Uptake and Transport of Selenium in a Soil–Tea Plant–Tea Infusion System: A Study of Typical Tea Plantations in a Selenium-Rich Area of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Tea Plant Sampling and Analysis
2.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Soil Selenium Content
3.3. Distribution of Selenium in Tea Plants
3.4. Selenium Enrichment Factor in Tea Plants
3.5. Selenium Translocation Factor for Different Organs of Tea Plants
3.6. Selenium Concentration in Tea Infusion
4. Discussion
4.1. Availability and Factors Influencing Soil Selenium in Tea Plantations
4.2. Selenium Enrichment and Migration in the Soil–Tea Plant System
4.3. Characteristics of Selenium Release from Young Leaves
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dinh, Q.T.; Cui, Z.W.; Huang, J.; Tran, T.A.T.; Wang, D.; Yang, W.X.; Zhou, F.; Wang, M.K.; Yu, D.S.; Liang, D.L. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef]
- Pecoraro, B.M.; Leal, D.F.; Frias-De-Diego, A.; Browning, M.; Odle, J.; Crisci, E. The health benefits of selenium in food animals: A review. J. Anim. Sci. Biotechnol. 2022, 13, 58. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.F.; Ning, Z.P.; Kwon, S.Y.; Li, M.L.; Tack, F.G.; Kwon, E.E.; Rinklebe, J.; Yin, R.S. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview. J. Hazard. Mater. 2022, 422, 126876. [Google Scholar] [CrossRef]
- Qin, H.B.; Zhu, J.M.; Liang, L.; Wang, M.S.; Su, H. The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environ. Int. 2013, 52, 66–74. [Google Scholar] [CrossRef]
- Ekumah, J.N.; Ma, Y.; Akpabli-Tsigbe, N.D.K.; Kwaw, E.; Ma, S.M.; Hu, J. Global soil distribution, dietary access routes, bioconversion mechanisms and the human health significance of selenium: A review. Food Biosci. 2021, 41, 100960. [Google Scholar] [CrossRef]
- D’Amato, R.; Regni, L.; Falcinelli, B.; Mattioli, S.; Benincasa, P.; Dal Bosco, A.; Pacheco, P.; Proietti, P.; Troni, E.; Santi, C. Current knowledge on selenium biofortification to improve the nutraceutical profile of food: A comprehensive review. J. Agric. Food Chem. 2020, 68, 4075–4097. [Google Scholar] [CrossRef]
- Hadrup, N.; Ravn-Haren, G. Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: A review. J. Trace Elem. Med. Biol. 2021, 67, 126801. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: A review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef]
- Khanam, A.; Platel, K. Bioaccessibility of selenium, selenomethionine and selenocysteine from foods and influence of heat processing on the same. Food Chem. 2016, 194, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wang, M.; Zhou, F.; Zhai, H.; Qi, M.X.; Liu, Y.; Li, Y.N.; Zhang, N.C.; Ma, Y.Z.; Huang, J.; et al. Selenium bioavailability in soil-wheat system and its dominant influential factors: A field study in Shaanxi province, China. Sci. Total Environ. 2021, 770, 144664. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.Y.; Ren, J.G.; Xue, C.Z.; Lin, E.D. Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 2005, 277, 197–206. [Google Scholar] [CrossRef]
- Gong, J.J.; Yang, J.Z.; Wu, H.; Fu, Y.A.; Gao, J.W.; Tang, S.X.; Ma, S.M. Distribution of soil selenium and its relationship with parent rocks in Chengmai County, Hainan Island, China. Appl. Geochem. 2022, 136, 105147. [Google Scholar] [CrossRef]
