Improving the Site Index and Stand Basal Area Model of Picea asperata Mast. by Considering Climate Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. DBH–Tree Height Model and Stand Dominant Height
2.3. Site Index Model
2.3.1. Base Difference Model Selection
2.3.2. Difference Model Equations with Environmental Factors
2.3.3. Nonlinear Mixed-Effects Model
2.4. Stand Basal Area Model
2.5. Model Selection and Evaluation
3. Results
3.1. Environmental Factor Selection
3.2. DBH–Tree Height Model and Stand Dominant Height Fitting
3.3. Site Index Model Fitting
3.3.1. Base Difference Model Selection and Fitting
3.3.2. Difference Model Fitting with Climate Factors
3.3.3. Nonlinear Mixed-Effects Model Fitting
3.3.4. Comparison of Model Fitting Results
3.4. Stand Basal Area Model Fitting
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable Symbol | Variable | Mean | Median | Min. | Max. |
---|---|---|---|---|---|
Tmax_wt | Mean maximum temperature in the winter (°C) | −2.678 | −2.320 | −18.300 | 9.340 |
Tmax_sm | Mean maximum temperature in the summer (°C) | 18.136 | 17.860 | 11.920 | 25.960 |
Tmin_wt | Mean minimum temperature in the winter (°C) | −15.637 | −15.640 | −33.940 | −3.860 |
Tmin_sm | Mean minimum temperature in the summer (°C) | 7.042 | 6.860 | 1.660 | 14.360 |
Tave_wt | Mean temperature in the winter (°C) | −9.157 | −9.200 | −26.120 | 2.760 |
Tave_sm | Mean temperature in the summer (°C) | 12.588 | 12.360 | 7.060 | 19.760 |
PPT_wt | Winter precipitation (mm) | 22.468 | 11.400 | 1.000 | 199.400 |
PPT_sm | Summer precipitation (mm) | 288.540 | 282.600 | 4.800 | 784.000 |
MAT | Mean annual temperature (°C) | 2.263 | 2.190 | −3.800 | 9.820 |
MWMT | Mean warmest month temperature (°C) | 13.643 | 13.400 | 8.140 | 21.700 |
MCMT | Mean coldest month temperature (°C) | −11.196 | −11.220 | −28.420 | 1.520 |
TD | Temperature difference between MWMT and MCMT, or continentality (°C) | 24.838 | 24.600 | 14.960 | 46.100 |
MAP | Mean annual precipitation (mm) | 550.924 | 528.400 | 6.000 | 1407.800 |
AHM | Annual heat:moisture index (MAT + 10)/(MAP/1000)) | 26.443 | 23.110 | 9.580 | 1055.780 |
Eref | Hargreaves reference evaporation (mm) | 608.027 | 604.600 | 372.400 | 1039.400 |
CMD | Hargreaves climatic moisture deficit (mm) | 184.868 | 174.600 | 7.400 | 601.000 |
References
- Pretzsch, H.; Schütze, G. Tree Species Mixing Can Increase Stand Productivity, Density, and Growth Efficiency and Attenuate the Tradeoff between Density and Growth throughout the Whole Rotation. Ann. Bot. 2021, 128, 767–786. [Google Scholar] [CrossRef] [PubMed]
- Fien, E.K.P.; Fraver, S.; Teets, A.; Weiskittel, A.R.; Hollinger, D.Y. Drivers of Individual Tree Growth and Mortality in an Uneven-Aged, Mixed-Species Conifer Forest. For. Ecol. Manag. 2019, 449, 117446. [Google Scholar] [CrossRef]
- Rodríguez, F.; Pemán, J.; Aunós, Á. A Reduced Growth Model Based on Stand Basal Area. A Case for Hybrid Poplar Plantations in Northeast Spain. For. Ecol. Manag. 2010, 259, 2093–2102. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, C.; Dang, Q. Individual-Tree Basal Area Growth Models for Jack Pine and Black Spruce in Northern Ontario. For. Chron. 2004, 80, 366–374. [Google Scholar] [CrossRef]
