Urban–Rural Comparisons of Biogenic Volatile Organic Compounds and Ground-Level Ozone in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sample Collection and Analysis
2.3. O3 Formation Potential (OFP) of BVOCs
2.4. Statistical Analysis
3. Results
3.1. Comparison of Trace Gases in the Urban and Rural Sites
3.2. Diurnal Variation in BVOCs and O3
3.3. Relationships between BVOCs, NOX, and O3
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, P.P.; Guo, K.J.; Ren, Y.; Shi, Y.; Chang, J.; Tani, A.; Ge, Y. Biogenic volatile organic compound emissions in relation to plant carbon fixation in a subtropical urban-rural complex. Landsc. Urban. Plan. 2013, 119, 74–84. [Google Scholar] [CrossRef]
- Portillo-Estrada, M.; Zenone, T.; Arriga, N.; Ceulemans, R. Contribution of volatile organic compound fluxes to the ecosystem carbon budget of a poplar short-rotation plantation. GCB. Bioenergy 2018, 10, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.K.; Joseph, E.; Sakai, R.; Fuentes, J.D.; Stockwell, W.R. Meteorological controls on particle growth events in Beltsville, MD, USA during July 2011. J. Atmos. Chem. 2015, 72, 423–440. [Google Scholar] [CrossRef]
- Eisenman, T.S.; Churkina, G.; Jariwala, S.P.; Kumar, P.; Lovasi, G.S.; Pataki, D.E.; Weinberger, K.R.; Whitlow, T.H. Urban trees, air quality, and asthma: An interdisciplinary review. Landsc. Urban Plan. 2019, 187, 47–59. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Fitzky, A.; Sandén, H.; Karl, T.; Fares, S.; Calfapietra, C.; Grote, R.; Amélie, S.; Rewald, B. The Interplay Between Ozone and Urban Vegetation—BVOC Emissions, Ozone Deposition, and Tree Ecophysiology. Front. For. Glob. Change 2019, 2, 50. [Google Scholar] [CrossRef]
- Chuwah, C.; van Noije, T.; van Vuuren, D.P.; Stehfest, E.; Hazeleger, W. Global impacts of surface ozone changes on crop yields and land use. Atmos. Environ. 2015, 106, 11–23. [Google Scholar] [CrossRef]
- Juráň, S.; Grace, J.; Urban, O. Temporal changes in ozone concentrations and their impact on vegetation. Atmos. Basel 2021, 12, 82. [Google Scholar] [CrossRef]
- Matyssek, R.; Sandermann, H. Impact of ozone on trees: An ecophysiological perspective. Prog. Bot. 2003, 64, 349–404. [Google Scholar]
- Pinto, D.M.; Blande, J.D.; Souza, S.R.; Nerg, A.M.; Holopainen, J.K. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: The ecological effects. J. Chem. Ecol. 2010, 36, 22–34. [Google Scholar] [CrossRef]
- Fierravanti, A.; Fierravanti, E.; Cocozza, C.; Tognetti, R.; Rossi, S. Eligible reference cities in relation to BVOC-derived O3 pollution. Urban Urban Gree. 2017, 28, 73–80. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Laothawornkitkul, J.; Taylor, J.E.; Paul, N.D.; Hewitt, C.N. Biogenic volatile organic compounds in the Earth system. New Phytol. 2009, 184, 276. [Google Scholar] [CrossRef] [PubMed]
- Oumami, S.; Arteta, J.; Guidard, V.; Tulet, P.; Hamer, P. Evaluation of isoprene emissions from the coupled model SURFEX-MEGANv2.1. EGUsphere 2023. [Google Scholar] [CrossRef]
- Ahn, J.-W.; Dinh, T.-V.; Park, S.-Y.; Choi, I.-Y.; Park, C.-R.; Son, Y.-S. Characteristics of biogenic volatile organic compounds emitted from major species of street trees and urban forests. Atmos. Pollut. Res. 2022, 13, 101470. [Google Scholar] [CrossRef]
- Carter, W.P. Development of Ozone Reactivity Scales for Volatile Organic Compounds. J. Air Waste Manag. Assoc. 1994, 44, 881–899. [Google Scholar] [CrossRef]
- Calfapietra, C.; Fares, S.; Manes, F.; Morani, A.; Sgrigna, G.; Loreto, F. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. Environ. Pollut. 2013, 183, 71–80. [Google Scholar] [CrossRef]
- Cao, J.; Situ, S.; Hao, Y.; Xie, S.; Li, L. Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China. Atmos. Chem. Phys. 2022, 22, 2351–2364. [Google Scholar] [CrossRef]
- Liu, X.H. ArcGIS-Based Spatial and Temporal Patterns Analysis of Ozone in North America; Liaoning Technical University: Fuxin, China, 2011. (In Chinese) [Google Scholar]