- Ni, R.X.; Luo, K.L.; Tian, X.L.; Yan, S.G.; Zhong, J.T.; Liu, M.Q. Distribution and geological sources of selenium in environmental materials in Taoyuan County, Hunan Province, China. Environ. Geochem. Health 2016, 38, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Chen, C.Q.; Yin, R.S.; Shen, Y.; Mao, K.; Yang, Z.G.; Feng, X.B.; Zhang, H. Bioaccumulation of Hg in rice leaf facilitates selenium bioaccumulation in rice (Oryza sativa L.) leaf in the Wanshan mercury mine. Environ. Sci. Technol. 2020, 54, 3228–3236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Yuan, L.X.; Qi, S.H.; Yin, X.B. The threshold effect between the soil bioavailable molar Se: Cd ratio and the accumulation of Cd in corn (Zea mays L.) from natural Se-Cd rich soils. Sci. Total Environ. 2019, 688, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Q.; Song, H.X.; Guo, Y.B.; Fan, B.; Huang, Y.T.; Mao, X.F.; Liang, K.H.; Hu, Z.Q.; Sun, X.D.; Fang, Y.; et al. Benefit–risk assessment of dietary selenium and its associated metals intake in China (2017–2019): Is current selenium-rich agro-food safe enough? J. Hazard. Mater. 2020, 398, 123224. [Google Scholar] [CrossRef]
- Sentkowska, A. Content of selenoaminoacids and catechins in Chinese green teas. Eur. Food Res. Technol. 2021, 247, 613–622. [Google Scholar] [CrossRef]
- Chen, S.Z.; Zhu, S.P.; Lu, D.B. Solidified floating organic drop microextraction for speciation of selenium and its distribution in selenium-rich tea leaves and tea infusion by electrothermal vapourisation inductively coupled plasma mass spectrometry. Food Chem. 2015, 169, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Han, M.Q.; Liu, K.L. Selenium and selenoproteins: Their function and development of selenium-rich foods. Int. J. Food Sci. Technol. 2022, 57, 7026–7037. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, Y.Q.; Ruan, J.Y.; Yin, J.F. Selenium affects the activity of black tea in preventing metabolic syndrome in high-fat diet-fed Sprague–Dawley rats. J. Sci. Food Agric. 2020, 100, 225–234. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, J.; Li, Y.; Song, X.W.; Luo, J.L.; Yu, Z.; Ni, D.J. Natural variation of selenium concentration in diverse tea plant (Camellia sinensis) accessions at seedling stage. Sci. Hortic. 2016, 198, 163–169. [Google Scholar] [CrossRef]
- Liu, X.W.; Zhao, Z.Q.; Duan, B.H.; Hu, C.X.; Zhao, X.H.; Guo, Z.H. Effect of applied sulphuron the uptake by wheat of selenium applied as selenite. Plant Soil 2015, 386, 35–45. [Google Scholar] [CrossRef]
- Li, Z.; Liang, D.L.; Peng, Q.; Cui, Z.W.; Huang, J.; Lin, Z.Q. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma 2017, 295, 69–79. [Google Scholar] [CrossRef]
- Hu, Q.H.; Xu, J.; Pang, G.X. Effect of selenium on the yield and quality of green tea leaves harvested in early spring. J. Agric. Food Chem. 2003, 51, 3379–3381. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Z.; Meng, Q.; Shi, J.; Zhou, M.X.; Zhu, Y.; You, Q.S.; Xu, P.; Wu, W.L.; Lin, Z.; Lv, H.P.; et al. Special tea products featuring functional components: Health benefits and processing strategies. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1686–1721. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.Y.; Yan, W.; Peng, L.J.; Zhou, J.J.; He, J.L.; Zhang, N.; Cheng, S.Y.; Cai, J. Insights into the key quality components in Se-Enriched green tea and their relationship with Selenium. Food Res. Int. 2023, 165, 112460. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.; Deng, Y.L.; Wu, X.L.; Zhang, D.; Wang, F.; Liu, K.C.; Lu, S.Y. The levels of selenium in tea from China and associated human exposure. J. Food Compos. Anal. 2022, 110, 104567. [Google Scholar] [CrossRef]