- He, H.; Zhu, G.; Ma, W.; Liu, F.; Zhang, X. Additivity of Stand Basal Area Predictions in Canopy Stratifications for Natural Oak Forests. For. Ecol. Manag. 2021, 492, 119246. [Google Scholar] [CrossRef]
- Condés, S.; del Río, M.; Forrester, D.I.; Avdagić, A.; Bielak, K.; Bončina, A.; Bosela, M.; Hilmers, T.; Ibrahimspahić, A.; Drozdowski, S.; et al. Temperature Effect on Size Distributions in Spruce-Fir-Beech Mixed Stands across Europe. For. Ecol. Manag. 2022, 504, 119819. [Google Scholar] [CrossRef]
- Zhao, L.; Li, C. Stand Basal Area Model for Cunninghamia Lanceolata (Lamb.) Hook. Plantations Based on a Multilevel Nonlinear Mixed-Effect Model across South-Eastern China. South. For. A J. For. Sci. 2013, 75, 41–50. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.; Duan, A.; He, C. A Review of Stand Basal Area Growth Models. For. Stud. China 2007, 9, 85–94. [Google Scholar] [CrossRef]
- Ouyang, S.; Xiang, W.; Wang, X.; Xiao, W.; Chen, L.; Li, S.; Sun, H.; Deng, X.; Forrester, D.I.; Zeng, L.; et al. Effects of Stand Age, Richness and Density on Productivity in Subtropical Forests in China. J. Ecol. 2019, 107, 2266–2277. [Google Scholar] [CrossRef]
- Zhao, X.; Feng, Z.; Zhou, Y.; Lin, Y. Key Technologies of Forest Resource Examination System Development in China. Engineering 2020, 6, 491–494. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Kuehne, C. Evaluating and Modeling Variation in Site-Level Maximum Carrying Capacity of Mixed-Species Forest Stands in the Acadian Region of Northeastern North America. For. Chron. 2019, 95, 171–182. [Google Scholar] [CrossRef]
- Antón-Fernández, C.; Burkhart, H.E.; Amateis, R.L. Modeling the Effects of Initial Spacing on Stand Basal Area Development of Loblolly Pine. For. Sci. 2012, 58, 95–105. [Google Scholar] [CrossRef]
- Zhao, D.; Bullock, B.P.; Montes, C.R.; Wang, M. Rethinking Maximum Stand Basal Area and Maximum SDI from the Aspect of Stand Dynamics. For. Ecol. Manag. 2020, 475, 118462. [Google Scholar] [CrossRef]
- Sharma, M. Climate Effects on Jack Pine and Black Spruce Productivity in Natural Origin Mixed Stands and Site Index Conversion Equations. Trees For. People 2021, 5, 100089. [Google Scholar] [CrossRef]
- Berrill, J.-P.; O’Hara, K.L. How Do Biophysical Factors Contribute to Height and Basal Area Development in a Mixed Multiaged Coast Redwood Stand? For. Int. J. For. Res. 2016, 89, 170–181. [Google Scholar] [CrossRef]
- Vanclay, J.K.; Hann, D.W.; Weiskittel, A.R.; Jr., Kershaw, J.A. Forest Growth and Yield Modeling; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-1-119-97150-4. [Google Scholar]
- Deng, C.; Froese, R.E.; Zhang, S.; Lu, Y.; Xu, X.; Li, Q. Development of Improved and Comprehensive Growth and Yield Models for Genetically Improved Stands. Ann. For. Sci. 2020, 77, 89. [Google Scholar] [CrossRef]
- Diéguez-Aranda, U.; Grandas-Arias, J.; Alvarez-Gonzalez, J.; Gadow, K. Site Quality Curves for Birch Stands in North-Western Spain. Silva Fenn. 2006, 40, 631–644. [Google Scholar] [CrossRef]