- Liu, Y.; Li, L.; An, J.Y.; Huang, L.; Yan, R.S.; Huang, C.; Wang, H.L.; Wang, Q.; Wang, M.; Zhang, W. Estimation of biogenic VOC emissions and its impact on ozone formation over the Yangtze River Delta region, China. Atmos. Environ. 2018, 186, 113–128. [Google Scholar] [CrossRef]
- Bao, H.; Shrestha, K.L.; Kondo, A.; Kaga, A.; Inoue, Y. Modeling the influence of biogenic volatile organic compound emissions on ozone concentration during summer season in the Kinki region of Japan. Atmos. Environ. 2010, 44, 421–431. [Google Scholar] [CrossRef]
- Fu, Y.; Liao, H. Impacts of land use and land cover changes on biogenic emissions of volatile organic compounds in China from the late 1980s to the mid-2000s: Implications for tropospheric ozone and secondary organic aerosol. Tellus B 2014, 66, 24987. [Google Scholar] [CrossRef]
- Drewniak, B.A.; Snyder, P.K.; Steiner, A.L.; Twine, T.E.; Wuebbles, D.J. Simulated changes in biogenic VOC emissions and ozone formation from habitat expansion of Acer Rubrum (red maple). Environ. Res. 2014, 9, 014006. [Google Scholar] [CrossRef]
- Gao, Y.; Mingchen, M.; Yan, F.; Su, H.; Wang, S.; Liao, H.; Zhao, B.; Wang, X.; Sun, Y.; Hopkins, J.; et al. Impacts of biogenic emissions from urban landscapes on summer ozone and secondary organic aerosol formation in megacities. Sci. Total Environ. 2021, 814, 152654. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Paoletti, E.; Agathokleous, E.; Araminienė, V.; Proietti, C.; Coulibaly, F. Ozone weekend effect in cities: Deep insights for urban air pollution control. Environ. Res. 2020, 191, 110193. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Song, Y.; Liu, M.X.; Yao, H.; Huang, X.; Wang, X.S.; Zhang, Y.H. Impacts of decadal variations in natural emissions due to land-cover changes on ozone production in southern China. Tellus B 2015, 67, 27676. [Google Scholar] [CrossRef]
- Jeon, W.B.; Lee, S.H.; Lee, H.; Park, C.; Kim, D.H.; Park, S.Y. A study on high ozone formation mechanism associated with change of NOx/VOCs ratio at a rural area in the Korean Peninsula. Atmos. Environ. 2014, 89, 10–21. [Google Scholar] [CrossRef]
- Ran, L.; Zhao, C.S.; Xu, W.Y.; Lu, X.Q.; Han, M.; Lin, W.L.; Yan, P.; Xu, X.B.; Deng, Z.Z.; Ma, N.; et al. VOC reactivity and its effect on ozone production during the HaChi summer campaign. Atmos. Chem. Phys. 2011, 11, 4657–4667. [Google Scholar] [CrossRef]
- Geng, F.; Tie, X.; Guenther, A.; Li, G.; Cao, J.; Harley, P. Effect of isoprene emissions from major forests on ozone formation in the city of Shanghai, China. Atmos. Chem. Phys. 2011, 11, 10449–10459. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Xiao, S.; Wu, Z.; Wang, X. Ozone Formation at a Suburban Site in the Pearl River Delta Region, China: Role of Biogenic Volatile Organic Compounds. Atmosphere 2023, 14, 609. [Google Scholar] [CrossRef]
- Tang, X.Y.; Zhang, Y.H.; Shao, M. Atmospheric Environmental Chemistry, 2nd ed.; Higher Education Press: Beijing, China, 2006; pp. 225–233. (In Chinese) [Google Scholar]
- Unger, N. Human land-use-driven reduction of forest volatiles cools global climate. Nat. Clim. Change 2014, 4, 907–910. [Google Scholar] [CrossRef]
- Simon, H.; Fallmann, J.; Kropp, T.; Tost, H.; Bruse, M. Urban Trees and Their Impact on Local Ozone Concentration-A Microclimate Modeling Study. Atmosphere 2019, 10, 154. [Google Scholar] [CrossRef]
- Ma, M.; Gao, Y.; Wang, Y.; Zhang, S.; Leung, L.; Liu, C.; Wang, S.; Zhao, B.; Chang, X.; Su, H.; et al. Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmos. Chem. Phys. 2019, 19, 12195–12207. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jiang, X.Y.; Lee, M.; Turnipseed, A.; Guenther, A.; Kim, J.C.; Lee, S.J.; Kim, S. Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul, South Korea. Atmos. Environ. 2013, 70, 447–453. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Wigder, N.L. Ozone production from wildfires: A critical review. Atmos. Environ. 2012, 51, 1–10. [Google Scholar] [CrossRef]
