High Impacts of Invasive Weed Lantana camara on Plant Community and Soil Physico-Chemical Properties across Habitat Types in Central Nepal
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
2.3. Data Analysis
2.4. Soil Parameter Analysis
3. Results
3.1. Species Composition and Diversity
3.2. Soil Physico-Chemical Characteristics
4. Discussion
4.1. Species Composition and Diversity
4.2. Soil Physico-Chemical Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Name of Plants | Family | Invaded | Non-Invaded |
Acacia catechu (L.f.) Wild | Fabaceae | - | + |
Achyranthes aspera L. | Amaranthaceae | + | + |
Acmella sp. | Asteraceae | - | + |
Ageratum conyzoides L. | Asteraceae | + | + |
Ageratum houstonianum Mill. | Asteraceae | + | + |
Ageratina adenophora (Spreng.) R. King and H. Rob. | Asteraceae | + | + |
Alternanthera phyloxeroides (Mart.) Griseb | Amaranthaceae | - | + |
Anaphalis contorta (D. Don) Hook. f. | Asteraceae | - | + |
Artemisia indica Willd. | Asteraceae | + | + |
Arundo sp. | Poaceae | + | + |
Asparagus racemosus Willd. | Asparagaceae | + | - |
Axonopus Compressus (Sw.) P. Beauv. | Poaceae | - | + |
Azadirachta indica A. Juss. | Meliaceae | + | - |
Bidens pilosa L. | Asteraceae | + | + |
Boehmeria sp. | Urticaceae | + | + |
Bothriochloa ischaemum (L.) Keng | Poaceae | + | + |
Bothriochloa pertusa (L.) A. Camus | Poaceae | - | + |
Buddleja asiatica Lour. | Schrophulariaceae | - | + |
Callicarpa arborea Roxb. | Verbenaceae | - | + |
Callicarpa macrophylla Vahl | Verbenaceae | + | - |
Calotropis gigantea (L.) Dryand | Apocynaceae | + | - |
Cannabis sativa L. | Cannabaceae | + | + |
Cardiospermum halicacabum L. | Sapindaceae | - | + |
Castanopsis indica (Roxb.) Miq. | Fagaceae | - | + |
Chromolaena odorata (L.) R. M. King and H. Rob. | Asteraceae | + | + |
Chrysopogon aciculatus (Retz.) Trin. | Poaceae | - | + |
Cissampelos pareria L. | Menispermaceae | - | + |
Clerodendrum viscosum Vent. | Lamiaceae | + | + |
Coccinia grandis (L.) Voigt | Cucurbitaceae | + | - |
Colebrookea oppositifolia sm. | Lamiaceae | + | + |
Colocasia esculenta (L.) Schott | Araceae | + | + |
Commelina benghalensis (L.) | Commelinaceae | + | + |
Conyza bonariensis (L.) Cronquist | Asteraceae | - | + |
Corchorus aestuans L. | Tiliaceae | + | + |
Crassocephalum crepidiodes (Benth.) S. Moore | Asteraceae | + | + |
Cucumis callosus (Rottb.) Cogn. | Cucurbitaceae | + | - |
Curcuma aromatica Salisb. | Zingiberaceae | - | + |
Cyanotis cristata (L.) D. Don | Commelinaceae | - | + |
Cynodon dactylon (L.) Pers. | Poaceae | + | + |
Cynoglossum lanceolatum Forssk. | Boraginaceae | - | + |
Cyperus esculentus L. | Cyperaceae | + | + |
Cyperus rotundus L. | Cyperaceae | + | + |
Cyperus sp. | Cyperaceae | - | + |
Dalbergia sisso DC. | Fabaceae | + | + |
Desmodium heterocarpon (L.) DC. | Fabaceae | - | + |
Desmodium triflorum (L.) DC. | Fabaceae | + | + |
Digitaria ciliaris (Retz.) Koeler | Poaceae | + | + |
Digitaria setigera Roth | Poaceae | + | - |
Dioscorea bulbifera L. | Dioscoreaceae | + | + |
Drepanostachyum intermedium (Munro) Keng f. | Poaceae | - | + |
Drymaria diandra Blume | Caryophyllaceae | + | + |
Elephantopus scaber L. | Asteraceae | - | + |
Eulaliopsis binata (Retz.) C. E. Hubb | Poaceae | + | + |