- Cieszewski, C.J. Developing a Well-Behaved Dynamic Site Equation Using a Modified Hossfeld IV Function Y3 = (Axm)/(c + Xm–1), a Simplified Mixed-Model and Scant Subalpine Fir Data. For. Sci. 2003, 49, 539–554. [Google Scholar] [CrossRef]
- Akbas, U.; Senyurt, M. Site Quality Estimations Based on the Generalized Algebraic Difference Approach: A Case Study in Çankiri Forests. Rev. Árvore 2018, 42, e420311. [Google Scholar] [CrossRef]
- Bailey, R.L.; Clutter, J.L. Base-Age Invariant Polymorphic Site Curves. For. Sci. 1974, 20, 155–159. [Google Scholar] [CrossRef]
- Duan, A.-G.; Zhang, J.-G.; Tong, S.-Z.; He, C.-Y. Polymorphic Dominant Height and Site Index Models for Chinese Fir (Cunninghamia lanceolata) Plantations in Southern China. Sci. Res. Essays 2013, 8, 1010–1021. [Google Scholar]
- Zhang, H.; Feng, Z.; Chen, P.; Chen, X. Development of a Tree Growth Difference Equation and Its Application in Forecasting the Biomass Carbon Stocks of Chinese Forests in 2050. Forests 2019, 10, 582. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, H.; Sharma, R.P.; Pang, L.; Wang, G. A Generalized Nonlinear Mixed-Effects Height to Crown Base Model for Mongolian Oak in Northeast China. For. Ecol. Manag. 2017, 384, 34–43. [Google Scholar] [CrossRef]
- Zhang, X.-; Lei, Y.-; Liu, X. Modeling Stand Mortality Using Poisson Mixture Models with Mixed-Effects. Iforest Biogeosci. For. 2015, 8, 333. [Google Scholar] [CrossRef]
- Sharma, R.P.; Breidenbach, J. Modeling Height-Diameter Relationships for Norway Spruce, Scots Pine, and Downy Birch Using Norwegian National Forest Inventory Data. For. Sci. Technol. 2015, 11, 44–53. [Google Scholar] [CrossRef]
- Timilsina, N.; Staudhammer, C.L. Individual Tree-Based Diameter Growth Model of Slash Pine in Florida Using Nonlinear Mixed Modeling. For. Sci. 2013, 59, 27–37. [Google Scholar] [CrossRef]
- Diéguez-Aranda, U.; Burkhart, H.E.; Amateis, R.L. Dynamic Site Model for Loblolly Pine (Pinus taeda L.) Plantations in the United States. For. Sci. 2006, 52, 262–272. [Google Scholar] [CrossRef]
- Zhao, L.; Li, C.; Tang, S. Individual-Tree Diameter Growth Model for Fir Plantations Based on Multi-Level Linear Mixed Effects Models across Southeast China. J. Res. 2013, 18, 305–315. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Z.; Ma, W. Analysis of Tree Species Suitability for Plantation Forests in Beijing (China) Using an Optimal Random Forest Algorithm. Forests 2022, 13, 820. [Google Scholar] [CrossRef]
- Chmura, D.J.; Modrzyński, J. Sensitivity of Height Growth Response to Climate Change Does Not Vary with Age in Common Garden among Norway Spruce Populations from Elevational Gradients. For. Ecol. Manag. 2023, 542, 121118. [Google Scholar] [CrossRef]
- Fortin, M.; Van Couwenberghe, R.; Perez, V.; Piedallu, C. Evidence of Climate Effects on the Height-Diameter Relationships of Tree Species. Ann. For. Sci. 2019, 76, 1. [Google Scholar] [CrossRef]
- Moreau, G.; Chagnon, C.; Auty, D.; Caspersen, J.; Achim, A. Impacts of Climatic Variation on the Growth of Black Spruce Across the Forest-Tundra Ecotone: Positive Effects of Warm Growing Seasons and Heat Waves Are Offset by Late Spring Frosts. Front. For. Glob. Change 2020, 3, 613523. [Google Scholar] [CrossRef]