- Long, Z.D.; Yuan, L.X.; Hou, Y.Z.; Bañuelos, G.S.; Liu, Y.X.; Pan, L.P.; Liu, X.D.; Yin, X.B. Spatial variations in soil selenium and residential dietary selenium intake in a selenium-rich county, Shitai, Anhui, China. J. Trace Elem. Med. Biol. 2018, 50, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.C.; Ren, R.; Wang, L.X.; Zhi, Q.; Yu, T.; Hou, Q.Y.; Yang, Z.F. Using machine learning to predict selenium and cadmium contents in rice grains from black shale-distributed farmland area. Sci. Total Environ. 2024, 912, 168802. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Agricultural Chemistry Analysis; Chinese Agriculture and Technology Press: Beijing, China, 2000; pp. 13–14, 108–109, 147–149, 168–169, 181, 194–195. (In Chinese) [Google Scholar]
- Cui, Z.W.; Huang, J.; Peng, Q.; Yu, D.S.; Wang, S.S.; Liang, D.L. Risk assessment for human health in a seleniferous area, Shuang’an, China. Environ. Sci. Pollut. Res. 2017, 24, 17701–17710. [Google Scholar] [CrossRef]
- Yang, R.Y.; He, Y.H.; Luo, L.F.; Zhu, M.; Zan, S.T.; Guo, F.Y.; Wang, B.; Yang, B.B. The interaction between selenium and cadmium in the soil-rice-human continuum in an area with high geological background of selenium and cadmium. Ecotoxicol. Environ. Saf. 2021, 222, 112516. [Google Scholar] [CrossRef]
- Wen, B.Y.; Zhang, T.L.; Li, X.Z.; Xie, Z.D. A feasibility study of selenium-rich soil development in Longnan County of Jiangxi Province. Geol. China 2014, 41, 256–263, (In Chinese with English Abstract). [Google Scholar]
- Zhang, M.; Xing, G.F.; Tang, S.H.; Pang, Y.W.; Yi, Q.; Huang, Q.Y.; Huang, X.; Huang, J.F.; Li, P.; Fu, H.T. Improving soil selenium availability as a strategy to promote selenium uptake by high-Se rice cultivar. Environ. Exp. Bot. 2019, 163, 45–54. [Google Scholar] [CrossRef]
- Shao, Y.; Cai, C.F.; Zhang, H.T.; Fu, W.; Zhong, X.M.; Tang, S. Controlling factors of soil selenium distribution in a watershed in Se-enriched and longevity region of South China. Environ. Sci. Pollut. Res. 2018, 25, 20048–20056. [Google Scholar] [CrossRef]
- Zhai, H.; Kleawsampanjai, P.; Wang, M.; Qi, M.X.; Liu, Y.; Liu, N.N.; Zhou, F.; Wang, M.K.; Liang, D.L. Effects of soil moisture on aging of exogenous selenate in three different soils and mechanisms. Geoderma 2021, 390, 114966. [Google Scholar] [CrossRef]
- Constantino, L.V.; Quirino, J.N.; Monteiro, A.M.; Abrao, T.; Parreira, P.S.; Urbano, A.; Santos, M.J. Sorption-desorption of selenite and selenate on Mg-Al layered double hydroxide in competition with nitrate, sulfate and phosphate. Chemosphere 2017, 181, 627–634. [Google Scholar] [CrossRef]
- Gavrilenko, N.A.; Saranchina, N.V.; Fedan, D.A.; Gavrilenko, M.A. Solid-phase spectrophotometric iodometric determination of nitrite and selenium (IV) using a polymethacrylate matrix. J. Anal. Chem. 2017, 72, 546–550. [Google Scholar] [CrossRef]
- Smazíková, P.; Praus, L.; Száková, J.; Tremlová, J.; Hanc, A.; Tlustos, P. Effects of organic matter-rich amendments on selenium mobility in soils. Pedosphere 2019, 29, 740–751. [Google Scholar] [CrossRef]
- Yamada, H.; Kamada, A.; Usuki, M.; Yanai, J. Total selenium content of agricultural soils in Japan. Soil Sci. Plant Nutr. 2009, 55, 616–622. [Google Scholar] [CrossRef]
