Effects of Soil Fauna on the Home-Field Advantage of Litter Total Phenol and Condensed Tannin Decomposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Analyses and Calculations
2.4. Statistical Analyses
3. Results
3.1. Initial Foliar Litter Quality
3.2. Losses of Total Phenols and Condensed Tannins in Foliar Litter
3.3. Total Phenol and Condensed Tannin Content in Foliar Litter
3.4. POD and PPO Activities in Foliar Litter
3.5. Fauna Effect and HFA Indices of Condensed Tannin and Total Phenol Loss
3.6. Correlations
4. Discussion
4.1. Decomposition Characteristics of Total Phenols and Condensed Tannins in Foliar Litter and Soil Faunal Contributions
4.2. Home-Field Advantage and Soil Faunal Contributions of Total Phenol and Condensed Tannin Decomposition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berg, B.; Mcclaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Swift, M.J.; Heal, O.W.; Anderson, J.M. Decomposition in terrestrial ecosystems. Q. Rev. Biol. 1979, 5, 2772–2774. [Google Scholar]
- Melillo, J.M.; Aber, J.D.; Muratore, J.F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 1982, 63, 621–626. [Google Scholar] [CrossRef]
- Inderjit. Plant phenolics in allelopathy. Bot. Rev. 1996, 62, 186–202. [Google Scholar] [CrossRef]
- Mitrović, M.; Jarić, S.; Djurdjević, L.; Karadžić, B.; Gajić, G.; Kostić, O.; Oberan, L.J.; Pavlović, D.; Pavlović, M.; Pavlović, P. Allelopathic and environmental implications of plant phenolic compounds. Allelopathy J. 2012, 29, 177–197. [Google Scholar]
- Wilson, J.; Buchsbaum, R.; Valiela, I. Decomposition in salt marsh ecosystems: Phenolic dynamics during decay of litter of Spartina alterniflora. Mar. Ecol. Prog. Ser. 1986, 29, 177–187. Available online: http://www.jstor.org/stable/24817586 (accessed on 9 February 2024). [CrossRef]
- Kraus, T.E.C.; Dahlgren, R.A.; Zasoski, R.J. Tannins in nutrient dynamics of forest ecosystems-a review. Plant Soil 2003, 256, 41–66. [Google Scholar] [CrossRef]
- Maie, N.; Pisani, O.; JaffÉ, R. Mangrove tannins in aquatic ecosystems: Their fate and possible influence on dissolved organic carbon and nitrogen cycling. Limnol. Oceanogr. 2008, 53, 160–171. [Google Scholar] [CrossRef]
- Palm, C.A.; Sanchez, P.A. Decomposition and nutrient release patterns of the leaves of three tropicallegumes. Biotropica 1990, 22, 330–338. [Google Scholar] [CrossRef]
- Schofield, J.A.; Hagerman, A.E.; Harold, A. Loss of tannins and other phenolics from willow leaf litter. J. Chem. Ecol. 1998, 24, 1409–1421. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Butler, L.G. Choosing appropriate methods and standards for assaying tannin. J. Chem. Ecol. 1989, 15, 1795–1810. [Google Scholar] [CrossRef]
- Heil, M.; Baumann, B.; Andary, C.; Linsenmair, E.K.; McKey, D. Extraction and quantification of “condensed tannins” as a measure of plant anti-herbivore defence? Revisiting an old problem. Naturwissenschaften 2002, 89, 519–524. [Google Scholar] [CrossRef]
- Berg, B.; Lundmark, J.E. Decomposition of needle litter in Pinus contorta and Pinus sylvestris monocultures: A comparison. Scand. J. Forest Res. 1987, 2, 3–12. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial byproducts: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Berg, B.; Berg, M.P.; Bottner, P.; Box, E.; Breymeyer, A.; Ca de Anta, R.; Couteaux, M.; Escudero, A.; Gallardo, A.; Kratz, W.; et al. Litter mass loss rates in pine forest of Europe and Eastern United States: Some relationships with climate and litter quality. Biogeochem. 1993, 20, 127–159. [Google Scholar] [CrossRef]