- Ribbons, R.R. Disturbance and Climatic Effects on Red Spruce Community Dynamics at Its Southern Continuous Range Margin. PeerJ 2014, 2, e293. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Griesbauer, H.P.; Scott Green, D. Growth Responses of Three Coexisting Conifer Species to Climate across Wide Geographic and Climate Ranges in Yukon and British Columbia. For. Ecol. Manag. 2010, 259, 514–523. [Google Scholar] [CrossRef]
- Lei, X.; Fu, L.; Li, H.; Li, Y.; Tang, S. Methodology and Applications of Site Quality Assessment Based on Potential Mean Annual Increment. Linye Kexue/Sci. Silvae Sin. 2018, 54, 116–126. [Google Scholar] [CrossRef]
- Qiu, Z.; Feng, Z.; Song, Y.; Li, M.; Zhang, P. Carbon Sequestration Potential of Forest Vegetation in China from 2003 to 2050: Predicting Forest Vegetation Growth Based on Climate and the Environment. J. Clean. Prod. 2020, 252, 119715. [Google Scholar] [CrossRef]
- Sharma, M.; Subedi, N.; Ter-Mikaelian, M.; Parton, J. Modeling Climatic Effects on Stand Height/Site Index of Plantation-Grown Jack Pine and Black Spruce Trees. For. Sci. 2015, 61, 25–34. [Google Scholar] [CrossRef]
- Guohong, W.; Li, H.; Zhao, H.-W.; Zhang, W. Detecting Climatically Driven Phylogenetic and Morphological Divergence among Spruce (Picea) Species Worldwide. Biogeosciences 2017, 14, 2307–2319. [Google Scholar] [CrossRef]
- Wang, T.; Wang, G.; Innes, J.; Seely, B.; CHEN, B. ClimateAP: An Application for Dynamic Local Downscaling of Historical and Future Climate Data in Asia Pacific. Front. Agric. Sci. Eng. 2017, 4, 448–458. [Google Scholar] [CrossRef]
- Crecente-Campo, F.; Corral-Rivas, J.J.; Vargas-Larreta, B.; Wehenkel, C. Can Random Components Explain Differences in the Height–Diameter Relationship in Mixed Uneven-Aged Stands? Ann. For. Sci. 2014, 71, 51–70. [Google Scholar] [CrossRef]
- Temesgen, H.; Zhang, C.H.; Zhao, X.H. Modelling Tree Height–Diameter Relationships in Multi-Species and Multi-Layered Forests: A Large Observational Study from Northeast China. For. Ecol. Manag. 2014, 316, 78–89. [Google Scholar] [CrossRef]
- Zeng, W.; Tomppo, E.; Healey, S.P.; Gadow, K.V. The National Forest Inventory in China: History—Results—International Context. For. Ecosyst. 2015, 2, 23. [Google Scholar] [CrossRef]
- Sharma, M.; Amateis, R.; Burkhart, H. Top Height Definition and Its Effect on Site Index Determination in Thinned and Unthinned Loblolly Pine Plantations. For. Ecol. Manag. FOREST ECOL MANAGE 2002, 168, 163–175. [Google Scholar] [CrossRef]
- Zang, H.; Lei, X.; Zeng, W. Height-Diameter Equations for Larch Plantations in Northern and Northeastern China: A Comparison of the Mixed-Effects, Quantile Regression and Generalized Additive Models. Forestry 2016, 89, 434–445. [Google Scholar] [CrossRef]
- Davidian, M.; Giltinan, D.M. Nonlinear Models for Repeated Measurement Data: An Overview and Update. JABES 2003, 8, 387. [Google Scholar] [CrossRef]
- Vonesh, E.F. Linear and Nonlinear Models for the Analysis of Repeated Measurements; M. Dekker: New York, NY, USA, 1997; ISBN 978-0-8247-8248-1. [Google Scholar]