- Yu, W.Q.; Wang, F.; Chen, Y.Z.; Shang, R.Y.; You, Z.M.; Zang, C.R.; Chen, C.S. Study on soil selenium content and its influencing factors in typical tea garden of fujian province. J. Tea Sci. 2020, 40, 173–185, (In Chinese with English Abstract). [Google Scholar]
- Qin, H.B.; Zhu, J.M.; Su, H. Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China. Chemosphere 2012, 86, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.J.; Carignan, J. Reviews on atmospheric selenium: Emissions, speciation and fate. Atmos. Environ. 2007, 41, 7151–7165. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Yu, Y.; Wang, Q.; Luo, Z.; Jiang, R.F.; Li, H.F. Uptake kinetics and translocation of selenite and selenate as affected by iron plaque on root surfaces of rice seedlings. Planta 2015, 241, 907–916. [Google Scholar] [CrossRef]
- Kaiser, H. Stomatal uptake of mineral particles from a sprayed suspension containing an organosilicone surfactant. J. Plant Nutr. Soil Sci. 2014, 177, 869–874. [Google Scholar] [CrossRef]
- Li, H.F.; McGrath, S.P.; Zhao, F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008, 178, 92–102. [Google Scholar] [CrossRef]
- Bai, B.Q.; Chen, W.; Zhang, J.L.; Shen, Y.X. Growth effects and distribution of selenite in Medicago sativa. Plant Soil 2018, 425, 527–538. [Google Scholar] [CrossRef]
- Galeas, M.L.; Zhang, L.H.; Freeman, J.L.; Wegner, M.; Pilon-Smits, E.H. Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol. 2007, 173, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Terry, N.; Zayed, A.M.; De Souza, M.P.; Tarun, A.S. Selenium in higher plants. Annu. Rev. Plant Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.Q.; Zhang, D.; Shen, J.C.; Gong, W.R.; Wu, X.L.; Wang, F.; Chen, Y.N.; Li, X.Y.; Zheng, Q.Z.; Luo, D.H.; et al. Trace elements in successive tea infusions made via a brewing method widespread in China: Implications for human exposure. J. Food Compos. Anal. 2023, 115, 104989. [Google Scholar] [CrossRef]
- Ye, Y.Y.; He, J.L.; He, Z.J.; Zhang, N.; Liu, X.Q.; Zhou, J.J.; Cheng, S.Y.; Cai, J. Evaluation of the brewing characteristics, digestion profiles, and neuroprotective effects of two typical Se-enriched green teas. Foods 2022, 11, 2159. [Google Scholar] [CrossRef]
- Burk, R.F. Selenium, an antioxidant nutrient. Nutr. Clin. Care 2002, 5, 75–79. [Google Scholar] [CrossRef]
- Rayman, M.P. Food-chain selenium and human health: Emphasis on intake. Br. J. Nutr. 2008, 100, 254–268. [Google Scholar] [CrossRef]
- Peng, C.Y.; Zhu, X.H.; Hou, R.Y.; Ge, G.F.; Hua, R.M.; Wan, X.C.; Cai, H.M. Aluminum and heavy metal accumulation in tea leaves: An interplay of environmental and plant factors and an assessment of exposure risks to consumers. J. Food Sci. 2018, 83, 1165–1172. [Google Scholar] [CrossRef]
- Sun, M.F.; Zhang, J.; Guo, G.Y. Effect of brewing conditions on the leaching rule of Xinyang black tea soup contents. Food Res. Dev. 2014, 35, 15–19, (In Chinese with English Abstract). [Google Scholar]
- NY/T600-2002; Selenium Rich Tea. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2002. (In Chinese)
Sampling Point | TSe (mg kg−1) | ASe (μg kg−1) | ASeR (%) |
---|---|---|---|
no. 1 | 2.26 ± 0.31 cd | 62.50 ± 34.50 abcde | 2.62 ± 1.13 abc |
no. 2 | 2.19 ± 0.36 cd | 53.10 ± 21.82 bcde | 2.44 ± 0.87 bc |
no. 3 | 2.58 ± 0.87 bcd | 31.27 ± 14.09 cde | 1.48 ± 0.83 c |