Euphorbia hirta L. | Euphorbiaceae | + | + |
Evolvulus nummularius (L.) L. | Convolvulaceae | + | + |
Ficus hispida L. | Moraceae | + | + |
Ficus semicordata Buch.-Ham. ex J. E. Sm. | Moraceae | + | - |
Fimbristylis dichotoma (L.) Vahl. | Cyperaceae | + | + |
Flemingia macrophylla (Willd.) Merr. | Fabaceae | + | - |
Galinsoga perviflora Cav. | Asteraceae | + | + |
Gnaphalium affine D. Don. | Asteraceae | - | + |
Gonostegia pentandra (Roxb.) Miq. | Urticaceae | + | + |
Holarrhena pubescens (Buch.-Ham.) Wall. ex G. Don | Apocynaceae | + | + |
Hydrocotyle sibthorpioides Lam. | Apiaceae | - | + |
Hyptis suaveolens (L.) Poit. | Lamiaceae | + | + |
Imperata cylindrica (L.) P. Beauv. | Poaceae | + | + |
Ipomoea nil (L.) Roth | Convolvulaceae | - | + |
Ipomoea purpurea (L.) Roth | Convolvulaceae | + | - |
Ipomoea quamoclit L. | Convolvulaceae | + | + |
Justicia adhatoda L. | Acanthaceae | + | + |
Justicia simplex D. Don. | Acanthaceae | + | + |
Kyllinga brevifolia Rottb. | Cyperaceae | + | + |
Lantana camara L. | Verbenaceae | + | + |
Leea crispa Royen ex L. | Leeaceae | + | + |
Leucaena leucocephala (Lam.) de Wit | Fabaceae | + | - |
Leucas cephaloates (Roth) Spreng. | Lamiaceae | - | + |
Lindernia crustacea (L.) F. Muell. | Schrophulariaceae | - | + |
Maesa chisia Buch.-Ham. ex D. Don | Myrsinaceae | - | + |
Melastoma malabathricum L. | Melastomataceae | + | + |
Mikania micrantha Kunth. | Asteraceae | + | + |
Momordica charantia L. | Cucurbitaceae | + | + |
Mimosa pudica L. | Fabaceae | + | + |
Mimosa rubicaulis Lam. | Fabaceae | - | + |
Morus alba L. | Moraceae | + | + |
Murraya koenigii (L.) Spreng | Rutaceae | + | + |
Oplismenus hirtellus (L.) P.Beauv. | Poaceae | + | + |
Oxalis corniculata L. | Oxalidaceae | + | + |
Parthenium hysterophorus L. | Asteraceae | + | + |
Paspalidium flavidum (Retz.) A. Camus | Poaceae | + | + |
Paspalum scrobiculatum L. | Poaceae | + | + |
Paspalum sp. | Poaceae | - | + |
Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross | Polygonaceae | + | + |
Persicaria perfoliata (L.) H. Gross | Polygonaceae | - | + |
Phragmites karka (Retz.) Trin. ex Steud | Poaceae | + | + |
Phyllanthus urinaria L. | Euphorbiaceae | + | + |
Phyllanthus virgatus G. Forst | Euphorbiaceae | + | + |
Physalis angulata L. | Solanaceae | + | - |
Pinus roxburghii Sarg. | Pinaceae | + | - |
Piper longum L. | Piperaceae | + | - |
Plumbago zeylanica L. | Plumbaginaceae | - | + |
Pogonatherum paniceum (Lam.) Hack. | Poaceae | - | + |
Polygonum persicaria L. | Polygonaceae | + | + |
Polygonum sp. | Polygonaceae | + | + |
Prunus persica (L.) Batsch. | Rosaceae | - | + |
Reinwardtia indica Dumort. | Linaceae | - | + |
Ricinus communis L. | Euphorbiaceae | - | + |
Rubus ellipticus Sm. | Rosaceae | + | - |
Rubus sp. | Rosaceae | + | + |
Saccharum spontaneum L. | Poaceae | + | + |
Salvia sp. | Lamiaceae | + | + |
Sapium insigne (Royle) Benth. ex. Hook. f. | Euphorbiaceae | + | - |
Saraca asoca (Roxb.) Willd. | Fabaceae | - | + |
Schima wallichii (DC.) Korth. | Theaceae | - | + |
Senna occidentalis (L.) Roxb. | Fabaceae | + | + |
Senna tora (L.) Roxb. | Fabaceae | + | + |
Setaria glauca (L.) P. Beauv. | Poaceae | + | + |
Setaria pallidifusca (Schumach.) Stapf and C. E. Hubb. | Poaceae | + | + |