- Diéguez-Aranda, U.; Burkhart, H.E.; Rodríguez-Soalleiro, R. Modeling Dominant Height Growth of Radiata Pine (Pinus radiata D. Don) Plantations in North-Western Spain. For. Ecol. Manag. 2005, 215, 271–284. [Google Scholar] [CrossRef]
- García, O. Comparing and Combining Stem Analysis and Permanent Sample Plot Data in Site Index Models. For. Sci. 2005, 51, 277–283. [Google Scholar] [CrossRef]
- Du, X.; Chen, X.; Zeng, W.; Meng, J. A Climate-Sensitive Transition Matrix Growth Model for Uneven-Aged Mixed-Species Oak Forests in North China. For. Int. J. For. Res. 2021, 94, 258–277. [Google Scholar] [CrossRef]
- Zhu, G.; Hu, S.; Chhin, S.; Zhang, X.; He, P. Modelling Site Index of Chinese Fir Plantations Using a Random Effects Model across Regional Site Types in Hunan Province, China. For. Ecol. Manag. 2019, 446, 143–150. [Google Scholar] [CrossRef]
- Gallagher, D.A.; Bullock, B.P.; Montes, C.R.; Kane, M.B. Whole Stand Volume and Green Weight Equations for Loblolly Pine in the Western Gulf Region of the United States through Age 15. For. Sci. 2019, 65, 420–428. [Google Scholar] [CrossRef]
- Reineke, L.H. Perfection a Stand-Density Index for Even-Aged Forest. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Tang, S.; Meng, C.H.; Meng, F.-R.; Wang, Y.H. A Growth and Self-Thinning Model for Pure Even-Age Stands: Theory and Applications. For. Ecol. Manag. 1994, 70, 67–73. [Google Scholar] [CrossRef]
- Morin, X.; Fahse, L.; Jactel, H.; Scherer-Lorenzen, M.; García-Valdés, R.; Bugmann, H. Long-Term Response of Forest Productivity to Climate Change Is Mostly Driven by Change in Tree Species Composition. Sci. Rep. 2018, 8, 5627. [Google Scholar] [CrossRef] [PubMed]
- Babst, F.; Poulter, B.; Trouet, V.; Tan, K.; Neuwirth, B.; Wilson, R.; Carrer, M.; Grabner, M.; Tegel, W.; Levanic, T.; et al. Site- and Species-Specific Responses of Forest Growth to Climate across the European Continent. Glob. Ecol. Biogeogr. 2013, 22, 706–717. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Huang, Y.; Li, X.; Shi, F.; Zhao, S.; Yang, Y.; Tian, Y.; Wang, P.; Zhang, S.; et al. Compensation Effect of Winter Snow on Larch Growth in Northeast China. Clim. Change 2021, 164, 54. [Google Scholar] [CrossRef]
- Walker, X.; Johnstone, J.F. Widespread Negative Correlations between Black Spruce Growth and Temperature across Topographic Moisture Gradients in the Boreal Forest. Environ. Res. Lett. 2014, 9, 064016. [Google Scholar] [CrossRef]
- Vaganov, E.A.; Hughes, M.K.; Kirdyanov, A.V.; Schweingruber, F.H.; Silkin, P.P. Influence of Snowfall and Melt Timing on Tree Growth in Subarctic Eurasia. Nature 1999, 400, 149–151. [Google Scholar] [CrossRef]
- Bennie, J.; Huntley, B.; Wiltshire, A.; Hill, M.O.; Baxter, R. Slope, Aspect and Climate: Spatially Explicit and Implicit Models of Topographic Microclimate in Chalk Grassland. Ecol. Model. 2008, 216, 47–59. [Google Scholar] [CrossRef]
- Niu, Y.; Zhou, J.; Yang, S.; Chu, B.; Ma, S.; Zhu, H.; Hua, L. The Effects of Topographical Factors on the Distribution of Plant Communities in a Mountain Meadow on the Tibetan Plateau as a Foundation for Target-Oriented Management. Ecol. Indic. 2019, 106, 105532. [Google Scholar] [CrossRef]
