Evaluation of the Compound Effects of the 2022 Drought and Heatwave on Selected Forest Monitoring Sites in Hungary in Relation to Its Multi-Year Drought Legacy
Abstract
:1. Introduction
- To describe the eco-physiological and spatial aspects of the multi-year drought legacy and the compound effect of 2022 on forest ecosystems.
- To synthesize the current results of in situ field measurements in forest stands and the satellite remote sensing of forest canopies.
- Describe the timing and duration of the different responses between species and their composition.
2. Materials and Methods
2.1. Monitoring Plots
2.2. Sampling Monitoring Methods
2.3. Walter–Lieth Climate Diagram
2.4. Forest Aridity Index (FAI)
2.5. Calculation of the Evapotranspiration and Transpiration
2.6. Remote Sensing
- severe damage: −2 > Z NDVI;
- damage: −2 < Z NDVI < −1;
- moderate: −1 < Z NDVI < 0;
- good: 0 < Z NDVI < 1;
- excellent condition: 1 < Z NDVI.
3. Results
3.1. Precipitation and Temperature
3.2. Forest Aridity Index (FAI)
3.3. Interception and Stemflow
3.4. Measuring the Litterfall and Tree Growth
3.5. Evapotranspiration and Transpiration
3.6. Remote Sensing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svoboda, M.; Fuchs, B.A. Handbook of Drought Indicators and Indices; World Meteorological Organization (WMO) and Global Water Partnership (GWP), Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines; Series 2; WMO: Geneva, Switzerland, 2016; pp. 3–44. [Google Scholar]
- World Meteorological Organization (WMO). Guidelines on the Definition and Characterization of Extreme Weather and Climate Events; WMO: Geneva, Switzerland, 2023; pp. 2–16. [Google Scholar]
- Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 2022, 608, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, K.P.; Mishra, A.K. How Unusual Is the 2022 European Compound Drought and Heatwave Event? Geophys. Res. Lett. 2023, 50, e2023GL105453. [Google Scholar] [CrossRef]
- Cook, B.I.; Smerdon, J.E.; Cook, E.R.; Williams, A.P.; Anchukaitis, K.J.; Mankin, J.S.; Allen, K.; Andreu-Hayles, L.; Ault, T.R.; Belmecheri, S. Megadroughts in the Common Era and the Anthropocene. Nat. Rev. Earth Environ. 2022, 3, 741–757. [Google Scholar] [CrossRef]
- Aalbers, E.E.; van Meijgaard, E.; Lenderink, G.; de Vries, H.; van den Hurk, B.J.J.M. The 2018 west-central European drought projected in a warmer climate: How much drier can it get? Nat. Hazards Earth Syst. Sci. 2023, 23, 1921–1946. [Google Scholar] [CrossRef]
- Moravec, V.; Markonis, Y.; Rakovec, O.; Svoboda, M.; Trnka, M.; Kumar, R.; Hanel, M. Europe under multi-year droughts: How severe was the 2014–2018 drought period? Environ. Res. Lett. 2021, 16, 34062. [Google Scholar] [CrossRef]
- van der Woude, A.M.; Peters, W.; Joetzjer, E.; Lafont, S.; Koren, G.; Ciais, P.; Ramonet, M.; Xu, Y.; Bastos, A.; Botía, S. Temperature extremes of 2022 reduced carbon uptake by forests in Europe. Nat. Commun. 2023, 14, 6218. [Google Scholar] [CrossRef] [PubMed]
- Rakovec, O.; Samaniego, L.; Hari, V.; Markonis, Y.; Moravec, V.; Thober, S.; Hanel, M.; Kumar, R. The 2018–2020 Multi-Year Drought Sets a New Benchmark in Europe. Earth’s Future 2022, 10, e2021EF002394. [Google Scholar] [CrossRef]
- Stefanidis, S.; Rossiou, D.; Proutsos, N. Drought Severity and Trends in a Mediterranean Oak Forest. Hydrology 2023, 10, 167. [Google Scholar] [CrossRef]
- Wei, W.; Liu, T.; Zhou, L.; Wang, J.; Yan, P.; Xie, B.; Zhou, J. Drought-Related Spatiotemporal Cumulative and Time-Lag Effects on Terrestrial Vegetation across China. Remote Sens. 2023, 15, 4362. [Google Scholar] [CrossRef]
