Natural Bioactive Compounds from Orchard Biomass Waste and Cosmetic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orchard Biomass Extracts and Antioxidant Evaluation
2.2. Relative Antioxidant Capacity Index (RACI) Determination
2.3. U-HPLC–MS Analysis
2.4. Cell Culture and Drug Treatment
2.5. Cytotoxicity Assay
2.6. Cream Formulation
2.7. Preparation of Cream
2.8. Cream Quality Check
2.9. Statistical Analysis
3. Results
3.1. Relative Antioxidant Capacity Index (RACI)
3.2. LC-MS Analysis
3.3. Apricot Bark Maceration Extract’s Cytotoxic Effect on HepG2 Cells
3.4. Quality Check
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M. Application of Agri-Food By-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Gabaston, J.; Ortiz-Somovilla, V.; Cantos-Villar, E. Wood waste from fruit trees: Biomolecules and their applications in agri-food industry. Biomolecules 2022, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Valdebenito, F.; Ramírez-Álvarez, R.; Muñoz, M.A.; Pecchi, G.; Canales, R.; Ormazabal, S.; Muñoz, R.; Alejandro-Martín, S.; Quero, F.; Adam, R. Biomass characterization and solvent extraction as tools to promote phenol production from urban pruning. Fuel 2024, 362, 130830. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Gomes, S.M.; Santos, L. The Chemistry Behind Biological Properties of Agro-industrial Portuguese By-Products. Waste Biomass Valorization 2023, 15, 2721–2733. [Google Scholar] [CrossRef]
- Mahesh, S.K.; Fathima, J.; Veena, V.G. Cosmetic potential of natural products: Industrial applications. In Natural Bio-Active Compounds: Volume 2: Chemistry, Pharmacology and Health Care Practices; Springer: Berlin/Heidelberg, Germany, 2019; pp. 215–250. [Google Scholar] [CrossRef]
- Kuno, N.; Matsumoto, M. Skin-Beautifying Agent, Anti-Aging Agent for the Skin, Whitening Agent and External Agent for the Skin. U.S. Patent 6,682,763, 27 January 2004. [Google Scholar]
- Tam, C.C.; Elston, D.M. Allergic contact dermatitis caused by white petrolatum on damaged skin. DERM 2006, 17, 201–203. [Google Scholar] [CrossRef]
- Joshi, L.S.; Pawar, H.A. Herbal cosmetics and cosmeceuticals: An overview. Nat. Prod. Chem. Res. 2015, 3, 170. [Google Scholar] [CrossRef]
- Ashawat, M.; Banchhor, M.; Saraf, S.; Saraf, S. Herbal Cosmetics: “Trends in Skin Care Formulation”. Pharmacogn. Rev. 2009, 3, 82. [Google Scholar]
- Trüeb, R.M. The value of hair cosmetics and pharmaceuticals. Dermatology 2001, 202, 275–282. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Magalhães, M.C.; Oliveira, R.; Sousa-Lobo, J.M.; Almeida, I.F. Trends in the use of botanicals in anti-aging cosmetics. Molecules 2021, 26, 3584. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Janeiro, A.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Biological activities of organic extracts and specialized metabolites from different parts of Cryptomeria japonica (Cupressaceae)—A critical review. Phytochemistry 2023, 206, 113520. [Google Scholar] [CrossRef]
- Rybczyńska-Tkaczyk, K.; Grenda, A.; Jakubczyk, A.; Kiersnowska, K.; Bik-Małodzińska, M. Natural Compounds with Antimicrobial Properties in Cosmetics. Pathogens 2023, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.R.; Russo, D.; Cetera, P.; Faraone, I.; Lo Giudice, V.; Milella, L.; Todaro, L.; Sinisgalli, C.; Fritsch, C.; Dumarçay, S. Chemical analysis and antioxidant properties of orange-tree (Citrus sinensis L.) biomass extracts obtained via different extraction techniques. Biofuels Bioprod. Biorefin. 2020, 14, 509–520. [Google Scholar] [CrossRef]