- Wu, H.; Xu, H.; Tang, F.; Ou, G.-L.; Liao, Z.-Y. Impacts of Stand Origin, Species Composition, and Stand Density on Heightdiameter Relationships of Dominant Trees in Sichuan Province, China. Austrian J. For. Sci. 2022, 139, 51–72. [Google Scholar]
- Jiang, H.; Radtke, P.J.; Weiskittel, A.R.; Coulston, J.W.; Guertin, P.J. Climate- and Soil-Based Models of Site Productivity in Eastern US Tree Species. Can. J. For. Res. 2015, 45, 325–342. [Google Scholar] [CrossRef]
- Sharma, R.P.; Brunner, A.; Eid, T. Site Index Prediction from Site and Climate Variables for Norway Spruce and Scots Pine in Norway. Scand. J. For. Res. 2012, 27, 619–636. [Google Scholar] [CrossRef]
- Uzoh, F.C.C.; Oliver, W.W. Individual Tree Diameter Increment Model for Managed Even-Aged Stands of Ponderosa Pine throughout the Western United States Using a Multilevel Linear Mixed Effects Model. For. Ecol. Manag. 2008, 256, 438–445. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.; Lijun, H. Comparison of the Chapman-Richards Function with the Schnute Model in Stand Growth. J. For. Res. 1997, 8, 137–143. [Google Scholar] [CrossRef]
Variable Symbol | Variable | Mean | Median | Min. | Max. |
---|---|---|---|---|---|
H | Tree height/m | 15.6 | 14.9 | 2.0 | 30.5 |
BA | Stand basal area/(m2·ha−1) | 18.86 | 19.00 | 0.12 | 63.68 |
N | Number of trees per hectare | 716.66 | 575 | 12 | 4383 |
T | Stand average age/year | 109 | 107 | 8 | 280 |
Elev | Elevation (m) | 2748 | 2780 | 310 | 4700 |
Slope-A | Slope aspect | / | / | / | / |
Slope-D | Slope degree | 29.32 | 30 | 0 | 80 |
Model | Theoretical Equations | Difference Form | SI Equations |
---|---|---|---|
Richards | |||
Hossfeld | |||
Logistic | |||
Korf |
Factor | Description | Mean | Median | Min. | Max. | Estimate | Std. Error | p Value |
---|---|---|---|---|---|---|---|---|
Tmax_sm | Mean maximum temperature in the summer (°C) | 18.136 | 17.860 | 11.920 | 25.960 | 3.005 | 0.385 | <0.001 |
Tave_sm | Mean temperature in the summer (°C) | 12.588 | 12.360 | 7.060 | 19.760 | −3.013 | 0.849 | <0.001 |
PPT_sm | Summer precipitation (mm) | 288.540 | 282.600 | 4.800 | 784.000 | 0.007 | 0.001 | <0.001 |
PPT_wt | Winter precipitation (mm) | 22.468 | 11.400 | 1.000 | 199.400 | −0.072 | 0.001 | <0.001 |
MWMT | Mean warmest month temperature (°C) | 13.643 | 13.400 | 8.140 | 21.700 | −1.266 | 0.587 | <0.01 |
RH | Relative humidity (%) | 57.587 | 57.800 | 43.800 | 72.200 | 0.579 | 0.057 | <0.001 |
Elev | Elevation | 2748 | 2780 | 310 | 4700 | −0.457 | 0.201 | <0.01 |
Origin | / | / | / | / | / | 3.067 | 0.637 | <0.001 |
Parameter | Estimate | Std. Error | p Value | R2 | RMSE | MAE |
---|---|---|---|---|---|---|
29.902 | 1.852 | <0.001 | 0.738 | 3.026 | 2.352 | |
0.032 | 0.004 | <0.001 | ||||
1.162 | 0.066 | <0.001 |
Model | Parameters | Estimate | Std. Error | AIC | BIC | R2 | RMSE | MAE |
---|---|---|---|---|---|---|---|---|
Richards | b | 0.060 * | 0.005 | 5059.873 | 5075.554 | 0.846 | 1.338 | 0.580 |
c | −0.155 * | 0.065 | ||||||
Hossfeld | a | 9.573 *** | 1.089 | 5038.709 | 5054.389 | 0.860 | 1.327 | 0.597 |
b | 0.265 *** | 0.083 | ||||||
Logistic | a | 11.761 *** | 1.849 | 5057.061 | 5072.741 | 0.846 | 1.338 | 0.586 |
