Human Immunodeficiency Virus Type-1 Genetic Diversity and Drugs Resistance Mutations among People Living with HIV in Karachi, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction and HIV-pol Gene Amplification and Sequencing
2.3. Phylogenetic and Transmission Cluster Analysis
2.4. HIV-1 Drug Resistance Mutation Analysis
2.5. Genomic Variability and Selection Pressure on DRM Sites
3. Results
3.1. Demographic Characteristics of the Study Individuals
3.2. Distribution of HIV-1 Genetic Diversity
3.3. Prevalence and Patterns of HIV Drug Resistance Mutations
3.4. DRM-Associated Transmission Clusters Analysis
3.5. Genomic Variability and Selection Pressure on DRM Sites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Path that Ends AIDS: 2023 UNAIDS Global AIDS Update. Available online: https://www.aidsdatahub.org/resource/path-ends-aids-2023-unaids-global-aids-update (accessed on 6 June 2024).
- Guidelines on the Public Health Response to Pretreatment HIV Drug Resistance; World Health Organization (WHO): Geneva, Switzerland, 2017.
- Wittkop, L.; Günthard, H.F.; de Wolf, F.; Dunn, D.; Cozzi-Lepri, A.; de Luca, A.; Kücherer, C.; Obel, N.; von Wyl, V.; Masquelier, B.; et al. Effect of transmitted drug resistance on virological and immunological response to initial combination antiretroviral therapy for HIV (EuroCoord-CHAIN joint project): A European multicohort study. Lancet Infect. Dis. 2011, 11, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Parczewski, M.; Sulkowska, E.; Urbańska, A.; Scheibe, K.; Serwin, K.; Grabarczyk, P. Transmitted HIV drug resistance and subtype patterns among blood donors in Poland. Sci. Rep. 2021, 11, 12734. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Song, W.; Kang, M.; Dong, X.; Li, X.; Wang, L.; Liu, J.; Ding, H.; Chu, Z.; Wang, L.; et al. Molecular Network Analysis Reveals Transmission of HIV-1 Drug-Resistant Strains among Newly Diagnosed HIV-1 Infections in a Moderately HIV Endemic City in China. Front. Microbiol. 2021, 12, 797771. [Google Scholar] [CrossRef] [PubMed]
- Taffa, N.; Roscoe, C.; Sawadogo, S.; De Klerk, M.; Baughman, A.L.; Wolkon, A.; Mutenda, N.; DeVos, J.; Zheng, D.P.; Wagar, N.; et al. Pretreatment HIV drug resistance among adults initiating ART in Namibia. J. Antimicrob. Chemother. 2018, 73, 3137–3142. [Google Scholar] [CrossRef] [PubMed]
- de Bernardi Schneider, A.; Cholette, F.; Pelcat, Y.; Lim, A.; Vickerman, P.; Hassan, A.; Thompson, L.; Blanchard, J.; Emmanuel, F.; Reza, T.; et al. HIV Phylogenetics Reveals Overlapping Transmission Networks among Cities and Key Populations in Pakistan. medRxiv 2021. [Google Scholar] [CrossRef]
- Cholette, F.; Joy, J.; Pelcat, Y.; Thompson, L.H.; Pilon, R.; Ho, J.; Capina, R.; Archibald, C.; Blanchard, J.F.; Emmanuel, F.; et al. HIV-1 phylodynamic analysis among people who inject drugs in Pakistan correlates with trends in illicit opioid trade. PLoS ONE 2020, 15, e0237560. [Google Scholar] [CrossRef] [PubMed]
- Assir, M.Z.K.; Ahmad, F.; Riaz, S.; Adil, A.; Rashid, T. Viral Suppression and Loss to Follow Up in HIV/AIDS Patients on Antiretroviral Therapy in Pakistan. Int. J. Infect. Dis. 2018, 73, 249. [Google Scholar] [CrossRef]
- Country Progress Report-Pakistan. Global AIDS Monitoring 2020. Available online: https://www.unaids.org/sites/default/files/country/documents/PAK_2020_countryreport.pdf (accessed on 6 June 2024).
- Integrated Biological and Behavioral Surveillance in Pakistan: Round 5—2016-17. Available online: https://www.aidsdatahub.org/resource/ibbs-pakistan-round-5-2016-2017 (accessed on 1 March 2024).
- NACP. HIV Treatment Services 2019. Available online: https://www.nacp.gov.pk/whatwedo/treatment.html (accessed on 5 June 2024).