- Bruno, M.R.; Russo, D.; Faraone, I.; D’Auria, M.; Milella, L.; Todaro, L. Orchard biomass residues: Chemical composition, biological activity and wood characterization of apricot tree (Prunus armeniaca L.). Biofuels Bioprod. Biorefin. 2021, 15, 377–391. [Google Scholar] [CrossRef]
- Faraone, I.; Russo, D.; Bruno, M.R.; Todaro, L.; D’Auria, M.; Milella, L. Focus on Olea europaea L. pruning by-products: Extraction techniques, biological activity, and phytochemical profile. Biofuels Bioprod. Biorefin. 2021, 15, 1835–1849. [Google Scholar] [CrossRef]
- Armentano, M.F.; Bisaccia, F.; Miglionico, R.; Russo, D.; Nolfi, N.; Carmosino, M.; Andrade, P.B.; Valentão, P.; Diop, M.S.; Milella, L. Antioxidant and proapoptotic activities of Sclerocarya birrea [(A. Rich.) Hochst.] methanolic root extract on the hepatocellular carcinoma cell line HepG2. BioMed Res. Int. 2015, 2015, 561589. [Google Scholar] [CrossRef]
- Russo, D.; Miglionico, R.; Carmosino, M.; Bisaccia, F.; Andrade, P.B.; Valentão, P.; Milella, L.; Armentano, M.F. A comparative study on phytochemical profiles and biological activities of Sclerocarya birrea (A. Rich.) Hochst leaf and bark extracts. Int. J. Mol. Sci. 2018, 19, 186. [Google Scholar] [CrossRef]
- EN ISO 17516:2014; Cosmetics—Microbiology—Microbiological Limits. International Organization for Standardization: Geneva, Switzerland, 2014.
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Gao, H.; Shupe, T.F.; Eberhardt, T.L.; Hse, C.Y. Antioxidant activity of extracts from the wood and bark of Port Orford cedar. J. Wood Sci. 2007, 53, 147–152. [Google Scholar] [CrossRef]
- Withouck, H.; Boeykens, A.; Vanden Broucke, M.; Moreira, M.M.; Delerue-Matos, C.; De Cooman, L. Evaluation of the impact of pre-treatment and extraction conditions on the polyphenolic profile and antioxidant activity of Belgium apple wood. Eur. Food Res. Technol. 2019, 245, 2565–2578. [Google Scholar] [CrossRef]
- Cui, J.; Li, X.; Lu, Z.; Jin, B. Plant secondary metabolites involved in the stress tolerance of long-lived trees. Tree Physiol. 2024, 44, tpae002. [Google Scholar] [CrossRef]
- Yilmaz, Y. Novel uses of catechins in foods. Trends Food Sci. Technol. 2006, 17, 64–71. [Google Scholar] [CrossRef]
- Mendoza-Wilson, A.M.; Glossman-Mitnik, D. Theoretical study of the molecular properties and chemical reactivity of (+)-catechin and (−)-epicatechin related to their antioxidant ability. J. Mol. Struct. Theochem 2006, 761, 97–106. [Google Scholar] [CrossRef]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of catechins and their applications. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef]
- Olas, B. The antioxidant, anti-platelet and anti-coagulant properties of phenolic compounds, associated with modulation of hemostasis and cardiovascular disease, and their possible effect on COVID-19. Nutrients 2022, 14, 1390. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Zam, W.; Kumar, M.; Cardoso, S.M.; Pereira, O.R.; Ademiluyi, A.O.; Adeleke, O.; Moreira, A.C.; Živković, J. Phenolic bioactives as antiplatelet aggregation factors: The pivotal ingredients in maintaining cardiovascular health. Oxidative Med. Cell. Longev. 2021, 2021, 2195902. [Google Scholar] [CrossRef]