- Tharayil, N.; Suseela, V.; Triebwasser, D.J.; Preston, C.M.; Gerard, P.D.; Dukes, J.S. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: Climatic stress-induced tannins are more reactive. New phytol. 2011, 191, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, S.; Ye, G.; Shao, H.; Lin, G.; Brestic, M. Changes of tannin and nutrients during decomposition of branchlets of Casuarina equisetifolia plantation in subtropical coastal areas of China. Plant Soil Environ. 2013, 59, 74–79. [Google Scholar] [CrossRef]
- Kiser, L.C.; Fox, T.R.; Carlson, C.A. Foliage and litter chemistry, decomposition, and nutrient release in Pinus taeda. Forests 2013, 4, 595–612. [Google Scholar] [CrossRef]
- Li, H.; Wu, F.; Yang, W.; Xu, L.; Ni, X.; He, J.; Tan, B.; Hu, Y.; Justin, M.F. The losses of condensed tannins in six foliar litters vary with gap position and season in an alpine forest. iForest 2016, 9, 910. [Google Scholar] [CrossRef]
- Li, H.; Xu, L.; Wu, F.; Yang, W.; Ni, X.; He, J.; Hu, Y. Forest gaps alter the total phenol dynamics in decomposing litter in an alpine fir forest. PLoS ONE 2016, 11, e0148426. [Google Scholar] [CrossRef]
- Zhou, H.; Kang, H.; Wei, J.; Gao, C.; Hussain, M.; Fu, Y.; Lang, T. Microcosm study on fate and dynamics of mangrove tannins during leaf litter leaching. Ecol. Process. 2023, 12, 37. [Google Scholar] [CrossRef]
- He, W.; Yang, W. Loss of total phenols from leaf litter of two shrub species: Dual responses to alpine forest gap disturbance during winter and the growing season. J. Plant Ecol. 2020, 13, 369–377. [Google Scholar] [CrossRef]
- Ristok, C.; Leppert, K.N.; Franke, K.; Scherer-Lorenzen, M.; Niklaus, P.A.; Wessjohann, L.A.; Bruelheide, H. Leaf litter diversity positively affects the decomposition of plant polyphenols. Plant Soil 2017, 419, 305–317. [Google Scholar] [CrossRef]
- Ristok, C.; Leppert, K.N.; Scherer-Lorenzen, M.; Niklaus, P.A.; Bruelheide, H. Soil macrofauna and leaf functional traits drive the decomposition of secondary metabolites in leaf litter. Soil. Biol. Biochem. 2019, 135, 429–437. [Google Scholar] [CrossRef]
- Zhou, H.; Tam, N.F.; Lin, Y.; Wei, S.; Li, Y. Changes of condensed tannins during decomposition of leaves of Kandelia obovata in a subtropical mangrove swamp in China. Soil. Biol. Biochem. 2012, 44, 113–121. [Google Scholar] [CrossRef]
- Domínquez, M.T.; Geibel, M.; Treutter, D.; Feucht, W. Influence of polyphenol in the litter decomposition of autochthonous (Quercus ilex L. Quercus suber L. Pinus pinea L. Cistus ladanifer L. and Halimium halimifolium W.K.) and introduced species (Eucalyptus globulus L. and Eucalyptus camaldulensis D.) in the southwest of Spain. Int. Symp. Nat. Phenols Plant Resist. 1993, 381, 425–428. [Google Scholar] [CrossRef]
- Ushio, M.; Balser, T.C.; Kitayama, K. Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest. Plant Soil 2013, 365, 157–170. [Google Scholar] [CrossRef]
- Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 2018, 332, 161–172. [Google Scholar] [CrossRef]
- Coulis, M.; Hättenschwiler, S.; Rapior, S.; Coq, S. The fate of condensed tannins during litter consumption by soil animals. Soil. Biol. Biochem. 2009, 41, 2573–2578. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Rice, M.E.; Ritchard, N.T. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4→8) catechin (procyanidin). J. Agr. Food Chem. 1998, 46, 2590–2595. [Google Scholar] [CrossRef]
- Yu, Z.; Dahlgren, R.A. Evaluation of methods for measuring polyphenols in conifer foliage. J. Chem. Ecol. 2000, 26, 2119–2140. [Google Scholar] [CrossRef]