c | 0.001 *** | 0.006 | ||||||
Korf | a | 7.505 ** | 1.244 | 5028.946 | 5044.626 | 0.869 | 1.320 | 0.595 |
c | 0.248 ** | 0.065 |
Parameter | Estimate | Std. Error | p Value | R2 | RMSE | MAE |
---|---|---|---|---|---|---|
a | 7.495 | 0.874 | <0.01 | 0.899 | 1.315 | 0.594 |
c | 0.249 | 0.054 | <0.01 | |||
m1 | 0.001 | 0.000 | <0.05 | |||
m2 | 0.006 | 0.000 | <0.05 |
Random Effect | AIC | BIC | LRT (Chisq) | p Value |
---|---|---|---|---|
Origin | 4656.731 | 4688.092 | / | / |
Region | 4671.483 | 4702.845 | 14.753 | <0.001 |
Elev | 4676.42 | 4707.78 | 4.9353 | <0.001 |
Origin, region | 4658.933 | 4695.522 | 19.485 | <0.001 |
Elev, origin | 4658.94 | 4695.525 | 0.0028 | <0.001 |
Elev, region | 4671.183 | 4707.772 | 12.247 | <0.001 |
Origin, region, elev | 4654.190 | 4696.006 | 18.993 | <0.001 |
Parameter | Estimate | Std. Error | R2 | RMSE | MAE |
---|---|---|---|---|---|
a | 7.9345 | 2.24656 | 0.921 | 1.301 | 0.588 |
c | 0.3534 | 0.0600 | |||
m1 | 0.0001 | 0.0003 | |||
m2 | 0.0007 | 0.0003 |
No. | Model | R2 | RMSE | MAE |
---|---|---|---|---|
Equation (13) | Basic difference model | 0.869 | 1.320 | 0.595 |
Equation (14) | Difference model with climate effects | 0.899 | 1.315 | 0.594 |
Equation (15) | Nonlinear mixed-effects model | 0.921 | 1.301 | 0.588 |
Data | Indicator | SINLME-BA1 | SINLME-BA2 | SIbase-BA1 | SIbase-BA2 |
---|---|---|---|---|---|
Parameters | a | 41.530 *** (1.418) | 23.078 *** (0.629) | 30.360 *** (2.020) | 16.426 *** (0.380) |
b | 0.178 *** (0.009) | 0.197 *** (0.010) | 0.237 *** (0.018) | 0.304 *** (0.011) | |
c | 0.001 *** (0.001) | 11.998 *** (1.01) | 0.001 * (0.001) | 0.336 *** (0.207) | |
d | 5.832 *** (0.166) | 0.954 *** (0.013) | 7.645 *** (0.449) | 0.954 *** (0.012) | |
f | 0.166 *** (0.005) | / | 0.128 *** (0.007) | / | |
Model evaluation | AIC | 7290.528 | 7372.389 | 7439.741 | 7464.774 |
BIC | 7321.89 | 7398.524 | 7470.863 | 7490.709 | |
Modeling data | R2 | 0.918 | 0.905 | 0.891 | 0.889 |
RMSE | 3.407 | 3.822 | 4.011 | 4.064 | |
MAE | 2.126 | 2.185 | 2.187 | 2.223 | |
Validation data | R2 | 0.915 | 0.899 | 0.886 | 0.883 |
RMSE | 3.460 | 3.900 | 4.335 | 4.401 | |
MAE | 2.197 | 2.208 | 2.265 | 2.359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Feng, Z.; Wang, L.; Wang, S.; Liu, K. Improving the Site Index and Stand Basal Area Model of Picea asperata Mast. by Considering Climate Effects. Forests 2024, 15, 1076. https://doi.org/10.3390/f15071076
Wang Y, Feng Z, Wang L, Wang S, Liu K. Improving the Site Index and Stand Basal Area Model of Picea asperata Mast. by Considering Climate Effects. Forests. 2024; 15(7):1076. https://doi.org/10.3390/f15071076
Chicago/Turabian StyleWang, Yuan, Zhongke Feng, Liang Wang, Shan Wang, and Kexin Liu. 2024. "Improving the Site Index and Stand Basal Area Model of Picea asperata Mast. by Considering Climate Effects" Forests 15, no. 7: 1076. https://doi.org/10.3390/f15071076
APA StyleWang, Y., Feng, Z., Wang, L., Wang, S., & Liu, K. (2024). Improving the Site Index and Stand Basal Area Model of Picea asperata Mast. by Considering Climate Effects. Forests, 15(7), 1076. https://doi.org/10.3390/f15071076