- Keszeliová, A.; Hlavčová, K.; Danáčová, M.; Danáčová, Z.; Szolgay, J. Detection of Changes in the Hydrological Balance in Seven River Basins Along the Western Carpathians in Slovakia. Slovak J. Civ. Eng. 2021, 29, 49–60. [Google Scholar] [CrossRef]
- Kholiavchuk, D.; Gurgiser, W.; Mayr, S. Carpathian Forests: Past and Recent Developments. Forests 2024, 15, 65. [Google Scholar] [CrossRef]
- Gáspár, V.; Škrinár, A. The Impact of Climate Change and Regulation of the Water Regime on the Morphological Structure of the Floodplain Forests in Petržalka, Slovakia. Slovak J. Civ. Eng. 2023, 31, 52–57. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Cukor, J. European forests under global climate change: Review of tree growth processes, crises and management strategies. J. Environ. Manag. 2023, 332, 117353. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Knutzen, F.; Averbeck, P.; Barrasso, C.; Bouwer, L.M.; Gardiner, B.; Grünzweig, J.M.; Hänel, S.; Haustein, K.; Johannessen, M.R.; Kollet, S. Impacts and damages of the European multi-year drought and heat event 2018–2022 on forests, a review. Egusphere 2023, 2023, 1–56. [Google Scholar] [CrossRef]
- Salomón, R.L.; Peters, R.L.; Zweifel, R.; Sass-Klaassen, U.G.W.; Stegehuis, A.I.; Smiljanic, M.; Poyatos, R.; Babst, F.; Cienciala, E.; Fonti, P. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nat. Commun. 2022, 13, 28. [Google Scholar] [CrossRef]
- Thom, D.; Buras, A.; Heym, M.; Klemmt, H.-J.; Wauer, A. Varying growth response of Central European tree species to the extraordinary drought period of 2018–2020. Agric. For. Meteorol. 2023, 338, 109506. [Google Scholar] [CrossRef]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef]
- Pretzsch, H.; Schütze, G.; Biber, P. Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech. For. Ecosyst. 2018, 5, 20. [Google Scholar] [CrossRef]
- Aldea, J.; Ruiz-Peinado, R.; Del Río, M.; Pretzsch, H.; Heym, M.; Brazaitis, G.; Jansons, A.; Metslaid, M.; Barbeito, I.; Bielak, K. Timing and duration of drought modulate tree growth response in pure and mixed stands of Scots pine and Norway spruce. J. Ecol. 2022, 110, 2673–2683. [Google Scholar] [CrossRef]
- Li, T.; Guo, L.; He, B.; Liu, L.; Yuan, W.; Chen, X.; Hao, X.; Liu, X.; Zheng, H.; Zheng, H. The Forest Resistance to Droughts Differentiated by Tree Height in Central Europe. JGR Biogeosciences 2023, 128, e2021JG006668. [Google Scholar] [CrossRef]
- Beloiu, M.; Stahlmann, R.; Beierkuhnlein, C. Drought impacts in forest canopy and deciduous tree saplings in Central European forests. For. Ecol. Manag. 2022, 509, 120075. [Google Scholar] [CrossRef]
- Bose, A.K.; Scherrer, D.; Camarero, J.J.; Ziche, D.; Babst, F.; Bigler, C.; Bolte, A.; Dorado-Liñán, I.; Etzold, S.; Fonti, P. Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Sci. Total Environ. 2021, 784, 147222. [Google Scholar] [CrossRef]
- Keszeliová, A.; Výleta, R.; Danáčová, M.; Hlavčová, K.; Sleziak, P.; Gribovszki, Z.; Szolgay, J. Detection of Changes in Evapotranspiration on a Catchment Scale Under Changing Climate Conditions in Selected River Basins of Slovakia. Slovak J. Civ. Eng. 2022, 30, 55–63. [Google Scholar] [CrossRef]
- Rybar, J.; Sitková, Z.; Marcis, P.; Pavlenda, P.; Pajtík, J. Declining Radial Growth in Major Western Carpathian Tree Species: Insights from Three Decades of Temperate Forest Monitoring. Plants 2023, 12, 4081. [Google Scholar] [CrossRef] [PubMed]
