The Influence of Treatment Methods on Bending Mechanical Properties of Bamboo Strips
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Treatment
2.3. Testing Methods
3. Results
3.1. Physical and Mechanical Properties
3.2. X-ray Diffraction (XRD)
3.3. Infrared Spectroscopy
3.4. Chemical Composition
3.5. Correlation and Comprehensive Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamang, M.; Nandy, S.; Srinet, R.; Das, A.K.; Padalia, H. Bamboo Mapping Using Earth Observation Data: A Systematic Review. J. Indian Soc. Remote Sens. 2022, 50, 2055–2072. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, S.; Huang, R. A Review of Researches on Wood Bending Techniques. World For. Res. 2010, 23, 40–44. [Google Scholar]
- Tang, Y.; Li, J.; Shen, Y.; Jin, Y.; Wang, Y.; Li, Y. Phyllostachys edulis with high temperature heat treatments. J. Zhejiang A F Univ. 2014, 31, 167–171. [Google Scholar]
- Fei, B.; Su, Q.; Liu, H.; Fang, C.; Ma, X.; Zhang, X.; Sun, F. Research progress of bamboo winding technology. J. For. Eng. 2022, 7, 25–33. [Google Scholar]
- Fang, W.; Niu, S.; Shen, D.; Cai, J.; Zhuang, R.; Li, Y. XRD and FTIR Analysis on Bamboo Culm Treated by High-temperature Hot Water Extraction. Zhejiang For. Sci. Technol. 2015, 35, 47–50. [Google Scholar]
- Chu, J.; Ma, L.; Zhang, J. The Chemical Composition of Bamboo after Heat Pretreatment with Fourier Infrared Spectrum Analysis. Spectrosc. Spectr. Anal. 2016, 36, 3557–3562. [Google Scholar]
- An, X.; Wang, H.; Li, W.; Yu, Y. Tensile mechanical properties of fiber sheaths microdissected from moso bamboo. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2014, 38, 6–10. [Google Scholar]
- Xu, X.; Liu, F.; Jiang, L.; Zhu, J.Y.; Haagenson, D.; Wiesenborn, D.P. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl. Mater. Interfaces 2013, 5, 2999–3009. [Google Scholar] [CrossRef]
- Zhang, Y.; Hosseinaei, O.; Wang, S.; Zhou, Z. Influence of hemicellulose extraction on water uptake behavior of wood strands. Wood Fiber Sci. J. Soc. Wood Sci. Technol. 2011, 43, 244–250. [Google Scholar]
- Xu, Y.; Liu, X.; Liu, X.; Tan, J.; Zhu, H. Influence of HNO3/H3PO4-NANO2 mediated oxidation on the structure and properties of cellulose fibers. Carbohydr. Polym. 2014, 111, 955–963. [Google Scholar] [CrossRef]
- Fang, X.; Xu, J.; Guo, H.; Liu, Y. The Effect of Alkali Treatment on the Crystallinity, Thermal Stability, and Surface Roughness of Bamboo Fibers. Fibers Polym. 2023, 24, 505–514. [Google Scholar] [CrossRef]
- GB/T 15780-1995; Testing Methods for Physical and Mechanical Properties of Bamboos. Institute of Chinese Academy of Forestry Timber Industry: Beijing, China, 1996.
