Monson, R.K. Airflows and Turbulent Flux Measurements in Mountainous Terrain. Agric. For. Meteorol. 2004, 125, 187–205. [Google Scholar] [CrossRef]
- Callañaupa Gutierrez, S.; Segura Cajachagua, H.; Saavedra Huanca, M.; Flores Rojas, J.; Silva Vidal, Y.; Cuxart, J. Seasonal Variability of Daily Evapotranspiration and Energy Fluxes in the Central Andes of Peru Using Eddy Covariance Techniques and Empirical Methods. Atmos. Res. 2021, 261, 105760. [Google Scholar] [CrossRef]
- Homeier, J.; Werner, F.A.; Gradstein, S.R.; Breckle, S.W.; Richter, M. Potential vegetation and floristic composition of Andean forests in south Ecuador, with a focus on theRBSF. In Gradients in a Tropical Mountain Ecosystem of Ecuador; Beck, E., Bendix, J., Kottke, I., Makeschin, F., Mosandl, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 221, pp. 87–100. [Google Scholar]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Trachte, K. Atmospheric Moisture Pathways to the Highlands of the Tropical Andes: Analyzing the Effects of Spectral Nudging on Different Driving Fields for Regional Climate Modeling. Atmosphere 2018, 9, 456. [Google Scholar] [CrossRef]
- Raffelsbauer, V.; Pucha-Cofrep, F.; Strobl, S.; Knüsting, J.; Schorsch, M.; Trachte, K.; Scheibe, R.; Bräuning, A.; Windhorst, D.; Bendix, J.; et al. Trees with Anisohydric Behavior as Main Drivers of Nocturnal Evapotranspiration in a Tropical Mountain Rainforest. PLoS ONE 2023, 18, e0282397. [Google Scholar] [CrossRef] [PubMed]
- Wilcke, W.; Yasin, S.; Schmitt, A.; Valarezo, C.; Zech, W. Soils Along the Altitudinal Transect and in Catchments. In Gradients in a Tropical Mountain Ecosystem of Ecuador; Beck, E., Bendix, J., Kottke, I., Makeschin, F., Mosandl, R., Eds.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2008; Volume 198, pp. 75–85. ISBN 978-3-540-73525-0. [Google Scholar]
- Finkelstein, P.L.; Sims, P.F. Sampling Error in Eddy Correlation Flux Measurements. J. Geophys. Res. 2001, 106, 3503–3509. [Google Scholar] [CrossRef]
- Mauder, M.; Cuntz, M.; Drüe, C.; Graf, A.; Rebmann, C.; Schmid, H.P.; Schmidt, M.; Steinbrecher, R. A Strategy for Quality and Uncertainty Assessment of Long-Term Eddy-Covariance Measurements. Agric. For. Meteorol. 2013, 169, 122–135. [Google Scholar] [CrossRef]
- Moncrieff, J.B.; Massheder, J.M.; De Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H.; Verhoef, A. A System to Measure Surface Fluxes of Momentum, Sensible Heat, Water Vapour and Carbon Dioxide. J. Hydrol. 1997, 188–189, 589–611. [Google Scholar] [CrossRef]
- Eddy Covariance Method: For Scientific, Regulatory, and Commercial Applications; Updated and Expanded 2022 Edition; LI-COR Biosciences: Lincoln, NE, USA, 2022; ISBN 978-0-578-97714-0.