- Bussotti, F.; Papitto, G.; Di Martino, D.; Cocciufa, C.; Cindolo, C.; Cenni, E.; Bettini, D.; Iacopetti, G.; Pollastrini, M. Defoliation, Recovery and Increasing Mortality in Italian Forests: Levels, Patterns and Possible Consequences for Forest Multifunctionality. Forests 2021, 12, 1476. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J. Compound climate events increase tree drought mortality across European forests. Sci. Total Environ. 2022, 816, 151604. [Google Scholar] [CrossRef]
- Gordon, D.A.R.; Coenders-Gerrits, M.; Sellers, B.A.; Sadeghi, S.M.M.; van Stan, J.T., II. Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel). Hydrol. Earth Syst. Sci. Discuss. 2019, 2019, 1–22. [Google Scholar] [CrossRef]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.; Hauck, M.; Hajek, P. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Thonfeld, F.; Gessner, U.; Holzwarth, S.; Kriese, J.; Da Ponte, E.; Huth, J.; Kuenzer, C. A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years. Remote Sens. 2022, 14, 562. [Google Scholar] [CrossRef]
- Ognjenović, M.; Seletković, I.; Potočić, N.; Marušić, M.; Tadić, M.P.; Jonard, M.; Rautio, P.; Timmermann, V.; Lovreškov, L.; Ugarković, D. Defoliation Change of European Beech (Fagus sylvatica L.) Depends on Previous Year Drought. Plants 2022, 11, 730. [Google Scholar] [CrossRef] [PubMed]
- Češljar, G.; Jovanović, F.; Brašanac-Bosanac, L.; Đorđević, I.; Mitrović, S.; Eremija, S.; Ćirković-Mitrović, T.; Lučić, A. Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia. Plants 2022, 11, 1286. [Google Scholar] [CrossRef] [PubMed]
- Hereş, A.-M.; Petritan, I.C.; Bigler, C.; Curtu, A.L.; Petrea, Ş.; Petritan, A.M.; Polanco-Martínez, J.M.; Rigling, A.; Curiel Yuste, J. Legacies of past forest management determine current responses to severe drought events of conifer species in the Romanian Carpathians. Sci. Total Environ. 2021, 751, 141851. [Google Scholar] [CrossRef] [PubMed]
- Szentes, O. Szárazság Magyarországon 2022-ben és a múltban (Drought in Hungary in 2022 and the past). Légkör 2023, 68, 9–19. [Google Scholar] [CrossRef]
- Horváth, Á.; Breuer, H. A víz körforgalma a légkörben és a 2022-es rendkívüli aszáy meteorológiai háttere (Water circulation in the atmosphere and drought in 2022). Légkör 2023, 68, 2–8. [Google Scholar] [CrossRef]
- Alekseev, A.; Chernikhovskii, D. Assessment of the health status of tree stands based on Sentinel-2B remote sensing materials and the short-wave vegetation index SWVI. IOP Conf. Ser. Earth Environ. Sci. 2021, 876, 012003. [Google Scholar] [CrossRef]
- Varga, Z. Geographical patterns of biodiversity in the Palearctic and in the Carpathian Basin. Acta Zool. Acad. Sci. Hung. 1995, 41, 71–92. [Google Scholar]
- Fekete, G.; Molnár, Z.; Magyari, E.; Somodi, I.; Varga, Z. A new framework for understanding Pannonian vegetation patterns: Regularities, deviations and uniqueness. Community Ecol. 2014, 15, 12–26. [Google Scholar] [CrossRef]
- The database of the National Land Centre. Available online: https://Nfk.gov.hu (accessed on 13 March 2024).
- Available online: https://www.nfk.gov.hu/EMMRE_kiadvanyok__jelentesek__prognozis_fuzetek_news_536 (accessed on 20 February 2024).
- Walter, H.; Lieth, H. Klimadiagramm-Weltatlas; Fisher: Jena, Germany, 1960. [Google Scholar]
- Guijarro, J.A.; Climate Tools (Series Homogenization and Derived Products). R Package Version 4.0.0. 2023. Available online: https://CRAN.R-project.org/package=climatol (accessed on 13 March 2024).
