Enzyme-Linked Phage Receptor Binding Protein Assays (ELPRA) Enable Identification of Bacillus anthracis Colonies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Culture, Soil Sample, B. anthracis Enrichment, and Cell Inactivation
2.2. DNA Isolation, Polymerase Chain Reaction, 16S rRNA Gene Sequencing, and Sequence Analysis
2.3. Fluorescence Microscopy of Bacillus Cells Labeled with mCherry-RBPλ03Δ1-120 Reporter
2.4. Cloning of a NanoLuc-RBPλ03Δ1-120 Reporter Fusion Construct
2.5. Expression, Purification, and Western Blot Analysis of Strep-Tagged NanoLuc/mCherry-RBPλ03Δ1-120 Reporter Fusions
2.6. Horseradish Peroxidase Labeling of mCherry-RBPλ03Δ1-120 Fusion Protein
2.7. Colony Lift and Blot ELPRA for NanoLuc -RBPλ03Δ1-120 Reporter-Mediated Detection and Identification of B. anthracis
2.8. Rapid Dichotomous Colorimetric ELPRA for Identification of Suspect B. anthracis Colonies
3. Results
3.1. Production of the Recombinant Luminescence-Reporter NanoLuc-RBPλ03Δ1-120
3.2. A Colony Lift and Luminescent Blot-Based ELPRA Using NanoLuc-RBPλ03Δ1-120 as Reporter Probe Facilitates Identification of B. anthracis
3.3. B. anthracis Can Be Detected and Identified from Spiked Soil Sample Preparations Using Colony Lift and Blot Based ELPRA with NanoLuc-RBPλ03Δ1-120 as Reporter Probe
3.4. Suspect B. anthracis Colonies Can Be Identified by ELPRA Using Strep-Tagged-RBPλ03Δ1-120 Derivatives as a Dichotomous Colorimetric Reporter
3.5. The Dichotomous Colorimetric ELPRA for Identification of B. anthracis Can Be Simplified to a One-Step Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Anthrax in Humans and Animals Fourth Edition; Turnbull, P., Ed.; WHO Press: Geneva, Switzerland, 2008; p. 285. [Google Scholar]
- Abshire, T.G.; Brown, J.E.; Ezzell, J.W. Production and Validation of the Use of Gamma Phage for Identification of Bacillus Anthracis. J. Clin. Microbiol. 2005, 43, 4780–4788. [Google Scholar] [CrossRef] [Green Version]
- Kolton, C.B.; Marston, C.K.; Stoddard, R.A.; Cossaboom, C.; Salzer, J.S.; Kozel, T.R.; Gates-Hollingsworth, M.A.; Cleveland, C.A.; Thompson, A.T.; Dalton, M.F.; et al. Detection of Bacillus anthracis in animal tissues using InBios active anthrax detect rapid test lateral flow immunoassay. Lett. Appl. Microbiol. 2019, 68, 480–484. [Google Scholar] [CrossRef]
- Kan, S.; Fornelos, N.; Schuch, R.; Fischetti, V.A. Identification of a ligand on the Wip1 bacteriophage highly specific for a receptor on Bacillus anthracis. J. Bacteriol. 2013, 195, 4355–4364. [Google Scholar] [CrossRef] [Green Version]
- Sozhamannan, S.; McKinstry, M.; Lentz, S.M.; Jalasvuori, M.; McAfee, F.; Smith, A.; Dabbs, J.; Ackermann, H.W.; Bamford, J.K.; Mateczun, A.; et al. Molecular characterization of a variant of Bacillus anthracis-specific phage AP50 with improved bacteriolytic activity. Appl. Environ. Microbiol. 2008, 74, 6792–6796. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.R.; Cherry, W.B. Specific identification of Bacillus anthracis by means of a variant bacteriophage. J. Infect. Dis. 1955, 96, 34–39. [Google Scholar] [CrossRef]
- Kolton, C.B.; Podnecky, N.L.; Shadomy, S.V.; Gee, J.E.; Hoffmaster, A.R. Bacillus anthracis gamma phage lysis among soil bacteria: An update on test specificity. BMC Res. Notes 2017, 10, 598. [Google Scholar] [CrossRef] [Green Version]
- Dowah, A.S.A.; Clokie, M.R.J. Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target Gram-positive bacteria. Biophys. Rev. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, M.; Loessner, M.J. Modified bacteriophage tail fiber proteins for labeling, immobilization, capture, and detection of bacteria. Methods Mol. Biol. 2019, 1918, 67–86. [Google Scholar] [CrossRef]