Shorea robusta Gaertn. | Dipterocarpaceae | + | + |
Sida acuta (L. fil.) Borss. Waalk. | Malvaceae | + | + |
Sida cordifolia L. | Malvaceae | + | + |
Sida rhombifolia L. | Malvaceae | + | + |
Solanum aculeatissimum Jacq. | Solanaceae | + | + |
Solanum nigrum L. | Solanaceae | + | - |
Spermacoce alata Aubl. | Rubiaceae | + | + |
Stephania glandulifera Miers | Menispermaceae | + | + |
Sambucus sp. | Sambucaceae | + | - |
Syzygium cumini (L.) Skeels | Myrtaceae | - | + |
Tetrastigma serrulatum (Roxb.) Planch. | Vitaceae | + | + |
Thysanolaena maxima (Roxb.) Kuntze | Poaceae | + | + |
Tinospora sinensis (Lour.) Merr. | Menispermaceae | - | + |
Tridax procumbens L. | Asteraceae | - | + |
Triumfetta pilosa Roth. | Malvaceae | + | + |
Urena lobata L. | Malvaceae | + | + |
Urtica dioca L. | Urticaceae | - | + |
Vetiveria sp. | Poaceae | + | + |
Woodfordia fruticosa (L.) Kurz. | Lythraceae | + | + |
Xanthium strumarium L. | Asteraceae | + | + |
Appendix B
Season | Simpson Index (1-D) | Shannon Index (H’) | Species Richness | |||
---|---|---|---|---|---|---|
LI | NI | LI | NI | LI | NI | |
Pre-monsoon | 0.72 ± 0.008 | 0.80 ± 0.008 | 1.80 ± 0.547 | 2.32 ± 0.737 | 8 ± 0.469 | 11 ± 0.476 |
p-value | <0.001 | <0.001 | <0.001 | |||
Monsoon | 0.81 ± 0.010 | 0.89 ± 0.009 | 1.88 ± 0.035 | 2.84 ± 0.013 | 11 ± 0.404 | 15 ± 0.564 |
p-value | <0.001 | <0.001 | <0.001 |
Season | Habitat | Shannon Index (H’) | Simpson Index (1-D) | Species Richness | |||
---|---|---|---|---|---|---|---|
LI | NI | LI | NI | LI | NI | ||
Pre-monsoon | Forest-edge | 2.02 ± 0.05 b | 2.14 ± 0.13 a | 0.74 ± 0.01 a | 0.77 ± 0.03 b | 10 ± 0.55 a | 13 ± 0.65 b |
Fallow land | 1.65 ± 0.10 b | 2.57 ± 0.14 ab | 0.71 ± 0.02 ab | 0.83 ± 0.04 bc | 8 ± 0.75 ab | 11 ± 0.59 b | |
Roadside | 1.73 ± 0.07 a | 2.26 ± 0.071 b | 0.68 ± 0.01 b | 0.80 ± 0.02 c | 7 ± 0.7 b | 9 ± 0.7 a | |
p-value | 0.011 | 0.048 | 0.007 | 0.008 | 0.009 | 0.003 | |
F-value | 5.57 | 3.49 | 6.30 | 5.97 | 5.93 | 7.86 | |
Monsoon | Forest-edge | 1.78 ± 0.02 a | 2.78 ± 0.02 b | 0.77 ± 0.01 a | 0.86 ± 0.016 b | 11 ± 0.59 b | 15 ± 1.07 a |
Fallow land | 2.11 ± 0.03 a | 2.92 ± 0.008 c | 0.84 ± 0.02 a | 0.88 ± 0.016 bc | 13 ± 0.82 bc | 17 ± 0.90 ab | |
Roadside | 1.76 ± 0.01 b | 2.82 ± 0.009 a | 0.83 ± 0.03 b | 0.93 ± 0.009 c | 10 ± 0.38 c | 14 ± 0.52 b | |
p-value | <0.001 | <0.001 | 0.015 | 0.005 | 0.019 | 0.015 | |
F-value | 76.72 | 55.33 | 5.13 | 6.82 | 4.76 | 5.10 |
Season | pH | SOC % | N % | K | P | |||||
---|---|---|---|---|---|---|---|---|---|---|
LI | NI | LI | NI | LI | NI | LI | NI | LI | NI | |
Pre-monsoon | 6.02 ± 0.139 | 6.15 ± 0.132 | 3.60 ± 0.119 | 3.29 ± 0.107 | 0.29 ± 0.016 | 0.24 ± 0.013 | 161.64 ± 8.55 | 185.52 ± 9.34 | 39.30 ± 2.21 | 30.62 ± 1.96 |
p-value | ns | 0.04 | <0.001 | <0.001 | <0.001 | |||||
Monsoon | 6.20 ± 0.113 | 6.38 ± 0.119 | 3.89 ± 0.128 | 3.43 ± 0.104 | 0.34 ± 0.022 | 0.27 ± 0.015 | 155.92 ± 14.45 | 172.78 ± 13.62 | 45.33 ± 3.13 | 37.61 ± 2.45 |
p-value | ns | 0.003 | <0.001 | 0.026 | 0.05 |
Season | Habitat | pH | SOC % | N % | K | P | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
LI | N | LI | NI | LI | NI | LI | NI | LI | NI | ||