- Führer, E. A klímaértékelés erdészeti vonatkozásai. Erdészettudományi Közlemények 2018, 8, 27–42. [Google Scholar] [CrossRef]
- Mu, Q.; Maosheng, Z.; Running, S.W. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). In Algorithm Theoretical Basis Document (Collection 5); University of Montana: Missoula, MT, USA, 2013. [Google Scholar]
- Somogyi, Z.; Koltay, A.; Molnár, T.; Móricz, N. Forest health monitoring system in Hungary based on MODIS products. In Az elmélet és a Gyakorlat Találkozása a Térinformatikában IX: Theory Meets Practice in GIS; Debreceni Egyetem, I.X., Ed.; Térinformatika Konferencia és Szakkiállítás. Szerk. Molnár Vanda Éva: Debrecen, Hungary, 2018; ISBN 978-963-318-723-4. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third ERTS-1 Symposium, Washington, DC, USA, 10–14 December 1973; NASA: Washington, DC, USA, 1974; Volume 351, pp. 309–317. [Google Scholar]
- Peters, A.J.; Walter-Shea, E.A.; Andrés Viña, L.J.; Hayes, M.; Svoboda, M.D. Drought monitoring with NDVI-based standardized vegetation index. Photogramm. Eng. Remote Sens. 2002, 68, 72–75. [Google Scholar]
- European Space Agency (ESA). Sentinel-2 Overview. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 4 April 2024).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Járó, Z. Intercepció a gödöllöi kultúrerdei ökoszisztémában. Erdészeti Kut. 1980, 73, 7–17. [Google Scholar]
- Führer, E. A Csapadék Megoszlása és az Intercepció Különböző Hazai Erdõtársulásokban. Doctoral Dissertation, Doktori értekezés, Sopron, Hungary, 1984. [Google Scholar]
- Führer, E. Intercepció meghatározása bükk, kocsánytalan tölgy és lucfenyő erdőben. Vízügyi Közlemények 1992, 3, 281–294. [Google Scholar]
- Führer, E. Csapadékmérések bükkös-, kocsánytalantölgyes és lucfenyves ökoszisztémában. Erdészeti Kut. 1994, 84, 11–35. [Google Scholar]
- Koloszár, J. Természetes erdei ökoszisztémák és a csapadék. In Erdő és víz. VEAB Kiadvány; EFE: Sopron, Hungary, 1981; pp. 75–88. [Google Scholar]
- Kucsara, M. Az erdő csapadékviszonyainak vizsgálata. Vízügyi Közlemények 1998, 3, 456–475. [Google Scholar]
- Szabó, M. Egy Cseres-Tölgyes Erdő (“Sikfőkut Project”) víz- és ásványi Anyag Forgalma. Doctoral Dissertation, Kandidátusi értekezés, Budapest, Hungary, 1979. [Google Scholar]
- Csáki, P. A Klímaváltozás Hatása a Vízkészletekre a Felszínborítás Figyelembevételével. Doctoral Dissertation, SOE, Sopron, Hungary, 2020; p. 122. [Google Scholar]
- Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sánchez, G.; Peñuelas, J. Widespread Crown Condition Decline, Food Web Disruption, and Amplified Tree Mortality with Increased Climate Change-Type Drought. Proc. Natl. Acad. Sci. USA 2011, 108, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D. Climate-Induced Forest Dieback: An Escalating Global Phenomenon? Unasylva 2009, 60, 43–49. [Google Scholar]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg (Ted), E.H. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Hartmann, H.; Bastos, A.; Das, A.J.; Esquivel-Muelbert, A.; Hammond, W.M.; Martínez-Vilalta, J.; McDowell, N.G.; Powers, J.S.; Pugh, T.A.M.; Ruthrof, K.X. Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. Annu. Rev. Plant Biol. 2022, 73, 673–702. [Google Scholar] [CrossRef]