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of Flux Measurements for Density Effects Due to Heat and Water Vapour Transfer. Quart. J. R. Meteoro. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic Anemometer Tilt Correction Algorithms. Bound. Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Parameterisation for Flux Footprint Predictions. Bound. Layer Meteorol. 2004, 112, 503–523. [Google Scholar] [CrossRef]
- Barr, A.G.; Richardson, A.D.; Hollinger, D.Y.; Papale, D.; Arain, M.A.; Black, T.A.; Bohrer, G.; Dragoni, D.; Fischer, M.L.; Gu, L.; et al. Use of Change-Point Detection for Friction–Velocity Threshold Evaluation in Eddy-Covariance Studies. Agric. For. Meteorol. 2013, 171–172, 31–45. [Google Scholar] [CrossRef]
- Leuning, R.; Van Gorsel, E.; Massman, W.J.; Isaac, P.R. Reflections on the Surface Energy Imbalance Problem. Agric. For. Meteorol. 2012, 156, 65–74. [Google Scholar] [CrossRef]
- Olmo, F.J.; Vida, J.; Foyo, I.; Castro-Diez, Y.; Alados-Arboledas, L. Prediction of Global Irradiance on Inclined Surfaces from Horizontal Global Irradiance. Energy 1999, 24, 689–704. [Google Scholar] [CrossRef]
- Bendix, J.; Aguire, N.; Beck, E.; Bräuning, A.; Brandl, R.; Breuer, L.; Böhning-Gaese, K.; De Paula, M.D.; Hickler, T.; Homeier, J.; et al. A Research Framework for Projecting Ecosystem Change in Highly Diverse Tropical Mountain Ecosystems. Oecologia 2021, 195, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Meeus, J.A. Astronomical Algorithms, 2nd ed.; Willmann-Bell Inc.: Richmond, VA, USA, 1998. [Google Scholar]
- Nicolini, G.; Aubinet, M.; Feigenwinter, C.; Heinesch, B.; Lindroth, A.; Mamadou, O.; Moderow, U.; Mölder, M.; Montagnani, L.; Rebmann, C.; et al. Impact of CO2 Storage Flux Sampling Uncertainty on Net Ecosystem Exchange Measured by Eddy Covariance. Agric. For. Meteorol. 2018, 248, 228–239. [Google Scholar] [CrossRef]
- Finnigan, J. The Storage Term in Eddy Flux Calculations. Agric. For. Meteorol. 2006, 136, 108–113. [Google Scholar] [CrossRef]
- Sakai, R.K.; Fitzjarrald, D.R.; Moore, K.E. Importance of Low-Frequency Contributions to Eddy Fluxes Observed over Rough Surfaces. J. Appl. Meteor. 2001, 40, 2178–2192. [Google Scholar] [CrossRef]
- Stoy, P.C.; Mauder, M.; Foken, T.; Marcolla, B.; Boegh, E.; Ibrom, A.; Arain, M.A.; Arneth, A.; Aurela, M.; Bernhofer, C.; et al. A Data-Driven Analysis of Energy Balance Closure across FLUXNET Research Sites: The Role of Landscape Scale Heterogeneity. Agric. For. Meteorol. 2013, 171–172, 137–152. [Google Scholar] [CrossRef]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting Eddy-Covariance Flux Underestimates over a Grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef]
- Matthews, B.; Mayer, M.; Katzensteiner, K.; Godbold, D.L.; Schume, H. Turbulent Energy and Carbon Dioxide Exchange along an Early-successional Windthrow Chronosequence in the European Alps. Agric. For. Meteorol. 2017, 232, 576–594. [Google Scholar] [CrossRef]
- Tan, Z.-H.; Zhang, Y.-P.; Schaefer, D.; Yu, G.-R.; Liang, N.; Song, Q.-H. An Old-Growth Subtropical Asian Evergreen Forest as a Large Carbon Sink. Atmos. Environ. 2011, 45, 1548–1554. [Google Scholar] [CrossRef]