Pre-monsoon | Forest-edge | 6.18 ± 0.24 a | 6.31 ± 0.21 b | 4.12 ± 0.20 a | 3.58 ± 0.17 b | 0.32 ± 0.02 a | 0.26 ± 0.02 b | 187.33 ± 6.21 a | 189.53 ± 5.64 b | 40.60 ± 2.93 a | 31.76 ± 2.92 b |
Fallow land | 6.44 ± 0.22 ab | 6.51 ± 0.20 bc | 3.49 ± 0.14 a | 3.38 ± 0.16 bc | 0.37 ± 0.02 b | 0.29 ± 0.01 c | 195.29 ± 2.45 b | 235.92 ± 11.38 c | 47.81 ± 4.27 ab | 37.46 ± 3.88 bc | |
Roadside | 5.51 ± 0.14 b | 5.69 ± 0.18 c | 3.24 ± 0.14 b | 2.96 ± 0.16 c | 0.22 ± 0.01 b | 0.17 ± 0.008 c | 109.04 ± 5.65 b | 137.16 ± 5.09 a | 30.58 ± 1.40 b | 23.5 ± 1.46 c | |
p-value | 0.012 | 0.023 | 0.004 | 0.043 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | 0.007 | |
F-value | 5.50 | 4.50 | 7.23 | 3.64 | 18.86 | 16.74 | 89.64 | 41.84 | 8.53 | 6.22 | |
Monsoon | Forest-edge | 6.31 ± 0.21 a | 6.47 ± 0.19 b | 4.49 ± 0.15 a | 3.54 ± 0.18 b | 0.40 ± 0.02 a | 0.34 ± 0.01 b | 242.45 ± 12.23 a | 252.08 ± 12.58 b | 48.47 ± 3.52 a | 37.0.7 ± 3.44 b |
Fallow land | 6.60 ± 0.11 b | 6.76 ± 0.23 bc | 3.76 ± 0.19 a | 3.70 ± 0.14 bc | 0.43 ± 0.02 b | 0.31 ± 0.01 c | 131.15 ± 10.03 a | 166.26 ± 13.92 c | 57.16 ± 3.72 b | 45.58 ± 5.04 bc | |
Roadside | 5.75 ± 0.09 b | 5.95 ± 0.07 c | 3.47 ± 0.15 b | 3.11 ± 0.13 c | 0.21 ± 0.01 b | 0.19 ± 0.009 c | 101.03 ± 16.43 b | 108.11 ± 6.80 a | 31.77 ± 4.63 b | 30.99 ± 2.94 c | |
p-value | 0.002 | 0.011 | <0.001 | 0.034 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.042 | |
F-value | 8.67 | 5.51 | 9.73 | 3.96 | 40.80 | 42.57 | 30.21 | 42.11 | 10.43 | 3.66 |
References
- CBD. Alien species that threaten ecosystems, habits or species. In Convention on Biological Diversity; Report on Consultations Regarding International Standards; FAO: Rome, Italy, 2008. [Google Scholar]
- Downey, P.O.; Rirchardson, D.M. Alien plant invasions and native plant extinctions: A six-threshold framework. AoB Plants 2016, 8, plw047. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Cassey, P.; Blackburn, T.M. Alien species as a driver of recent extinction. Biol. Lett. 2016, 12, 20150623. [Google Scholar] [CrossRef] [PubMed]
- IPBES. Summary for Policymakers of the Thematic Assessment Report on Invasive Alien Species and Their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Roy, H.E., Pauchard, A., Stoett, P., Renard Truong, T., Bacher, S., Galil, B.S., Hulme, P.E., Ikeda, T., Sankaran, K.V., McGeoch, M.A., et al., Eds.; IPBES Secretariat: Bonn, Germany, 2023. [Google Scholar] [CrossRef]
- Gibbons, S.M.; Lekberg, Y.; Mummey, D.L.; Sangwan, N.; Ramsey, P.W.; Gilbert, J.A. Invasive plants rapidly reshape soil properties in a grassland ecosystem. MSystems 2017, 2, e00178-16. [Google Scholar] [CrossRef] [PubMed]
- Le Maitre, D.C.; Richardson, D.M.; Chapman, R.A. Alien plant invasions in South Africa: Driving forces and the human dimension: Working for water. S. Afr. J. Sci. 2004, 100, 103–112. [Google Scholar]
- Brooks, M.L.; D’antonio, C.M.; Richardson, D.M.; Grace, J.B.; Keeley, J.E.; DiTomaso, J.M.; Hobbs, R.J.; Pellant, M.; Pyke, D. Effects of invasive alien plants on fire regimes. BioScience 2004, 54, 677–688. [Google Scholar] [CrossRef]
- Hejda, M.; Pyšek, P.; Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 2009, 97, 393–403. [Google Scholar] [CrossRef]
- Rodriguez, L.F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 2006, 8, 927–939. [Google Scholar] [CrossRef]