- Duan, C.; Fang, L.; Yang, C.; Chen, W. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol. Environ. Saf. 2018, 156, 106–115. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Hill, B.H.; Shah, J.J.F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 2009, 462, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yang, R.; Yuan, C.; Liu, S.; Hou, C.; Wang, H. Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of Camellia sinensis Pruning Residues and Companion Tree Species Litter. Agronomy 2023, 13, 1717. [Google Scholar] [CrossRef]
- Su, Y.; Wei, M.; Guo, Q.; Huang, J.; Zhao, K.; Huang, J. Investigating the relationships between callus browning in Isatis indigotica Fortune, total phenol content, and PPO and POD activities. Plant Cell Tissue Organ Cult. (PCTOC) 2023, 155, 175–182. [Google Scholar] [CrossRef]
- Triebwasser, D.J.; Tharayil, N.; Preston, C.M.; Gerard, P.D. The susceptibility of soil enzymes to inhibition by leaf litter tannins is dependent on the tannin chemistry, enzyme class and vegetation history. New Phytol. 2012, 196, 1122–1132. [Google Scholar] [CrossRef]
- Adamczyk, B.; Kitunen, V.; Smolander, A. Polyphenol oxidase, tannase and proteolytic activity in relation to tannin concentration in the soil organic horizon under silver birch and Norway spruce. Soil. Biol. Biochem. 2009, 41, 2085–2093. [Google Scholar] [CrossRef]
- Ayres, E.; Steltzer, H.; Simmons, B.L.; Simpson, R.T.; Steinweg, J.M.; Wallenstein, M.D.; Mellor, N.; Parton, W.J.; Moore, J.C.; Wall, D.H. Home-field advantage accelerates leaf litter decomposition in forests. Soil. Biol. Biochem. 2009, 41, 606–610. [Google Scholar] [CrossRef]
- Gholz, H.L.; Wedin, D.A.; Smitherman, S.M.; Harmon, M.E.; Parton, W.J. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Glob. Chang. Biol. 2000, 6, 751–765. [Google Scholar] [CrossRef]
- Li, Y.; Veen, G.C.; Hol, W.H.G.; Vandenbrande, S.; Hannula, S.E.; ten Hooven, F.C.; Li, Q.; Liang, W.J.; Bezemer, T.M. ‘Home’ and ‘away’ litter decomposition depends on the size fractions of the soil biotic community. Soil. Biol. Biochem. 2020, 144, 107783. [Google Scholar] [CrossRef]
- Milcu, A.; Manning, P. All size classes of soil fauna and litter quality control the acceleration of litter decay in its home environment. Oikos 2011, 120, 1366–1370. [Google Scholar] [CrossRef]
- Li, X.; Dong, W.; Song, Y.; Wang, W.; Zhan, W. Effect of soil fauna on home-field advantages of litter mass loss and nutrient release in different temperate broad-leaved forests. Forests 2019, 10, 1033. [Google Scholar] [CrossRef]
- Wang, Q.; Zhong, M.; He, T. Home-field advantage of litter decomposition and nitrogen release in forest ecosystems. Biol. Fert. Soils 2013, 49, 427–434. [Google Scholar] [CrossRef]
- Rashid, M.I.; Lantinga, E.A.; Brussaard, L.; de Goede, R.G. The chemical convergence and decomposer control hypotheses explain solid cattle manure decomposition in production grasslands. Appl. Soil. Ecol. 2017, 113, 107–116. [Google Scholar] [CrossRef]
- Wu, C.; Shu, C.; Zhang, Z.; Zhang, Y.; Liu, Y. Effect of N deposition on the home-field advantage of wood decomposition in a subtropical forest. Ecol. Indic. 2022, 140, 109043. [Google Scholar] [CrossRef]
- Gieβelmann, U.C.; Martins, K.G.; Brändlea, M.; Schädler, M.; Marques, R.; Brandl, R. Lack of home-field advantage in the decomposition of leaf litter in the Atlantic Rainforest of Brazil. Appl. Soil. Ecol. 2011, 49, 5–10. [Google Scholar] [CrossRef]