- Sullivan, M.J.P.; Talbot, J.; Lewis, S.L.; Phillips, O.L.; Qie, L.; Begne, S.K.; Chave, J.; Cuni-Sanchez, A.; Hubau, W.; Lopez-Gonzalez, G.; et al. Diversity and Carbon Storage across the Tropical Forest Biome. Sci. Rep. 2017, 7, 39102. [Google Scholar] [CrossRef]
- Franssen, H.J.H.; Stöckli, R.; Lehner, I.; Rotenberg, E.; Seneviratne, S.I. Energy Balance Closure of Eddy-Covariance Data: A Multisite Analysis for European FLUXNET Stations. Agric. For. Meteorol. 2010, 150, 1553–1567. [Google Scholar] [CrossRef]
- Loescher, H.W.; Law, B.E.; Mahrt, L.; Hollinger, D.Y.; Campbell, J.; Wofsy, S.C. Uncertainties in, and Interpretation of, Carbon Flux Estimates Using the Eddy Covariance Technique. J. Geophys. Res. 2006, 111, 2005JD006932. [Google Scholar] [CrossRef]
- Velescu, A.; Valarezo, C.; Wilcke, W. Response of Dissolved Carbon and Nitrogen Concentrations to Moderate Nutrient Additions in a Tropical Montane Forest of South Ecuador. Front. Earth Sci. 2016, 4, 58. [Google Scholar] [CrossRef]
- Bendix, J.; Rafiqpoor, D.M. Studies on the Thermal Conditions of Soils at the Upper Tree Line in the Páramo of Papallacta (Eastern Cordillera of Ecuador). Erdkunde 2001, 55, 257–276. [Google Scholar] [CrossRef]
Filtering | Time | NEE | H | LE |
---|---|---|---|---|
Precipitation | Day | 75% | 73% | 73% |
Transition | 82% | 73% | 84% | |
Night | 85% | 85% | 87% | |
All filtering procedure | Day | 54% | 60% | 60% |
Transition | 52% | 58% | 58% | |
Night | 21% | 21% | 21% |
Intercept | Slope | R2 | RMSE | |
---|---|---|---|---|
Without storage | 27.71 | 0.79 | 0.786 | 121.37 |
With addition of storage | 27.20 | 0.80 | 0.789 | 120.37 |
SH (W/m2) | SLE (W/m2) | ε (W/m2) | ||||
---|---|---|---|---|---|---|
Mean | Sum | Mean | Sum | Mean | Sum | |
All | 4.4 | 105.2 | −5.6 | −133.7 | 14.8 | 356.2 |
Day | 6.8 | 27.1 | −12.5 | −49.9 | 56.9 | 227.8 |
Night | 1.8 | 19.5 | −2.6 | −28.5 | 6.5 | 71.9 |
Transition | 6.5 | 58.5 | −6.1 | −55.1 | 6.3 | 56.5 |
Time Period | Intercept | Slope | R2 | RMSE |
---|---|---|---|---|
All data | 20.59 | 0.79 | 0.795 | 107.29 |
Day | 135.8 | 0.56 | 0.545 | 133.32 |
Night | −31.19 | −0.005 | -- | 22.17 |
Transition | 33.39 | 0.67 | 0.666 | 108.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murkute, C.; Sayeed, M.; Pucha-Cofrep, F.; Carrillo-Rojas, G.; Homeier, J.; Limberger, O.; Fries, A.; Bendix, J.; Trachte, K. Turbulent Energy and Carbon Fluxes in an Andean Montane Forest—Energy Balance and Heat Storage. Forests 2024, 15, 1828. https://doi.org/10.3390/f15101828
Murkute C, Sayeed M, Pucha-Cofrep F, Carrillo-Rojas G, Homeier J, Limberger O, Fries A, Bendix J, Trachte K. Turbulent Energy and Carbon Fluxes in an Andean Montane Forest—Energy Balance and Heat Storage. Forests. 2024; 15(10):1828. https://doi.org/10.3390/f15101828
Chicago/Turabian StyleMurkute, Charuta, Mostafa Sayeed, Franz Pucha-Cofrep, Galo Carrillo-Rojas, Jürgen Homeier, Oliver Limberger, Andreas Fries, Jörg Bendix, and Katja Trachte. 2024. "Turbulent Energy and Carbon Fluxes in an Andean Montane Forest—Energy Balance and Heat Storage" Forests 15, no. 10: 1828. https://doi.org/10.3390/f15101828
APA StyleMurkute, C., Sayeed, M., Pucha-Cofrep, F., Carrillo-Rojas, G., Homeier, J., Limberger, O., Fries, A., Bendix, J., & Trachte, K. (2024). Turbulent Energy and Carbon Fluxes in an Andean Montane Forest—Energy Balance and Heat Storage. Forests, 15(10), 1828. https://doi.org/10.3390/f15101828