- Siddiqui, D.; Badar, U.; Javaid, M.; Farooqui, N.; Shah, S.A.; Iftikhar, A.; Sultan, F.; Mir, F.; Furqan, S.; Mahmood, S.F.; et al. Genetic and antiretroviral drug resistance mutations analysis of reverse transcriptase and protease gene from Pakistani people living with HIV-1. PLoS ONE 2023, 18, e0290425. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Xing, H.; Altaf, A.; Chen, B.; Liao, L.; Jia, Y.; Vermund, S.H.; Shao, Y. Antiretroviral drug resistance mutations among treated and treatment-naive patients in Pakistan: Diversity of the HIV type 1 pol gene in Pakistan. AIDS Res. Hum. Retroviruses 2011, 27, 1277–1282. [Google Scholar] [CrossRef]
- Khanani, R.M.; Hafeez, A.; Rab, S.M.; Rasheed, S. Human immunodeficiency virus-associated disorders in Pakistan. AIDS Res. Hum. Retroviruses 1988, 4, 149–154. [Google Scholar]
- Karachi’s District Central Has Highest Number of HIV Patients in Sindh. Available online: https://www.geo.tv/latest/366773-karachis-district-central-has-highest-number-of-hive-patients-in-sindh (accessed on 2 March 2024).
- Raees, M.A.; Abidi, S.H.; Ali, W.; Khanani, M.R.; Ali, S. HIV among women and children in Pakistan. Trends Microbiol. 2013, 21, 213–214. [Google Scholar] [CrossRef]
- Clutter, D.S.; Jordan, M.R.; Bertagnolio, S.; Shafer, R.W. HIV-1 drug resistance and resistance testing. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2016, 46, 292–307. [Google Scholar] [CrossRef] [PubMed]
- Getaneh, Y.; He, Q.; Rashid, A.; Kassa, D.; Kang, L.; Yi, F.; Liao, L.; Shao, Y. Evaluation of HIV-1 drug resistance among patients failing first-line antiretroviral therapy in Ethiopia. J. Glob. Antimicrob. Resist. 2022, 30, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wagar, N.; DeVos, J.R.; Rottinghaus, E.; Diallo, K.; Nguyen, D.B.; Bassey, O.; Ugbena, R.; Wadonda-Kabondo, N.; McConnell, M.S.; et al. Optimization of a low cost and broadly sensitive genotyping assay for HIV-1 drug resistance surveillance and monitoring in resource-limited settings. PLoS ONE 2011, 6, e28184. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Abecasis, A.B.; Wang, Y.; Libin, P.; Imbrechts, S.; de Oliveira, T.; Camacho, R.J.; Vandamme, A.M. Comparative performance of the REGA subtyping tool version 2 versus version 1. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2010, 10, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Struck, D.; Lawyer, G.; Ternes, A.M.; Schmit, J.C.; Bercoff, D.P. COMET: Adaptive context-based modeling for ultrafast HIV-1 subtype identification. Nucleic Acids Res. 2014, 42, e144. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Ragonnet-Cronin, M.; Hodcroft, E.; Hué, S.; Fearnhill, E.; Delpech, V.; Brown, A.J.; Lycett, S. Automated analysis of phylogenetic clusters. BMC Bioinform. 2013, 14, 317. [Google Scholar] [CrossRef]
- Wensing, A.M.; Calvez, V.; Ceccherini-Silberstein, F.; Charpentier, C.; Günthard, H.F.; Paredes, R.; Shafer, R.W.; Richman, D.D. 2019 update of the drug resistance mutations in HIV-1. Top. Antivir. Med. 2019, 27, 111–121. [Google Scholar]
- Debyser, Z.; Van Wijngaerden, E.; Van Laethem, K.; Beuselinck, K.; Reynders, M.; De Clercq, E.; Desmyter, J.; Vandamme, A.M. Failure to quantify viral load with two of the three commercial methods in a pregnant woman harboring an HIV type 1 subtype G strain. AIDS Res. Hum. Retroviruses 1998, 14, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Gupta-Wright, A.; Fielding, K.; van Oosterhout, J.J.; Alufandika, M.; Grint, D.J.; Chimbayo, E.; Heaney, J.; Byott, M.; Nastouli, E.; Mwandumba, H.C.; et al. Virological failure, HIV-1 drug resistance, and early mortality in adults admitted to hospital in Malawi: An observational cohort study. Lancet HIV 2020, 7, e620–e628. [Google Scholar] [CrossRef] [PubMed]
- Abidi, S.H.; Nduva, G.M.; Siddiqui, D.; Rafaqat, W.; Mahmood, S.F.; Siddiqui, A.R.; Nathwani, A.A.; Hotwani, A.; Shah, S.A.; Memon, S.; et al. Phylogenetic and Drug-Resistance Analysis of HIV-1 Sequences from an Extensive Paediatric HIV-1 Outbreak in Larkana, Pakistan. Front. Microbiol. 2021, 12, 658186. [Google Scholar] [CrossRef] [PubMed]
- Mukhatayeva, A.; Mustafa, A.; Dzissyuk, N.; Issanov, A.; Mukhatayev, Z.; Bayserkin, B.; Vermund, S.H.; Ali, S. Antiretroviral therapy resistance mutations among HIV infected people in Kazakhstan. Sci. Rep. 2022, 12, 17195. [Google Scholar] [CrossRef] [PubMed]