- Shrestha, B.B. Management of invasive alien plants in Nepal: Current practices and future prospects. In Tropical Ecosystems: Structure, Functions and Challenges in the Face of Global Change; Springer: Berlin/Heidelberg, Germany, 2019; pp. 45–68. [Google Scholar]
- Chaudhary, R.P.; Uprety, Y.; Rimal, S.K. Deforestation in Nepal: Causes, consequences and responses. Biol. Environ. Hazards Risks Disasters 2016, 12, 335–372. [Google Scholar]
- Shrestha, U.B.; Shrestha, B.B. Climate change amplifies plant invasion hotspots in Nepal. Divers. Distrib. 2019, 25, 1599–1612. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Shrestha, K.K. Invasions of alien plant species in Nepal: Patterns and process. Invasive Alien Species Obs. Issues Around World 2021, 2, 168–183. [Google Scholar] [CrossRef]
- Maharjan, S.; Joshi, S.; Shrestha, B.B.; Devkota, A.; Jha, P.K. Life History Traits and Invasion Success of Parthenium hysterophorus L. in Kathmandu Valley, Nepal. Nepal J. Sci. Technol. 2014, 15, 31–38. [Google Scholar] [CrossRef]
- Bhattarai, K.R.; Maren, I.E.; Subedi, S.C. Biodiversity and invasibility: Distribution patterns of invasive plant species in the Himalayas, Nepal. J. Mt. Sci. 2014, 11, 688–696. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Pokhrel, K.; Paudel, N.; Poudel, S.; Shabbir, A.; Adkins, S.W. Distribution of Parthenium hysterophorus and one of its biological control agents (Coleoptera: Zygogramma bicolorata) in Nepal. Weed Res. 2019, 59, 467–478. [Google Scholar] [CrossRef]
- Bhatta, S.; Joshi, L.R.; Shrestha, B.B. Distribution and impact of invasive alien plant species in Bardia National Park, western Nepal. Environ. Conserv. 2020, 47, 197–205. [Google Scholar] [CrossRef]
- Thapa, L.B.; Kaewchumnong, K.; Sinkkonen, A.; Sridith, K. “Soaked in rainwater” effect of Ageratina adenophora on seedling growth and development of native tree species in Nepal. Flora 2020, 263, 151554. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef]
- Post, A.K.; Knapp, A.K. The importance of extreme rainfall events and their timing in a semi-arid grassland. J. Ecol. 2020, 108, 2431–2443. [Google Scholar] [CrossRef]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species A Selection from the Global Invasive Species Database; The Invasive Species Specialist Group (ISSG): Rome Italy, 2000. [Google Scholar]
- Dobhal, P.K.; Kohli, R.K.; Batish, D.R. Evaluation of impact of Lantana camara L. invasion, on four major woody shrubs, along Nayar river of Pauri Garhwal in Uttarakhand Himalaya. Int. J. Biodivers. Conserv. 2010, 2, 166–172. [Google Scholar]
- Gooden, B.; French, K.; Turner, P.J.; Downey, P.O. Impact threshold for an alien plant invader, Lantana camara L., on native plant communities. Biol. Conserv. 2009, 142, 2631–2641. [Google Scholar] [CrossRef]
- Bhakat, R.K.; Maiti, P.P. Invasiveness and allelopathy as a threat to biodiversity. In Proceedings of the International Seminar on Multidisciplinary Approaches in Angiosperm Systematics, Kalyani, India, January 2012; pp. 748–751. [Google Scholar]
- Sharma, G.P.; Raghubanshi, A.S. Lantana invasion alters soil nitrogen pools and processes in the tropical dry deciduous forest of India. Appl. Soil Ecol. 2009, 42, 134–140. [Google Scholar] [CrossRef]