- St. John, M.G.; Orwin, K.H.; Dickie, I.A. No ‘home’ versus ‘away’ effects of decomposition found in a grassland–forest reciprocal litter transplant study. Soil. Biol. Biochem. 2011, 43, 1482–1489. [Google Scholar] [CrossRef]
- Ji, Y.; Li, Q.; Tian, K.; Yang, J.; Hu, H.; Yuan, L.; Lu, W.; Yao, B.; Tian, X. Effect of sodium amendments on the home-field advantage of litter decomposition in a subtropical forest of China. Forest Ecol. Manag. 2020, 468, 118148. [Google Scholar] [CrossRef]
- Lin, H.; He, Z.; Hao, J.; Tian, K.; Jia, X.; Kong, X.; Akbar, S.; Bei, Z.; Tian, X. Effect of N addition on home-field advantage of litter decomposition in subtropical forests. Forest Ecol. Manag. 2017, 398, 216–225. [Google Scholar] [CrossRef]
- Li, X.; Dong, W.; Song, Y.; Zhan, W.; Zheng, Y. Soil mesofauna participating in driving home-field advantage differ between litter mass loss and nutrient release. Appl. Soil. Ecol. 2021, 163, 103909. [Google Scholar] [CrossRef]
- Hu, D.; Wang, M.; Zheng, Y.; Lv, M.; Zhu, G.; Zhong, Q.; Cheng, D. Leaf litter phosphorus regulates the soil meso-and micro-faunal contribution to home-field advantage effects on litter decomposition along elevation gradients. Catena 2021, 207, 105673. [Google Scholar] [CrossRef]
- Gergócs, V.; Hufnagel, L. The effect of microarthropods on litter decomposition depends on litter quality. Eur. J. Soil. Biol. 2016, 75, 24–30. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Siddhuraju, P.; Becker, K. Plant Secondary Metabolites; Humana Press: Stuttgart, Germany, 2007; Volume 393. [Google Scholar]
- Sinsabaugh, R.L.; Antibus, R.K.; Linkins, A.E.; McClaugherty, C.A.; Rayburn, L.; Repert, D.; Weiland, T. Wood decomposition over a first-order watershed: Mass loss as a function of lignocellulase activity. Soil. Biol. Biochem. 1992, 24, 743–749. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Antibus, R.K.; Linkins, A.E.; McClaugherty, C.A.; Rayburn, L.; Repert, D.; Weiland, T. Wood decomposition: Nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 1993, 74, 1586–1593. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Chen, Y.; Xu, Z.; Zhang, J.; Liu, Y. Home-field advantage and ability alter labile and recalcitrant litter carbon decomposition in an alpine forest ecotone. Plant Soil 2023, 485, 213–225. [Google Scholar] [CrossRef]
- Salamanca, E.F.; Kaneko, N.; Katagiri, S. Rainfall manipulation effects on litter decomposition and the microbial biomass of the forest floor. Appl. Soil. Ecol. 2003, 22, 271–281. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, C.; Xiang, Y.; Tie, L.; Han, B.; Scheu, S. Effects of reduced precipitation on litter decomposition in an evergreen broad-leaved forest in western China. Forest Ecol. Manag. 2018, 430, 219–227. [Google Scholar] [CrossRef]
- Tie, L.; Hu, J.; Peñuelas, J.; Sardans, J.; Wei, S.; Liu, X.; Huang, C. The amounts and ratio of nitrogen and phosphorus addition drive the rate of litter decomposition in a subtropical forest. Sci. Total Environ. 2022, 833, 155163. [Google Scholar] [CrossRef]
- Knapp, A.K.; Fay, P.A.; Blair, J.M.; Collins, S.L.; Smith, M.D.; Carlisle, J.D.; Harper, C.W.; Danner, B.T.; Lett, M.S.; Mccarron, J.K. Rainfall Variability, Carbon Cycling, and Plant Species Diversity in a Mesic Grassland. Science 2002, 298, 2202–2205. [Google Scholar] [CrossRef]
- Anaya, C.A.; García-Oliva, F.; Jaramillo, V.J. Rainfall and labile carbon availability control litter nitrogen dynamics in a tropical dry forest. Oecologia 2007, 150, 602–610. [Google Scholar] [CrossRef]