no. 4 | 1.76 ± 0.02 cd | 58.87 ± 13.75 abcde | 3.36 ± 0.81 ab |
no. 5 | 2.93 ± 0.76 bcd | 99.20 ± 33.07 a | 3.33 ± 0.55 ab |
no. 6 | 2.04 ± 0.92 cd | 34.57 ± 17.28 bcde | 2.08 ± 1.43 bc |
no. 7 | 3.16 ± 0.83 bc | 44.03 ± 18.67 bcde | 1.55 ± 0.80 bc |
no. 8 | 1.46 ± 0.30 d | 22.30 ± 11.75 de | 1.43 ± 0.48 c |
no. 9 | 3.99 ± 0.91 b | 75.00 ± 4.98 abc | 1.99 ± 0.50 bc |
no. 10 | 5.50 ± 0.89 a | 78.07 ± 13.18 ab | 1.43 ± 0.15 c |
no. 11 | 1.49 ± 0.31 d | 18.53 ± 4.70 e | 1.31 ± 0.49 c |
no. 12 | 1.54 ± 0.05 d | 65.27 ± 5.79 abcd | 4.25 ± 0.53 a |
mean | 2.58 ± 1.31 | 53.56 ± 29.90 | 2.27 ± 1.20 |
coefficient of variation (CV) | 51.59% | 56.62% | 53.73% |
Sampling Site | Fibrous Roots | Main Roots | Main Stems | Lateral Stems | Old Leaves | Young Leaves |
---|---|---|---|---|---|---|
no. 1 | 0.30 ± 0.04 d | 0.18 ± 0.02 cd | 0.26 ± 0.06 cde | 0.10 ± 0.01 bc | 0.20 ± 0.02 c | 0.19 ± 0.03 bc |
no. 2 | 0.53 ± 0.05 cd | 0.17 ± 0.03 cd | 0.21 ± 0.03 def | 0.06 ± 0.00 c | 0.05 ± 0.01 c | 0.34 ± 0.06 c |
no. 3 | 0.44 ± 0.16 cd | 0.35 ± 0.10 cd | 0.25 ± 0.07 cde | 0.09 ± 0.03 bc | 0.04 ± 0.02 c | 0.19 ± 0.05 c |
no. 4 | 1.29 ± 0.02 b | 0.96 ± 0.03 b | 0.59 ± 0.04 a | 0.12 ± 0.00 bc | 0.06 ± 0.00 c | 0.31 ± 0.04 c |
no. 5 | 0.31 ± 0.07 d | 0.17 ± 0.04 cd | 0.23 ± 0.06 def | 0.11 ± 0.02 bc | 0.05 ± 0.01 c | 0.11 ± 0.02 c |
no. 6 | 2.22 ± 0.75 a | 1.30 ± 0.39 a | 0.36 ± 0.12 bcd | 0.47 ± 0.16 a | 0.80 ± 0.27 a | 1.43 ± 0.53 a |
no. 7 | 0.92 ± 0.30 bcd | 0.40 ± 0.14 cd | 0.26 ± 0.07 cde | 0.20 ± 0.06 b | 0.34 ± 0.09 bc | 0.44 ± 0.15 b |
no. 8 | 1.00 ± 0.25 bc | 0.46 ± 0.10 c | 0.33 ± 0.08 bcde | 0.42 ± 0.07 a | 0.09 ± 0.02 b | 0.77 ± 0.22 c |
no. 9 | 0.69 ± 0.15 bcd | 0.31 ± 0.05 cd | 0.21 ± 0.05 ef | 0.13 ± 0.02 bc | 0.18 ± 0.04 c | 0.15 ± 0.03 bc |
no. 10 | 0.37 ± 0.07 d | 0.12 ± 0.02 d | 0.08 ± 0.01 f | 0.09 ± 0.01 bc | 0.04 ± 0.00 c | 0.11 ± 0.02 c |
no. 11 | 0.47 ± 0.15 cd | 0.30 ± 0.08 cd | 0.38 ± 0.08 bc | 0.10 ± 0.01 bc | 0.16 ± 0.03 c | 0.33 ± 0.06 bc |
no. 12 | 0.86 ± 0.14 bcd | 0.34 ± 0.03 cd | 0.44 ± 0.04 b | 0.40 ± 0.04 a | 0.06 ± 0.00 bc | 0.46 ± 0.02 c |
mean | 0.78 ± 0.59 | 0.42 ± 0.37 | 0.30 ± 0.14 | 0.19 ± 0.16 | 0.40 ± 0.40 | 0.17 ± 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Zhang, D.; Wu, X.; Tian, X.; Hu, G.; Liu, S.; Jie, X.; Wang, D. Uptake and Transport of Selenium in a Soil–Tea Plant–Tea Infusion System: A Study of Typical Tea Plantations in a Selenium-Rich Area of China. Forests 2024, 15, 914. https://doi.org/10.3390/f15060914
Wu H, Zhang D, Wu X, Tian X, Hu G, Liu S, Jie X, Wang D. Uptake and Transport of Selenium in a Soil–Tea Plant–Tea Infusion System: A Study of Typical Tea Plantations in a Selenium-Rich Area of China. Forests. 2024; 15(6):914. https://doi.org/10.3390/f15060914
Chicago/Turabian StyleWu, Haizhong, Dengxiao Zhang, Xinmin Wu, Xiaosi Tian, Gang Hu, Shiliang Liu, Xiaolei Jie, and Daichang Wang. 2024. "Uptake and Transport of Selenium in a Soil–Tea Plant–Tea Infusion System: A Study of Typical Tea Plantations in a Selenium-Rich Area of China" Forests 15, no. 6: 914. https://doi.org/10.3390/f15060914
APA StyleWu, H., Zhang, D., Wu, X., Tian, X., Hu, G., Liu, S., Jie, X., & Wang, D. (2024). Uptake and Transport of Selenium in a Soil–Tea Plant–Tea Infusion System: A Study of Typical Tea Plantations in a Selenium-Rich Area of China. Forests, 15(6), 914. https://doi.org/10.3390/f15060914