- Lee, D.; Köhler, I.; Grobler, E.; Rohrer, F.; Sausen, R.; Gallardo, L.; Olivier, J.; Dentener, F.; Bouwman, A. Estimations of global NOx emissions and their uncertainties. Atmos. Environ. 1997, 31, 1735–1749. [Google Scholar] [CrossRef]
- Alaghmand, M.; Shepson, P.B.; Starn, T.K.; Jobson, B.T.; Wallace, H.W.; Carroll, M.A.; Bertman, S.B.; Lamb, B.; Edburg, S.L.; Zhou, X.; et al. The Morning NOx maximum in the forest atmosphere boundary layer. Atmos. Chem. Phys. Discuss. 2011, 11, 29251–29282. [Google Scholar]
- Wang, T.; Ding, A.; Gao, J.; Wu, W.S. Strong ozone production in urban plumes from Beijing, China. Geophys. Res Lett. 2006, 33. [Google Scholar] [CrossRef]
- Akimoto, H.; Narita, H. Distribution of SO2, NOx and CO2 emissions from fuel combustion and industrial activities in asia with 1 × 1 resolution. Atmos. Environ. 1994, 28, 213–225. [Google Scholar] [CrossRef]
- Gómez, M.C.; Durana, N.; García, J.A.; de Blas, M.; de Cámara, E.S.; García-Ruiz, E.; Gangoiti, G.; Torre-Pascual, E.; Iza, J. Long-term measurement of biogenic volatile organic compounds in a rural background area: Contribution to ozone formation. Atmos. Environ. 2020, 224, 117315. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.; Schultz, M.; Xu, X.; Tao, W.; Gao, M.; Yuanhong, Z.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Poisson, N.; Kanakidou, M.; Crutzen, P.J. Impact of nonmethane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. J. Atmos. Chem. 2000, 36, 157–230. [Google Scholar] [CrossRef]
- Wang, X.M.; Carmichael, G.; Chen, D.; Tang, Y.; Wang, T. Impacts of different emission sources on air quality during March 2001 in the Pearl River Delta (PRD) region. Atmos. Environ. 2005, 39, 5227–5241. [Google Scholar] [CrossRef]
- Churkina, G.; Grote, R.; Butler, T.M.; Lawrence, M. Natural selection? Picking the right trees for urban greening. Environ. Sci. Policy 2015, 47, 12–17. [Google Scholar] [CrossRef]
- Ghirardo, A.; Xie, J.; Zheng, X.; Wang, Y.; Grote, R.; Block, K.; Wildt, J.; Mentel, T.; Kiendler-Scharr, A.; Hallquist, M.; et al. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing. Atmos. Chem. Phys. 2016, 16, 2901–2920. [Google Scholar] [CrossRef]
- Seguel, R.; Morales, R.; Leiva-Guzmán, M. Ozone weekend effect in Santiago, Chile. Environ. Pollut. 2011, 162, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, H.; Tanimoto, H. Rethinking of the adverse effects of NOx-control on the reduction of methane and tropospheric ozone—Challenges toward a denitrified society. Atmos. Environ. 2022, 277, 119033. [Google Scholar] [CrossRef]
Compounds | MIR | Urban Site | Rural Site | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | OFP | Mean | Min | Max | OFP | ||
Isoprene/ppb | 9.1 | 1.19 ± 0.76 | 0 | 3.11 | 32.75 | 0.34 ± 0.24 | 0 | 1.02 | 9.29 |
α-pinene/ppb | 3.3 | 0.07 ± 0.11 | 0 | 0.63 | 1.36 | 0.19 ± 0.1 | 0 | 0.38 | 3.81 |
NO/ppb | 4.96 ± 10 | 0.12 | 61.15 | 2.66 ± 2.6 | 0 | 8.93 | |||
NOX/ppb | 23.70 ± 19.23 | 3.95 | 97.92 | 8.94 ± 4.96 | 0 | 23.74 | |||
O3/ppb | 48.71 ± 26 | 3.19 | 94.26 | 55.9 ± 28.23 | 15.3 | 128.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Su, Y.; Sun, X.; Liu, C.; Cui, B.; Xu, X.; Ouyang, Z.; Wang, X. Urban–Rural Comparisons of Biogenic Volatile Organic Compounds and Ground-Level Ozone in Beijing. Forests 2024, 15, 508. https://doi.org/10.3390/f15030508
Guo P, Su Y, Sun X, Liu C, Cui B, Xu X, Ouyang Z, Wang X. Urban–Rural Comparisons of Biogenic Volatile Organic Compounds and Ground-Level Ozone in Beijing. Forests. 2024; 15(3):508. https://doi.org/10.3390/f15030508
Chicago/Turabian StyleGuo, Peipei, Yuebo Su, Xu Sun, Chengtang Liu, Bowen Cui, Xiangyu Xu, Zhiyun Ouyang, and Xiaoke Wang. 2024. "Urban–Rural Comparisons of Biogenic Volatile Organic Compounds and Ground-Level Ozone in Beijing" Forests 15, no. 3: 508. https://doi.org/10.3390/f15030508
APA StyleGuo, P., Su, Y., Sun, X., Liu, C., Cui, B., Xu, X., Ouyang, Z., & Wang, X. (2024). Urban–Rural Comparisons of Biogenic Volatile Organic Compounds and Ground-Level Ozone in Beijing. Forests, 15(3), 508. https://doi.org/10.3390/f15030508