- Furuta, Y.; Nakajima, M.; Nakatani, T.; Kojiro, K.; Ishimaru, Y. Effects of the Lignin on the Thermal-Softening Properties of the Water-Swollen Wood. J. Soc. Mater. Sci. Japan 2008, 57, 344–349. [Google Scholar] [CrossRef]
- Hao, J.; Liu, W.; Sun, D. Effect of heat treatment on color of bamboo strips. J. Bamboo Res. 2012, 31, 34–38. [Google Scholar]
- Li, Q.; Lin, J.; Chen, Z.; Wu, Q.; Li, X. Influences of Visual Properties of Phyllostachys heterocycla cv.pubescens Surface by Alkaline Hydrothermal Pretreatment. J. Northwest For. Univ. 2017, 32, 213–217. [Google Scholar]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Meng, F.; Yu, Y.; Zhang, Y.; Yu, W.; Gao, J. Surface chemical composition analysis of heat-treated bamboo. Appl. Surf. Sci. 2016, 371, 383–390. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, Z.; Fei, B.; Liu, J. Application of Near Infrared(NIR) Spectroscopy to Wood Science. Sci. Silvae Sin. 2005, 41, 177–183. [Google Scholar]
- Qin, L. Effect of Thermo-Treatment on Physical, Mechanical Properties and Durability of Reconstituted Bamboo Lumber; Chinese Academy of Forestry: Beijing, China, 2010. [Google Scholar]
- Sun, R.H.; Li, X.J.; Liu, Y.; Hou, R.G.; Qiao, J.Z. Effects of high temperature heat treatment on FTIR and XRD characteristics of bamboo bundles. J. Cent. South Univ. For. Technol. 2013, 33, 97–100. [Google Scholar]
- Hosseinaei, O.; Wang, S.; Rials, T.G.; Xing, C.; Taylor, A.M.; Kelley, S.S.; Hosseinaei, S.W.O.; He, C.; Yao, X.; Xue, J.; et al. Effect of Hemicellulose Extraction on Physical and Mechanical Properties and Mold Susceptibility of Flakeboard. Prod. J. 2001, 61, 31–37. [Google Scholar] [CrossRef]
- Hosseinaei, O.; Wang, S.; Rials, T.G.; Xing, C.; Zhang, Y. Effects of Decreasing Carbohydrate Content on Properties of Wood Strands. Cellulose 2011, 18, 841–850. [Google Scholar] [CrossRef]
- Overend, R.P.; Chornet, E. Fractionation of Lignocellulosics by Steam-aqueous Pretreatments. Phys. Eng. Sci. 1987, 321, 523–536. [Google Scholar]
- Yang, S.; Jiang, Z.; Ren, H. Determination of Crystallinity of Bamboo Fiber Using X-ray Diffraction. J. Northeast For. Univ. 2010, 38, 75–77. [Google Scholar]
- Li, X.; Liu, Y.; Gao, J. FTIR and XRD Analysis of Wood Treated at High Temperatures. J. Beijing For. Univ. 2009, 31, 104–107. [Google Scholar]
- Chen, F.; He, Y.; Wei, X.; Han, S.; Ji, J.; Wang, G. Advances in strength and toughness of hierarchical bamboo under humidity and heat. J. For. Eng. 2023, 8, 10–18. [Google Scholar]
- Huang, M.; Zhang, X.; Yu, W.; Li, W.; Liu, X.; Zhang, W. Mechanical Properties and Structural Characterization of Bamboo Softened by High-Temperature Steam. J. For. Eng. 2016, 1, 64–68. [Google Scholar]
- Zhu, J.; Yu, B.; Cao, M.; Wang, X. Effect of Microwave Treatment on Round Bamboo Softening. For. Ind. 2023, 60, 15–19. [Google Scholar]
- Zhao, R.; Fu, D.; Sun, T. Influence of Different Softening Treatments on Bamboo Quality. J. Jiamusi Univ. (Nat. Sci. Ed.) 2009, 27, 637–640. [Google Scholar]
- Mo, J.; Zhang, W. Physical and Mechanical Properties of Thermally Treated Bamboo Based on Near-Infrared Spectroscopy Technology. J. For. Eng. 2019, 4, 32–38. [Google Scholar]
- Li, W.; Lin, W.; Yang, W.; Tang, K. Preparation and Structure Characterization of Bamboo Fiber by Alkali-Boiling and NaClO Oxidation. For. Ind. 2021, 58, 6–10. [Google Scholar]