- Wilcox, L.J.; Borradaile, N.M.; Huff, M.W. Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovasc. Drug Rev. 1999, 17, 160–178. [Google Scholar] [CrossRef]
- Yi, L.; Ma, S.; Ren, D. Phytochemistry and bioactivity of Citrus flavonoids: A focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Phytochem. Rev. 2017, 16, 479–511. [Google Scholar] [CrossRef]
- De Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef]
- El-Mahdy, M.A.; Zhu, Q.; Wang, Q.E.; Wani, G.; Patnaik, S.; Zhao, Q.; Arafa, E.S.; Barakat, B.; Mir, S.N.; Wani, A.A. Naringenin protects HaCaT human keratinocytes against UVB-induced apoptosis and enhances the removal of cyclobutane pyrimidine dimers from the genome. Photochem. Photobiol. 2008, 84, 307–316. [Google Scholar] [CrossRef]
- Martinez, R.M.; Pinho-Ribeiro, F.A.; Steffen, V.S.; Caviglione, C.V.; Vignoli, J.A.; Barbosa, D.S.; Baracat, M.M.; Georgetti, S.R.; Verri, W.A., Jr.; Casagrande, R. Naringenin inhibits UVB irradiation-induced inflammation and oxidative stress in the skin of hairless mice. J. Nat. Prod. 2015, 78, 1647–1655. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Hur, S.-J.; Kim, E.-H.; Lee, S.H.; Shin, J.S.; Kim, M.-K.; Uchizono, J.A.; Whang, W.-K.; Kim, D.-S. Scopoletin from Cirsium setidens increases melanin synthesis via CREB phosphorylation in B16F10 cells. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2014, 18, 307. [Google Scholar] [CrossRef] [PubMed]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Prado Corrêa, G.; Marcato, D.C.; Ramos, W.S.; Corrêa, M.A.; Cicarelli, R.M.B.; Isaac, V.L.B. In vitro evaluation of the cytotoxicity and eye irritation potential of preservatives widely used in cosmetics. Braz. J. Pharm. Sci. 2022, 58, e20039. [Google Scholar] [CrossRef]
- Chiari, B.G.; Martini, P.C.; Moraes, J.D.D.; Andréo, R.; Correa, M.A.; Cicarelli, R.M.B.; Isaac, V.L.B. Use of HepG2 cells to assay the safety of cosmetic active substances. Int. J. Res. Cosmet. Sci. 2012, 2, 8–14. [Google Scholar]
- Kizhedath, A.; Wilkinson, S.; Glassey, J. Assessment of hepatotoxicity and dermal toxicity of butyl paraben and methyl paraben using HepG2 and HDFn in vitro models. Toxicol. Vitr. 2019, 55, 108–115. [Google Scholar] [CrossRef]
- McLaughlin, J.L.; Rogers, L.L.; Anderson, J.E. The use of biological assays to evaluate botanicals. Drug Inf. J. 1998, 32, 513–524. [Google Scholar] [CrossRef]
- UNI EN ISO 22716:2008; Cosmetics—Good Manufacturing Practices (GMP)—Guidelines on Good Manufacturing Practices. Ente Nazionale Italiano di Unificazione (UNI): Milan, Italy, 2008.
- Isnaini, N.; Harnelly, E.; Zulkarnain, Z.; Prajaputra, V.; Muhammad, S.; Syahraini, A.; Syaharani, C.P.S.; Nurfaizah, N.; Sarah, Y. Potential of patchouli (Pogostemon cablin) and champaca (Magnolia champaca) oils incorporated in facial wash formulation for effective anti-aging on human skin. J. Pharm. Pharmacogn. Res. 2025, 13, 459–474. [Google Scholar] [CrossRef]
- ISO 21149:2017; Cosmetics—Microbiology—Enumeration and Detection of Aerobic Mesophilic Bacteria. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 22717:2015; Cosmetics—Microbiology—Detection of Pseudomonas aeruginosa. International Organization for Standardization: Geneva, Switzerland, 2015.