- Fan, L.; Chen, Y.; Yuan, J.; Yang, Z. The effect of Lantana camara Linn. invasion on soil chemical and microbiological properties and plant biomass accumulation in southern China. Geoderma 2010, 154, 370–378. [Google Scholar] [CrossRef]
- Osunkoya, O.O.; Perrett, C. Lantana camara L. (Verbenaceae) invasion effects on soil physicochemical properties. Biol. Fertil. Soils 2011, 47, 349–355. [Google Scholar] [CrossRef]
- Simba, Y.R.; Kamweya, A.M.; Mwangi, P.N.; Ochora, J.M. Impact of the invasive shrub, Lantana camara L. on soil properties in Nairobi National Park, Kenya. Int. J. Biol. Divers. Conserv. 2013, 5, 803–809. [Google Scholar]
- Ruwanza, S.; Shackleton, C.M. Effects of the invasive shrub Lantana camara on soil properties in the Eastern Cape, South Africa. Weed Biol. Manag. 2016, 16, 67–79. [Google Scholar] [CrossRef]
- Mahla, N.; Mlambo, D. Influence of two co-occurring invasive plant species on resident woody species and surface soil properties in Chipinge Safari Area, Zimbabwe. Trop. Ecol. 2019, 60, 129–139. [Google Scholar] [CrossRef]
- Ruwanza, S. Effects of Lantana camara invasion on vegetation diversity and composition in the Vhembe Biosphere Reserve, Limpopo Province of South Africa. Sci. Afr. 2020, 10, e00610. [Google Scholar] [CrossRef]
- Chacón, N.; Herrera, I.; Flores, S.; González, J.A.; Nassar, J.M. Chemical, physical, and biochemical soil properties and plant roots as affected by native and exotic plants in Neotropical arid zones. Biol. Fertil. Soils 2009, 45, 321–328. [Google Scholar] [CrossRef]
- Vitousek, P.M. Biological invasions and ecosystem processes: Towards an integration of population biology and ecosystem studies. Oikos 1990, 57, 7–13. [Google Scholar] [CrossRef]
- Kershaw, K.A. Quantitative and Dynamic Plant Ecology, 2nd ed.; Arnold, E., Krebs, C.J., Eds.; Ecological Methodology (No. QH541. 15. S72. K74 1999); Harper & Row: New York, NY, USA, 1973. [Google Scholar]
- Misra, R. Ecology Workbook; Oxford and IBH Publishing Company: Calcutta, India, 1968. [Google Scholar]
- Daubenmire, R. A canopy-coverage method of vegetation analysis. Northwest Sci. 1959, 33, 43–64. [Google Scholar]
- KATH (National Herbarium & Plant Laboratories). Flora of Nepal. 2019. Available online: https://kath.gov.np/Flora_of_Nepal (accessed on 15 April 2019).
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2004; 256p. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Gupta, P.K. Methods in Environmental Analysis: Water, Soil and Air, 1st ed.; Updesh Purohit for Agrobios, India Jodhpur Agro House: Jodhpur, India, 2004; pp. 47–48. [Google Scholar]
- Black, C.A.; Evans, D.D.; White, J.L. Methods of soil analysis: Chemical and microbiological properties. Physical and mineralogical properties including statistics of measurement and sampling. Science 1965, 151, 982–983. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorous. In Methods of Soil Analysis, Part 2, 2nd ed.; Page, A.L., Ed.; Chemical and Microbiological Properties, ASA-SSSa, Inc.: Madison, WI, USA, 1982. [Google Scholar]
- NARC. Methods of Soil Sample Collection and Analysis; Soil Science Division, Council of National Agriculture Research Center: Khumaltar, Nepal, 2013; 167p.