- Ju, K.; Kil, M.; Ri, S.; Kim, T.; Kim, J.; Shi, W.; Zhang, L.; Yan, M.; Zhang, J.; Liu, G. Impacts of dietary supplementation of bamboo vinegar and charcoal powder on growth performance, intestinal morphology, and gut microflora of large-scale loach Paramisgurnus dabryanus. J. Oceanol. Limnol. 2023, 41, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Hu, J.; Jin, Y.; Zheng, A.; Zhuan, S.; Lin, J.; Guan, X. Prediction for Compressive Strength Parallel to Grain of Zenia insignis Plantation Based on Fourier Infrared Spectroscopy. J. Southwest For. Univ. (Nat. Sci.) 2022, 42, 178–183. [Google Scholar]
- Shi, Y.; Liu, J.; Lü, W.; Wang, J.; Ni, L. Preparation and Properties of Wood Modified with Acidic and Alkaline Silica Sols. Wood Ind. 2019, 33, 21–24+33. [Google Scholar]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Sinelnikov, I.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, C.; Espinoza, E. Evaluating agarwood products for 2-(2-phenylethyl) chromones using direct analysis in real time time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 2649–2656. [Google Scholar] [CrossRef] [PubMed]
- Selvius, D.; Armitage, R. Direct identification of dyes in textiles by direct analysis in real time-time of flight mass spectrometry. Anal. Chem. 2011, 83, 6924–6928. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.; Zhao, C.; Xue, H.; Yuan, L. Chemical variation in cell wall of sugar beet pulp caused by aqueous ammonia pretreatment influence enzymatic digestibility of cellulose. Ind. Crops Prod. 2020, 155, 112786. [Google Scholar] [CrossRef]
- Cajka, T.; Riddellova, K.; Tomaniova, M.; Hajslova, J. Ambient mass spectrometry employing a DART ion source for metabolomic fingerprinting/profiling: A powerful tool for beer origin recognition. Metabolomics 2011, 7, 500–508. [Google Scholar] [CrossRef]
Treatment Method | Treatment Duration | Other Information |
---|---|---|
Control | - | Room temperature |
Water boiling | 2 h, 4 h, 6 h, 8 h, 10 h | 135 °C |
15% NaOH | 2 h, 4 h, 6 h, 8 h, 10 h | Room temperature |
25% NH3 | 5 days(d), 7 d, 9 d, 11 d, 13 d | Room temperature |
Treatment Method | 2θ/° | RC/% | Treatment Method | 2θ/° | RC/% | Treatment Method | 2θ/° | RC/% | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | - | 21.65 | 51.45 | - | - | - | - | - | - | - | - |
Water boiling | 2 h | 22.15 | 59.66 | 15% NaOH | 2 h | 22.02 | 61.32 | 25% NH3 | 5d | 21.85 | 53.32 |
4 h | 22.42 | 61.89 | 4 h | 21.96 | 59.45 | 7d | 21.86 | 52.45 | |||
6 h | 22.56 | 62.22 | 6 h | 21.65 | 58.62 | 9d | 22.02 | 52.43 | |||
8 h | 22.64 | 63.34 | 8 h | 21.45 | 57.78 | 11d | 22.04 | 52.23 | |||
10 h | 22.78 | 64.75 | 10 h | 21.19 | 54.45 | 13d | 22.03 | 51.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Ji, J.; Yin, H.; Wang, X. The Influence of Treatment Methods on Bending Mechanical Properties of Bamboo Strips. Forests 2024, 15, 406. https://doi.org/10.3390/f15030406
Cao S, Ji J, Yin H, Wang X. The Influence of Treatment Methods on Bending Mechanical Properties of Bamboo Strips. Forests. 2024; 15(3):406. https://doi.org/10.3390/f15030406
Chicago/Turabian StyleCao, Shiyu, Jiagui Ji, Haowei Yin, and Xuehua Wang. 2024. "The Influence of Treatment Methods on Bending Mechanical Properties of Bamboo Strips" Forests 15, no. 3: 406. https://doi.org/10.3390/f15030406
APA StyleCao, S., Ji, J., Yin, H., & Wang, X. (2024). The Influence of Treatment Methods on Bending Mechanical Properties of Bamboo Strips. Forests, 15(3), 406. https://doi.org/10.3390/f15030406