- Pérez-Suárez, M.; Arredondo-Moreno, J.T.; Huber-Sannwald, E. Early stage of single and mixed leaf-litter decomposition in semiarid forest pine-oak: The role of rainfall and microsite. Biogeochem. 2012, 108, 245–258. [Google Scholar] [CrossRef]
- Cardenas, R.E.; Dangles, O. Do canopy herbivores mechanically facilitate subsequent litter decomposition in soil? A pilot study from a Neotropical cloud forest. Ecol. Res. 2012, 27, 975–981. [Google Scholar] [CrossRef]
- Liao, S.; Ni, X.; Yang, W.; Li, H.; Wang, B.; Fu, C.; Xu, Z.; Tan, B.; Wu, F. Water, rather than temperature, dominantly impacts how soil fauna affect dissolved carbon and nitrogen release from fresh litter during early litter decomposition. Forests 2016, 7, 249. [Google Scholar] [CrossRef]
- Anaya, C.A.; Jaramillo, V.J.; Martinez-Yrízar, A.; García-Oliva, F. Large rainfall pulses control litter decomposition in a tropical dry forest: Evidence from an 8-year study. Ecosystems 2012, 15, 652–663. [Google Scholar] [CrossRef]
- Lin, D.; Pang, M.; Fanin, N.; Wang, H.; Qian, S.; Zhao, L.; Yang, Y.; Mi, X.; Ma, K. Fungi participate in driving home-field advantage of litter decomposition in a subtropical forest. Plant Soil 2019, 434, 467–480. [Google Scholar] [CrossRef]
- Fanin, N.; Fromin, N.; Bertrand, I. Functional breadth and home-field advantage generate functional differences among soil microbial decomposers. Ecology 2016, 97, 1023–1037. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Fan, B.; Yu, X. Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: Effect of planting conifers with broadleaved species. Plant Soil 2007, 297, 201–211. [Google Scholar] [CrossRef]
- Felton, A.; Lindbladh, M.; Brunet, J.; Fritz, Ö. Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. Forest Ecol. Manag. 2010, 260, 939–947. [Google Scholar] [CrossRef]
- Perez, G.; Aubert, M.; Decaëns, T.; Trap, J.; Chauvat, M. Home-field advantage: A matter of interaction between litter biochemistry and decomposer biota. Soil. Biol. Biochem. 2013, 67, 245–254. [Google Scholar] [CrossRef]
- Chomel, M.; Guittonny-Larchevêque, M.; DesRochers, A.; Baldy, V. Home field advantage of litter decomposition in pure and mixed plantations under boreal climate. Ecosystems 2015, 18, 1014–1028. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil. Biol. Biochem. 2009, 41, 910–918. [Google Scholar] [CrossRef]
- Allison, S.D.; Jastrow, J.D. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil. Biol. Biochem. 2006, 38, 3245–3256. [Google Scholar] [CrossRef]
- Blanchette, R.A. Delignification by wood-decay fungi. Annu. Rev. Phytopathol. 1991, 29, 381–403. [Google Scholar] [CrossRef]
- Lecerf, A.; Marie, G.; Kominoski, J.S.; LeRoy, C.J.; Bernadet, C.; Swanet, C.M. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 2011, 92, 160–169. [Google Scholar] [CrossRef]
- Polyakova, O.; Billor, N. Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecol. Manag. 2007, 253, 11–18. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P.; Cates, R.G.; Zou, J. Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils. Soil. Biol. Biochem. 2001, 33, 1827–1839. [Google Scholar] [CrossRef]
- Bradley, R.L.; Titus, B.D.; Preston, C.P. Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4) 2SO4 and condensed tannins extracted from Kalmia angustifolia and balsam fir. Soil. Biol. Biochem. 2000, 32, 1227–1240. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Moorhead, D.L. Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition. Soil. Biol. Biochem. 1994, 26, 1305–1311. [Google Scholar] [CrossRef]