- Fetcher, N.; Strain, B.R.; Oberbauer, S.F. Effects of light regime on the growth, leaf morphology, and water relations of seedlings of two species of tropical trees. Oecologia 1983, 58, 314–319. [Google Scholar] [CrossRef]
- Turton, S.M.; Duff, G.A. Light environments and floristic composition across an open forest-rainforest boundary in northeastern Queensland. Aust. J. Ecol. 1992, 17, 415–423. [Google Scholar] [CrossRef]
- Tilman, D. Resource Competition and Community Structure; Princeton University Press: Princeton, NJ, USA, 1982; Volume 28, pp. 1043–1045. [Google Scholar] [CrossRef]
- Sharma, G.P.; Raghubanshi, A.S. Tree population structure, regeneration and expected future composition at different levels of L. camara L. invasion in the Vindhyan tropical dry deciduous forest of India. Lyonia 2006, 11, 25–37. [Google Scholar]
- Taylor SKumar, L.; Reid, N.; Kriticos, D.J. Climate change and the potential distribution of an invasive shrub, Lantana camara L. PLoS ONE 2012, 7, e35565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, Y.; Peng, S.; Zobel, K. Climate warming may facilitate invasion of the exotic shrub Lantana camara. PLoS ONE 2014, 9, e105500. [Google Scholar] [CrossRef]
- Dobhal, P.K.; Kohli, R.K.; Batish, D.R. Impact of Lantana camara L. invasion on riparian vegetation of Nayar region in Garhwal Himalayas (Uttarakhand, India). J. Ecol. Nat. Environ. 2011, 3, 11–22. [Google Scholar]
- Aravindhan, V.; Rajendran, A. Impact of invasive species Lantana camara (L.) on the vegetation of Velliangiri Hills, the Southern Western Ghats, India. Glob. J. Environ. Res. 2014, 8, 35–40. [Google Scholar]
- Vila, M.; Weiner, J. Are invasive plant species better competitors than native plant species?—Evidence from pair-wise experiments. Oikos 2004, 105, 229–238. [Google Scholar] [CrossRef]
- Levine, J.M.; D’Antonio, C.M. Elton revisited: A review of evidence linking diversity and invasibility. Oikos 1999, 87, 15–26. [Google Scholar] [CrossRef]
- Rouw, A.D. Chromolaena odorata in the farming systems of South-West Côte d’Ivoire. In Proceedings of the Distribution, Ecology and Management of Chromolaena odorata, 1996; ORSTOM, ICRAF and University of Guam, Mangilao, GUAM: Guam, Micronesia, 1996; pp. 76–87. [Google Scholar]
- Tjitrosemito, S. The management of Chromolaena odorata. In Proceedings of the Third International Chromolaena Workshop on Distribution, Ecology and Management of Chromolaena odorata, 1996; Robinson, H., Ed.; ORSTOM, ICRAF and University of Guam, Mangilao, GUAM: Guam, Micronesia, 1996; pp. 135–142. [Google Scholar]
- Adhikari, A.; Subedi, A.; Tiwari, A.; Shrestha, B.B. Impacts of road on plant invasions in the Middle Mountain region of central Nepal. J. Mt. Sci. 2024, 21, 619–632. [Google Scholar] [CrossRef]
- Starfinger, U.; Kowarik, I.; Rode, M.; Schepker, H. From desirable ornamental plant to pest to accepted addition to the Flora?—The perception of an alien tree species through the centuries. Biol. Invasions 2003, 5, 323–335. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Burton, P.J. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Guo, Q.; Brown, J.H. Temporal fluctuations and experimental effects in desert plant communities. Oecologia 1996, 107, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Osunkoya, O.O.; Perrett, C.; Fernando, C. Population viability analysis models for Lantana camara L. (Verbenaceae): A weed of national significance. In Proceedings of the 17th Australasian Weeds Conference, Christchurch, New Zealand, 26–30 September 2010; Zydenbos, S.M., Ed.; New Zealand Plant Protection Society: Auckland, New Zealand, 2010; pp. 91–94. [Google Scholar]