- Fensham, R.J.; Laffineur, B.; Allen, C.D. To What Extent Is Drought-Induced Tree Mortality a Natural Phenomenon? Glob. Ecol. Biogeogr. 2019, 28, 365–373. [Google Scholar] [CrossRef]
- Szabó, A.; Gribovszki, Z.; Kalicz, P.; Szolgay, J.; Bolla, B. The soil moisture regime and groundwater recharge in aged forests in the Sand Ridge region of Hungary after a decline in the groundwater level: An experimental case study. J. Hydrol. Hydromech. 2022, 70, 308–320. [Google Scholar] [CrossRef]
- Nagy, K.; Szalóki, A. Forest Condition in Europe: The 2023 Assessment. In ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention); Michel, A., Kirchner, T., Prescher, A.-K., Schwärzel, K., Eds.; Thünen Institute: Eberswalde, Hungary, 2023. [Google Scholar] [CrossRef]
- Hirka, A.; Koltay, A.; Csóka, G. Magyarországi erdőkárok 2022-ben. Erdészeti Lapok 2024, 159, 3. [Google Scholar]
- Jia, H.; Guan, C.; Zhang, J.; He, C.; Yin, C.; Meng, P. Drought Effects on Tree Growth, Water Use Efficiency, Vulnerability and Canopy Health of Quercus Variabilis-Robinia Pseudoacacia Mixed Plantation. Front. Plant Sci. 2022, 13, 1018405. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Silva, R.; Verheyen, K.; Ponette, Q.; Bay, E.; Sioen, G.; Titeux, H.; Van de Peer, T.; Van Meerbeek, K.; Muys, B. Tree Diversity Mitigates Defoliation after a Drought-Induced Tipping Point. Glob. Change Biol. 2018, 24, 4304–4315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shao, M.; Jia, X.; Wei, X. Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality. PLoS ONE 2017, 12, e0169770. [Google Scholar] [CrossRef]
- Berdanier, A.B.; Clarck, J.S. Multiyear Drought-induced Morbidity Preceding Tree Death in Southeastern U.S. Forests—Berdanier—2016—Ecological Applications—Wiley Online Library. Ecol. Appl. 2016, 26, 17–23. [Google Scholar] [CrossRef]
- USGS. Terra Constellation Exit & Data Outage. 2022. Available online: https://lpdaac.usgs.gov/news/terra-constellation-exit-data-outage-october-10-19-2022 (accessed on 29 April 2024).
- USGS. ForWarn III in ArcGIS Online. 2022. Available online: https://forwarn.forestthreats.org/news/1109 (accessed on 29 April 2024).
ID | Tree Species | Age | Top Height (m) | Stand Volume (m3/ha) | Mean LAI (m2/m2) | Soil Type (WRB) | Average Rooting Depth (cm) | GPS Coordinates |
---|---|---|---|---|---|---|---|---|
2022 | 2015 | 2015 | 2009–2022 * | |||||
M01 | Common beech (Fagus sylvatica) | 112 | 35.1 | 969 | 5.0 | Eutric Leptosol | 80 | 475,331 195,731 |
M03 | Sessile oak (Quercus petraea) | 86 | 27.3 | 612 | 6.1 | Mollic Leptosol | 70 | 475,146 195,801 |
M15 | Scots pine (Pinus sylvestris) | 71 | 29.7 | 682 | 2.5 | Haplic Gleysols | 70 | 464,924 162,417 |
M16 | Sessile oak (Quercus petraea) | 95 | 27.9 | 522 | 4.4 | Haplic Gleysols | 55 | 464,920 162,415 |
M17 | Common beech (Fagus sylvatica) | 92 | 36.9 | 1005 | 6.7 | Cutanic Luvisol | 95 | 463,550 164,434 |
M19 | Black locust (Robinia pseudoacacia) | 43 | 22.0 | 318 | 5.9 | Aridic Arenosol | 65 | 465,639 193,257 |
M21 | Turkey oak (Quercus cerris) | 77 | 24.6 | 318 | 4.5 | Dystric Cambisol | 70 | 472,926 185,123 |
Year | M01 Common Beech M03 Sessile Oak | M15 Scots Pine, M16 Sessile Oak | M17 Common Beech | M19 Black Locust | M21 Turkey Oak | |||||
---|---|---|---|---|---|---|---|---|---|---|
FAI | Climate Class | FAI | Climate Class | FAI | Climate Class | FAI | Climate Class | FAI | Climate Class | |