- Wall, D.H.; Bradford, M.A.; St John, M.G.; Trofymow, J.A.; Behan-Pelletier, V.; Bignell, D.E.; Dangerfield, J.M.; Parton, W.J.; Rusek, J.; Voigt, W.; et al. Global decomposition experiment shows soil animal impacts on decomposition are climate—Dependent. Glob. Chang. Biol. 2008, 14, 346–355. [Google Scholar] [CrossRef]
- Palozzi, J.E.; Lindo, Z. Pure and mixed litters of Sphagnum and Carex exhibit a home-field advantage in boreal peatlands. Soil. Biol. Biochem. 2017, 115, 161–168. [Google Scholar] [CrossRef]
- Wickings, K.; Grandy, A.S.; Reed, S.; Cleveland, C. Management intensity alters decomposition via biological pathways. Biogeochem. 2011, 104, 365–379. [Google Scholar] [CrossRef]
- Balser, T.C.; Firestone, M.K. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochem. 2005, 73, 395–415. [Google Scholar] [CrossRef]
- Valášková, V.; Šnajdr, J.; Bittner, B.; Cajthaml, T.; Merhautová, V.; Hofrichter, M.; Baldrian, P. Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil. Biol. Biochem. 2007, 39, 2651–2660. [Google Scholar] [CrossRef]
- Zhu, M.; Fanin, N.; Wang, Q.; Xu, Z.; Liang, S.; Ye, J.; Lin, F.; Yuan, Z.; Mao, Z.; Wang, X.; et al. High functional breadth of microbial communities decreases home-field advantage of litter decomposition. Soil. Biol. Biochem. 2024, 188, 109232. [Google Scholar] [CrossRef]
- Keiser, A.D.; Strickland, M.S.; Fierer, N.; Bradford, M.A. The effect of resource history on the functioning of soil microbial communities is maintained across time. Biogeosciences 2011, 8, 1477–1486. [Google Scholar] [CrossRef]
- Veen, G.F.; Snoek, B.L.; Bakx-Schotman, T.; Wardle, D.A.; van der Putten, W.H. Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Funct. Ecol. 2019, 33, 1524–1535. [Google Scholar] [CrossRef]
- Keiser, A.D.; Keiser, D.A.; Strickland, M.S.; Bradford, M.A. Disentangling the mechanisms underlying functional differences among decomposer communities. J. Ecol. 2014, 102, 603–609. [Google Scholar] [CrossRef]
HFA | Influence Factor | Direction | Come From | Reference |
---|---|---|---|---|
Litter mass loss | Soil mesofauna | Positive | Pinus massoniana | [49] |
Nitrogen, sulfur release | Soil mesofauna | Negative | P. Koraiensis, Larix olgensis | [50] |
Litter mass loss Carbon release | Positive | |||
Litter mass loss | Soil fauna | Negative | Quercus variabilis, P. massoniana | [48] |
Litter mass loss | Macro- and meso-invertebrates | None | Atlantic Rainforest of Brazil 3 successional stages | [46] |
Litter mass loss | Meso- and micro-fauna | Positive/Negative | P. taiwanensis | [51] |
Litter mass loss | All size classes of soil fauna | Positive | Raphanus raphanistrum-Dactylis glomerata-Q. rubra late successional stage | [41] |
Litter mass loss | Mesofauna | Positive | R. raphanistrum-D. glomerata-Q. rubra mid successional stage | |
Carbon release | Soil fauna | Positive | Acer pseudosieboldianum, Juglans mandshurica | [42] |
Nitrogen release | Soil fauna | Positive | Q. mongolica, J. mandshurica | |
Nitrogen release | Soil fauna | Positive | A. pseudosieboldianum | |
Sulfur release | Soil fauna | Positive | Q. mongolica, A. pseudosieboldianum | |
Sulfur release | Soil fauna | Negative | A. Pseudosieboldianum, Q. mongolica | |
Litter mass loss | Soil fauna | None | Q. mongolica, A. pseudosieboldianum, J. mandshurica, Ursinia laciniata | |
Litter mass loss | Mite | Negative | tree (kanuka) litter | [47] |
Dry matter and nitrogen disappearance | Mesofauna Macrofauna Microfauna | Positive | Solid cattle manure | [44] |
Wood mass loss | Soil fauna | Positive | Platy carya strobilacea wood Cryptomeria japonica wood | [45] |