- Sharma, G.P.; Raghubanshi, A.S. Effect of Lantana camara L. cover on plant species depletion in the Vindhyan tropical dry deciduous forest of India. Appl. Ecol. Environ. Res. 2007, 5, 109–121. [Google Scholar] [CrossRef]
- Fu, D.; Wu, X.; Huang, N.; Duan, C. Effects of the invasive herb Ageratina adenophora on understory plant communities and tree seedling growth in Pinus yunnanensis forests in Yunnan, China. J. For. Res. 2018, 23, 112–119. [Google Scholar] [CrossRef]
- Castillo, J.M.; Leira-Doce, P.; Carrión-Tacuri, J.; Munoz-Guacho, E.; Arroyo-Solís, A.; Curado, G.; Tye, A. Contrasting strategies to cope with drought by invasive and endemic species of Lantana in Galapagos. Biodivers. Conserv. 2007, 16, 2123–2136. [Google Scholar] [CrossRef]
- Dassonville, N.; Vanderhoeven, S.; Gruber, W.; Meerts, P. Invasion by Fallopia japonica increases topsoil mineral nutrient concentrations. Ecoscience 2008, 14, 230–240. [Google Scholar] [CrossRef]
- Kumar, M.; Verma, A.K.; Garkoti, S.C. Lantana camara and Ageratina adenophora invasion alter the understory species composition and diversity of chir pine forest in central Himalaya, India. Acta Oecologica 2020, 109, 103–115. [Google Scholar] [CrossRef]
- Kumar, M.; Garkoti, S.C. Functional traits, growth patterns, and litter dynamics of invasive alien and co-occurring native shrub species of chir pine forest in the central Himalaya, India. Plant Ecol. 2021, 222, 723–735. [Google Scholar] [CrossRef]
- Vitti, S.; Pellegrini, E.; Casolo, V.; Trotta, G.; Boscutti, F. Contrasting responses of native and alien plant species to soil properties shed new light on the invasion of dune systems. J. Plant Ecol. 2020, 13, 667–675. [Google Scholar] [CrossRef]
- Chatanga, P. Impacts of the Alien Species L. camara L. on Vegetation in Northern Gonarezhou National Park, Zimbabwe. Master’s Thesis, University of Zimbabwe, Harare, Zimbabwe, 2007; pp. 1–84. [Google Scholar]
- Thomas, S.E.; Ellison, C.A. A century of classical biological control of Lantana camara: Can pathogens make a significant difference. In Proceedings of the X International Symposium on Biological Control of Weeds, Bozeman, MT, USA, 4–14 July 1999; Montana State University: Bozeman, MT, USA, 2000; Volume 4, pp. 97–104. [Google Scholar]
- ISSG. One Hundred of the World Worst Invasive Allien Species. A Selection from the Global Invasive Database; ISSG: Auckland, New Zealand, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paudel, C.K.; Tiwari, A.; Baniya, C.B.; Shrestha, B.B.; Jha, P.K. High Impacts of Invasive Weed Lantana camara on Plant Community and Soil Physico-Chemical Properties across Habitat Types in Central Nepal. Forests 2024, 15, 1427. https://doi.org/10.3390/f15081427
Paudel CK, Tiwari A, Baniya CB, Shrestha BB, Jha PK. High Impacts of Invasive Weed Lantana camara on Plant Community and Soil Physico-Chemical Properties across Habitat Types in Central Nepal. Forests. 2024; 15(8):1427. https://doi.org/10.3390/f15081427
Chicago/Turabian StylePaudel, Chandra Kumari, Achyut Tiwari, Chitra Bahadur Baniya, Bharat Babu Shrestha, and Pramod Kumar Jha. 2024. "High Impacts of Invasive Weed Lantana camara on Plant Community and Soil Physico-Chemical Properties across Habitat Types in Central Nepal" Forests 15, no. 8: 1427. https://doi.org/10.3390/f15081427
APA StylePaudel, C. K., Tiwari, A., Baniya, C. B., Shrestha, B. B., & Jha, P. K. (2024). High Impacts of Invasive Weed Lantana camara on Plant Community and Soil Physico-Chemical Properties across Habitat Types in Central Nepal. Forests, 15(8), 1427. https://doi.org/10.3390/f15081427