- Denyes, J.M.; Dunne, M.; Steiner, S.; Mittelviefhaus, M.; Weiss, A.; Schmidt, H.; Klumpp, J.; Loessner, M.J. Modified bacteriophage S16 long tail fiber proteins for rapid and specific immobilization and detection of Salmonella cells. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muangsombut, V.; Withatanung, P.; Chantratita, N.; Chareonsudjai, S.; Lim, J.; Galyov, E.E.; Ottiwet, O.; Sengyee, S.; Janesomboon, S.; Loessner, M.J.; et al. Development of a bacteriophage tail fiber-based latex agglutination assay for rapid clinical screening of Burkholderia pseudomallei. Appl. Environ. Microbiol. 2021. [Google Scholar] [CrossRef]
- Born, F.; Braun, P.; Scholz, H.C.; Grass, G. Specific detection of Yersinia pestis based on receptor binding proteins of phages. Pathogens 2020, 9, 611. [Google Scholar] [CrossRef] [PubMed]
- Braun, P.; Wolfschläger, I.; Reetz, L.; Bachstein, L.; Jacinto, A.C.; Tocantins, C.; Poppe, J.; Grass, G. Rapid microscopic detection of Bacillus anthracis by fluorescent receptor binding proteins of bacteriophages. Microorganisms 2020, 8, 934. [Google Scholar] [CrossRef] [PubMed]
- Davison, S.; Couture-Tosi, E.; Candela, T.; Mock, M.; Fouet, A. Identification of the Bacillus anthracis (gamma) phage receptor. J. Bacteriol. 2005, 187, 6742–6749. [Google Scholar] [CrossRef] [Green Version]
- Sozhamannan, S.; Chute, M.D.; McAfee, F.D.; Fouts, D.E.; Akmal, A.; Galloway, D.R.; Mateczun, A.; Baillie, L.W.; Read, T.D. The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages. BMC Microbiol. 2006, 6, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, M.; Proom, H. Induction of motility and capsulation in Bacillus anthracis. J. Bacteriol. 1957, 74, 541–542. [Google Scholar] [CrossRef] [Green Version]
- Fasanella, A.; Di Taranto, P.; Garofolo, G.; Colao, V.; Marino, L.; Buonavoglia, D.; Pedarra, C.; Adone, R.; Hugh-Jones, M. Ground Anthrax Bacillus Refined Isolation (GABRI) method for analyzing environmental samples with low levels of Bacillus anthracis contamination. BMC Microbiol. 2013, 13, 167. [Google Scholar] [CrossRef] [Green Version]
- Cote, C.K.; Buhr, T.; Bernhards, C.B.; Bohmke, M.D.; Calm, A.M.; Esteban-Trexler, J.S.; Hunter, M.; Katoski, S.E.; Kennihan, N.; Klimko, C.P.; et al. A standard method to inactivate Bacillus anthracis spores to sterility via gamma irradiation. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [Green Version]
- Knüpfer, M.; Braun, P.; Baumann, K.; Rehn, A.; Antwerpen, M.; Grass, G.; Wölfel, A.R. Evaluation of a highly efficient DNA extraction method for Bacillus anthracis endospores. Microorganisms 2020, 8, 763. [Google Scholar] [CrossRef]
- Antwerpen, M.H.; Zimmermann, P.; Bewley, K.; Frangoulidis, D.; Meyer, H. Real-time PCR system targeting a chromosomal marker specific for Bacillus anthracis. Mol. Cell. Probes 2008, 22, 313–315. [Google Scholar] [CrossRef]
- Lane, D.J.; Pace, B.; Olsen, G.J.; Stahl, D.A.; Sogin, M.L.; Pace, N.R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 1985, 82, 6955–6959. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Kodama, Y.; Harayama, S. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Methods 2001, 44, 253–262. [Google Scholar] [CrossRef]
- Bogaert, D.; Veenhoven, R.H.; Sluijter, M.; Sanders, E.A.; de Groot, R.; Hermans, P.W. Colony blot assay: A useful method to detect multiple pneumococcal serotypes within clinical specimens. FEMS Immunol. Med. Microbiol. 2004, 41, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Wielinga, P.R.; Hamidjaja, R.A.; Agren, J.; Knutsson, R.; Segerman, B.; Fricker, M.; Ehling-Schulz, M.; de Groot, A.; Burton, J.; Brooks, T.; et al. A multiplex real-time PCR for identifying and differentiating B. anthracis virulent types. Int. J. Food. Microbiol. 2011, 145, 137–144. [Google Scholar] [CrossRef]
- Derzelle, S.; Mendy, C.; Laroche, S.; Madani, N. Use of high-resolution melting and melting temperature-shift assays for specific detection and identification of Bacillus anthracis based on single nucleotide discrimination. J. Microbiol. Methods 2011, 87, 195–201. [Google Scholar] [CrossRef]