2017 | 4 | Beech | 7.6 | Forest-steppe | 7.4 | Forest-steppe | 8.6 | Forest-steppe | 7.4 | Forest-steppe |
2018 | 5.6 | Forest-steppe | 4 | Beech | 5.7 | Hornbeam-oak | 6.7 | Oak | 11.5 | Forest-steppe |
2019 | 4.7 | Beech | 4.4 | Beech | 4.2 | Beech | 6.5 | Oak | 6.5 | Oak |
2020 | 3.6 | Beech | 3.7 | Beech | 3.5 | Beech | 4.9 | Hornbeam-oak | 5.4 | Hornbeam-oak |
2021 | 7.3 | Forest-steppe | 5.1 | Hornbeam-oak | 4.6 | Beech | 7.4 | Forest-steppe | 6.4 | Oak |
2022 | 12 | Forest-steppe | 4 | Beech | 4.6 | Beech | 21.6 | Forest-steppe | 11.5 | Forest-steppe |
Monitoring Plots | Interception (%) 2022 | Stemflow (%) 2022 | Interception (%) 2017–2021 | Stemflow (%) 2017–2021 | Interception (%) (Járó 1980; Führer 1984, 1992, 1994; Koloszár 1981; Kucsara 1998; Szabó 1979) [53,54,55,56,57,58,59] |
---|---|---|---|---|---|
M01 Common beech | 14.8 | 18.2 | 12.1 | 19.9 | 35.0 |
M03 Sessile oak | 20.7 | 4.3 | 25.9 | 4.5 | 25.0 |
M15 Scots pine | 21.1 * | na | 26.2 * | na | 37.0 |
M16 Sessile oak | 13.3 * | na | 17.3 * | na | 25.0 |
M17 Common beech | 11.3 | 22.3 | 5.6 | 28.2 | 35.0 |
M19 Black locust | 20.6 | 0.9 | 17.4 | 1.1 | 31.0 |
M21 Turkey oak | 16.4 | 2.9 | 19.0 ** | 2.6 ** | 27.5 |
Date | Damaged Forest (ha) | Non-Damaged Forest (ha) | Damage Ratio (%) |
---|---|---|---|
16 June 2022 | 46,463 | 1,247,602 | 2.26 |
2 July 2022 | 416,089 | 878,094 | 20.23 |
18 July 2022 | 312,028 | 982,648 | 15.17 |
3 August 2022 | 532,418 | 761,088 | 25.88 |
19 August 2022 | 735,86 | 556,674 | 35.75 |
3 September 2022 | 444,295 | 830,272 | 21.60 |
Z NDVI Class | Meaning | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|
<−2 | severe degradation | 0.14 | 0.15 | 0.08 | 0.98 | 0.76 | 67.46 |
<−1 | degradation | 0.40 | 1.02 | 0.93 | 1.43 | 1.04 | 17.23 |
<0 | moderate | 3.44 | 70.25 | 38.37 | 36.95 | 28.54 | 15.17 |
<1 | regeneration | 88.82 | 27.80 | 60.07 | 59.24 | 68.16 | 0.11 |
>1 | strong regeneration | 7.21 | 0.78 | 0.55 | 1.40 | 1.49 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolla, B.; Manninger, M.; Molnár, T.; Horváth, B.; Szolgay, J.; Gribovszki, Z.; Kalicz, P.; Szabó, A. Evaluation of the Compound Effects of the 2022 Drought and Heatwave on Selected Forest Monitoring Sites in Hungary in Relation to Its Multi-Year Drought Legacy. Forests 2024, 15, 941. https://doi.org/10.3390/f15060941
Bolla B, Manninger M, Molnár T, Horváth B, Szolgay J, Gribovszki Z, Kalicz P, Szabó A. Evaluation of the Compound Effects of the 2022 Drought and Heatwave on Selected Forest Monitoring Sites in Hungary in Relation to Its Multi-Year Drought Legacy. Forests. 2024; 15(6):941. https://doi.org/10.3390/f15060941
Chicago/Turabian StyleBolla, Bence, Miklós Manninger, Tamás Molnár, Bálint Horváth, Jan Szolgay, Zoltán Gribovszki, Péter Kalicz, and András Szabó. 2024. "Evaluation of the Compound Effects of the 2022 Drought and Heatwave on Selected Forest Monitoring Sites in Hungary in Relation to Its Multi-Year Drought Legacy" Forests 15, no. 6: 941. https://doi.org/10.3390/f15060941
APA StyleBolla, B., Manninger, M., Molnár, T., Horváth, B., Szolgay, J., Gribovszki, Z., Kalicz, P., & Szabó, A. (2024). Evaluation of the Compound Effects of the 2022 Drought and Heatwave on Selected Forest Monitoring Sites in Hungary in Relation to Its Multi-Year Drought Legacy. Forests, 15(6), 941. https://doi.org/10.3390/f15060941