Ingredients | Concentration Intervals | |
---|---|---|
Phase A | ||
A1 | Water | ≥75%–≤100% |
A2 | Xanthane Gum | ≥0.1%–≤1% |
A3 | Glycerine | ≥1%–≤5% |
A4 | Lactil (Sodium Pca, Glycine, Fructose, Urea, Niacinamide, Inositol, and Lactic Acid) | ≥1%–≤5% |
A5 | Sodium Citrate | ≥0.1%–≤1% |
A6 | Sodium Dehydroacetate | ≤0.1% |
A7 | Phytic Acid | ≥0.1%–≤1% |
Phase B | ||
B1 | Rice Oil | ≥1%–≤5% |
B2 | Olive Oil | ≥1%–≤5% |
B3 | Shea Butter | ≥1%–≤5% |
B4 | Sunflower Oil | ≥1%–≤5% |
B5 | Olivem 1000 (Cetearyl Olivate and Sorbitan Olivate) | ≥1%–≤5% |
B6 | Aperoxd Tla (Lecithin, Tocopherol, Ascorbylpalmitate, and Citric Acid) | ≥0.1%–≤1% |
B7 | Vitamin And Acetate | ≥0.1%–≤1% |
Phase C | ||
C1 | Dermosoft Eco 1388 (Glycerin, Aqua, Sodium levulinate, and Sodium Anisate) | ≥1%–≤5% |
C2 | Dry Apricot Extract Bark Maceration (AP_B_ME) | ≥0.1%–≤1% |
Sample | Peak | Primary m/z Fragment Negative ion [M − H]− | Tentative Assignment | Content (mg/g) |
---|---|---|---|---|
Apricot Tree Bark Maceration (AP_B_ME) | 1 | 181 | Unknown | Traces |
2 | 289 | Catechin | 8.8 | |
3 | 289 | Epicatechin | 19.3 | |
4 | 505 | Flavonoid | 19.3 | |
5 | 343 | Hypoprotocetraric Acid | Traces | |
6 | 575 | Procyanidin Dimer (Type A) | 21.5 | |
7 | 559 | Phenolic Glycosides | 25.6 | |
8 | 287 | Unknown | traces | |
9 | 191 | Scopoletin | 35.2 | |
10 | 271 | Naringenin | 60.9 |
PARAMETER | |
---|---|
Aspect: | Emulsion |
Lumps Presence | No |
Consistency | Emulsion |
Separation of the Phase | No |
Color (visual evaluation) | Ivory |
Odor | |
(directed from the jar) | Characteristic |
pH ± 0.5 | 5.3 |
Viscosity (mPS) 20° impeller RPM 20 | 11,100 |
Density (g/cm3) | n.a. |
Microbiological analysis | |
Total Bacterial Count | Absent |
Molds and Yeasts | Absent |
Pathogens | Absent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, M.R.; Ponticelli, M.; Sinisgalli, C.; Milella, L.; Todaro, L.; Faraone, I. Natural Bioactive Compounds from Orchard Biomass Waste and Cosmetic Applications. Forests 2025, 16, 79. https://doi.org/10.3390/f16010079
Bruno MR, Ponticelli M, Sinisgalli C, Milella L, Todaro L, Faraone I. Natural Bioactive Compounds from Orchard Biomass Waste and Cosmetic Applications. Forests. 2025; 16(1):79. https://doi.org/10.3390/f16010079
Chicago/Turabian StyleBruno, Maria Roberta, Maria Ponticelli, Chiara Sinisgalli, Luigi Milella, Luigi Todaro, and Immacolata Faraone. 2025. "Natural Bioactive Compounds from Orchard Biomass Waste and Cosmetic Applications" Forests 16, no. 1: 79. https://doi.org/10.3390/f16010079
APA StyleBruno, M. R., Ponticelli, M., Sinisgalli, C., Milella, L., Todaro, L., & Faraone, I. (2025). Natural Bioactive Compounds from Orchard Biomass Waste and Cosmetic Applications. Forests, 16(1), 79. https://doi.org/10.3390/f16010079