- Zasada, A.A.; Forminska, K.; Zacharczuk, K.; Jacob, D.; Grunow, R. Comparison of eleven commercially available rapid tests for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Lett. Appl. Microbiol. 2015, 60, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, I.; Vollmar, P.; Knüpfer, M.; Braun, P.; Stoecker, K. Reevaluating limits of detection of 12 lateral flow immunoassays for the detection of Yersinia pestis, Francisella tularensis, and Bacillus anthracis spores using viable risk group-3 strains. J. Appl. Microbiol. 2021, 130, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.P.; Prentice, K.W.; Ramage, J.G.; DePalma, L.; Sarwar, J.; Parameswaran, N.; Bell, M.; Plummer, A.; Santos, A.; Singh, A.; et al. Rapid presumptive identification of Bacillus anthracis isolates using the Tetracore RedLine Alert Test. Health. Secur. 2019, 17, 334–343. [Google Scholar] [CrossRef]
- Dybwad, M.; van der Laaken, A.L.; Blatny, J.M.; Paauw, A. Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Appl. Environ. Microbiol. 2013, 79, 5372–5383. [Google Scholar] [CrossRef] [Green Version]
- Pauker, V.I.; Thoma, B.R.; Grass, G.; Bleichert, P.; Hanczaruk, M.; Zoller, L.; Zange, S. Improved discrimination of Bacillus anthracis from closely related species in the Bacillus cereus sensu lato group based on Matrix-Assisted Laser Desorption Ionization-Time of Flight mass spectrometry. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roop, R.M., 2nd; Preston-Moore, D.; Bagchi, T.; Schurig, G.G. Rapid identification of smooth Brucella species with a monoclonal antibody. J. Clin. Microbiol. 1987, 25, 2090–2093. [Google Scholar] [CrossRef] [Green Version]
- Hoszowski, A.; Fraser, A.D.; Brooks, B.W.; Riche, E.M. Rapid detection and enumeration of Salmonella in chicken carcass rinses using filtration, enrichment and colony blot immunoassay. Int. J. Food. Microbiol. 1996, 28, 341–350. [Google Scholar] [CrossRef]
- Ramotar, K.; Henderson, E.; Szumski, R.; Louie, T.J. Impact of free verotoxin testing on epidemiology of diarrhea caused by verotoxin-producing Escherichia coli. J. Clin. Microbiol. 1995, 33, 1114–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohde, A.; Papp, S.; Feige, P.; Grunow, R.; Kaspari, O. Development of a novel selective agar for the isolation and detection of Bacillus anthracis. J. Appl. Microbiol. 2020. [Google Scholar] [CrossRef]
- Silvestri, E.E.; Feldhake, D.; Griffin, D.; Lisle, J.; Nichols, T.L.; Shah, S.R.; Pemberton, A.; Schaefer, F.W., 3rd. Optimization of sample processing protocol for recovery of Bacillus anthracis spores from soil. J. Microbiol. Methods 2016. [Google Scholar] [CrossRef] [Green Version]
- Shields, M.J.; Hahn, K.R.; Janzen, T.W.; Goji, N.; Thomas, M.C.; Kingombe, C.B.; Paquet, C.; Kell, A.J.; Amoako, K.K. Immunomagnetic capture of Bacillus anthracis spores from food. J. Food. Prot. 2012, 75, 1243–1248. [Google Scholar] [CrossRef]
- Fisher, M.; Atiya-Nasagi, Y.; Simon, I.; Gordin, M.; Mechaly, A.; Yitzhaki, S. A combined immunomagnetic separation and lateral flow method for a sensitive on-site detection of Bacillus anthracis spores—Assessment in water and dairy products. Lett. Appl. Microbiol. 2009, 48, 413–418. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braun, P.; Rupprich, N.; Neif, D.; Grass, G. Enzyme-Linked Phage Receptor Binding Protein Assays (ELPRA) Enable Identification of Bacillus anthracis Colonies. Viruses 2021, 13, 1462. https://doi.org/10.3390/v13081462
Braun P, Rupprich N, Neif D, Grass G. Enzyme-Linked Phage Receptor Binding Protein Assays (ELPRA) Enable Identification of Bacillus anthracis Colonies. Viruses. 2021; 13(8):1462. https://doi.org/10.3390/v13081462
Chicago/Turabian StyleBraun, Peter, Nadja Rupprich, Diana Neif, and Gregor Grass. 2021. "Enzyme-Linked Phage Receptor Binding Protein Assays (ELPRA) Enable Identification of Bacillus anthracis Colonies" Viruses 13, no. 8: 1462. https://doi.org/10.3390/v13081462
APA StyleBraun, P., Rupprich, N., Neif, D., & Grass, G. (2021). Enzyme-Linked Phage Receptor Binding Protein Assays (ELPRA) Enable Identification of Bacillus anthracis Colonies. Viruses, 13(8), 1462. https://doi.org/10.3390/v13081462