Phosphorus release | Soil fauna Soil mesofauna | None | Broadleaf litter, Coniferous litter | [43] |
Litter mass loss | Soil fauna Soil mesofauna | Positive | Broadleaf litter | |
Nitrogen release | Soil fauna Soil mesofauna | Positive | Coniferous litter | |
Litter mass loss | Soil mesofauna | Positive | P. sylvestris | [52] |
Litter mass loss | Soil mesofauna | Positive | Q. cerris |
Species | C (g/kg) | N (g/kg) | P(g/kg) | CT (g/kg) | TP (g/kg) | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|---|
Lindera megaphylla | 464.47 ± 0.89 | 23.47 ± 0.29 | 1.66 ± 0.01 | 6.00 ± 0.16 | 10.05 ± 0.51 | 19.80 ± 0.22 | 279.93 ± 1.12 | 14.14 ± 0.15 |
Cryptomeria fortunei | 495.3 ± 1.59 | 12.83 ± 0.38 | 1.45 ± 0.03 | 17.57 ± 1.35 | 17.61 ± 0.58 | 38.65 ± 1.01 | 343.04 ± 8.73 | 8.89 ± 0.36 |
F value | 0.743 *** | 0.124 *** | 8.500 * | 12.047 * | 0.014 *** | 2.328 *** | 5.932 ** | 4.296 *** |
Source | Condensed Tannin Content | Total Phenol Content | Condensed Tannin Loss | Total Phenol Loss | POD | PPO | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
Decomposition time (DT) | 37.37 | <0.001 | 26.25 | <0.001 | 233.61 | <0.001 | 121.60 | <0.001 | 94.14 | <0.001 | 24.28 | <0.001 |
Home vs. away (HA) | 1.30 | 0.27 | 0.02 | 0.903 | 0.01 | 0.932 | 0.07 | 0.795 | 10.51 | 0.005 | 7.72 | 0.013 |
Species (SP) | 14.93 | 0.001 | 8.60 | 0.01 | 47.55 | <0.001 | 11.81 | 0.003 | 183.43 | <0.001 | 83.09 | <0.001 |
Mesh size (MS) | 6.75 | 0.019 | 1.70 | 0.211 | 21.50 | <0.001 | 8.58 | 0.01 | 32.58 | <0.001 | 1.11 | 0.308 |
DT × HA | 0.18 | 0.679 | 0.37 | 0.554 | 3.90 | 0.066 | 1.63 | 0.22 | 2.27 | 0.092 | 1.91 | 0.174 |
DT × SP | 0.85 | 0.37 | 0.04 | 0.837 | 40.13 | <0.001 | 9.82 | 0.006 | 34.26 | <0.001 | 5.19 | 0.013 |
DT × MS | 3.60 | 0.076 | 0.29 | 0.595 | 6.52 | 0.021 | 0.80 | 0.384 | 6.71 | 0.001 | 3.82 | 0.034 |
HA × SP | 12.42 | 0.003 | 86.06 | <0.001 | 0.20 | 0.657 | 0.94 | 0.346 | 6.71 | 0.001 | 9.91 | 0.006 |
HA × MS | 0.94 | 0.348 | 2.18 | 0.16 | 0.18 | 0.677 | 2.83 | 0.112 | 5.69 | 0.03 | 17.73 | 0.001 |
SP × MS | 0.27 | 0.609 | 3.11 | 0.097 | 7.58 | 0.014 | 0.15 | 0.701 | 0.33 | 0.576 | 5.99 | 0.026 |
DT × HA × SP | 0.20 | 0.661 | 0.36 | 0.558 | 10.26 | 0.006 | 3.06 | 0.099 | 13.62 | <0.001 | 0.80 | 0.513 |
DT × HA × MS | 0.06 | 0.817 | 0.65 | 0.432 | 0.10 | 0.755 | 2.58 | 0.128 | 5.76 | 0.002 | 8.90 | 0.001 |
DT × SP × MS | 1.04 | 0.323 | 1.88 | 0.19 | 3.02 | 0.102 | 0.01 | 0.913 | 2.00 | 0.127 | 7.64 | 0.003 |
HA × SP × MS | 0.14 | 0.713 | 0.00 | 0.99 | 0.75 | 0.399 | 2.20 | 0.157 | 1.28 | 0.274 | 2.33 | 0.146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, L.; Zeng, J.; Liu, Q.; Luo, L.; Ma, Z.; Chen, Y.; Liu, Y. Effects of Soil Fauna on the Home-Field Advantage of Litter Total Phenol and Condensed Tannin Decomposition. Forests 2024, 15, 389. https://doi.org/10.3390/f15020389
Lei L, Zeng J, Liu Q, Luo L, Ma Z, Chen Y, Liu Y. Effects of Soil Fauna on the Home-Field Advantage of Litter Total Phenol and Condensed Tannin Decomposition. Forests. 2024; 15(2):389. https://doi.org/10.3390/f15020389
Chicago/Turabian StyleLei, Lingyuan, Jing Zeng, Quanwei Liu, Lijuan Luo, Zhiliang Ma, Yamei Chen, and Yang Liu. 2024. "Effects of Soil Fauna on the Home-Field Advantage of Litter Total Phenol and Condensed Tannin Decomposition" Forests 15, no. 2: 389. https://doi.org/10.3390/f15020389
APA StyleLei, L., Zeng, J., Liu, Q., Luo, L., Ma, Z., Chen, Y., & Liu, Y. (2024). Effects of Soil Fauna on the Home-Field Advantage of Litter Total Phenol and Condensed Tannin Decomposition. Forests, 15(2), 389. https://doi.org/10.3390/f15020389