- Hemelaar, J.; Gouws, E.; Ghys, P.D.; Osmanov, S. Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004. AIDS 2006, 20, W13–W23. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hora, B.; DeMarco, T.; Shah, S.A.; Ahmed, M.; Sanchez, A.M.; Su, C.; Carter, M.; Stone, M.; Hasan, R.; et al. Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan. PLoS ONE 2016, 11, e0167839. [Google Scholar] [CrossRef] [PubMed]
- Tariq, U.; Iftikhar, A.; Zahid, D.; Sultan, F.; Mahmood, S.F.; Naeem, S.; Ali, S.; Abidi, S.H. The emergence of an unassigned complex recombinant form in a Pakistani HIV-infected individual. Arch. Virol. 2020, 165, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Hemelaar, J.; Elangovan, R.; Yun, J.; Dickson-Tetteh, L.; Kirtley, S.; Gouws-Williams, E.; Ghys, P.D. Global and regional epidemiology of HIV-1 recombinants in 1990–2015: A systematic review and global survey. Lancet HIV 2020, 7, e772–e781. [Google Scholar] [CrossRef] [PubMed]
- Sluis-Cremer, N.; Jordan, M.R.; Huber, K.; Wallis, C.L.; Bertagnolio, S.; Mellors, J.W.; Parkin, N.T.; Harrigan, P.R. E138A in HIV-1 reverse transcriptase is more common in subtype C than B: Implications for rilpivirine use in resource-limited settings. Antivir. Res. 2014, 107, 31–34. [Google Scholar] [CrossRef]
- Ismael, N.; Wilkinson, E.; Mahumane, I.; Gemusse, H.; Giandhari, J.; Bauhofer, A.; Vubil, A.; Mambo, P.; Singh, L.; Mabunda, N.; et al. Molecular Epidemiology and Trends in HIV-1 Transmitted Drug Resistance in Mozambique 1999–2018. Viruses 2022, 14, 1992. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, Q.; Xing, H.; Chen, H.; Jin, X.; Dong, L.; Dai, J.; Yang, M.; Yang, C.; Jia, M.; et al. The characteristics of pretreatment HIV-1 drug resistance in western Yunnan, China. Epidemiol. Infect. 2020, 148, e102. [Google Scholar] [CrossRef]
- Paraskevis, D.; Kostaki, E.; Magiorkinis, G.; Gargalianos, P.; Xylomenos, G.; Magiorkinis, E.; Lazanas, M.; Chini, M.; Nikolopoulos, G.; Skoutelis, A.; et al. Prevalence of drug resistance among HIV-1 treatment-naive patients in Greece during 2003-2015: Transmitted drug resistance is due to onward transmissions. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2017, 54, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Theys, K.; Camacho, R.J.; Gomes, P.; Vandamme, A.M.; Rhee, S.Y. Predicted residual activity of rilpivirine in HIV-1 infected patients failing therapy including NNRTIs efavirenz or nevirapine. Clin. Microbiol. Infect. 2015, 21, 607.e1–607.e8. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Zahid, M.; Qureshi, M.A.; Mughal, M.N.; Ujjan, I.D. HIV-1 genetic diversity, geographical linkages and antiretroviral drug resistance among individuals from Pakistan. Arch. Virol. 2018, 163, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Bertagnolio, S.; Hermans, L.; Jordan, M.R.; Avila-Rios, S.; Iwuji, C.; Derache, A.; Delaporte, E.; Wensing, A.; Aves, T.; Borhan, A.S.M.; et al. Clinical Impact of Pretreatment Human Immunodeficiency Virus Drug Resistance in People Initiating Nonnucleoside Reverse Transcriptase Inhibitor-Containing Antiretroviral Therapy: A Systematic Review and Meta-analysis. J. Infect. Dis. 2021, 224, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Bacheler, L.; Jeffrey, S.; Hanna, G.; D’Aquila, R.; Wallace, L.; Logue, K.; Cordova, B.; Hertogs, K.; Larder, B.; Buckery, R.; et al. Genotypic correlates of phenotypic resistance to efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy. J. Virol. 2001, 75, 4999–5008. [Google Scholar] [CrossRef] [PubMed]
- Eshleman, S.H.; Jones, D.; Galovich, J.; Paxinos, E.E.; Petropoulos, C.J.; Jackson, J.B.; Parkin, N. Phenotypic drug resistance patterns in subtype A HIV-1 clones with nonnucleoside reverse transcriptase resistance mutations. AIDS Res. Hum. Retroviruses 2006, 22, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Clipman, S.J.; Solomon, S.S.; Srikrishnan, A.K.; McFall, A.M.; Gomathi, S.; Saravanan, S.; Anand, S.; Vasudevan, C.K.; Kumar, M.S.; Celentano, D.D.; et al. Antiretroviral Drug Resistance in HIV Sequences From People Who Inject Drugs and Men Who Have Sex With Men Across 21 Cities in India. Open Forum Infect. Dis. 2022, 9, ofac481. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; He, J.; Zheng, J.; Malmgren, R.; Li, W.; Wei, X.; Zhang, G.; Chen, X. Prevalence of acquired drug resistance mutations in antiretroviral- experiencing subjects from 2012 to 2017 in Hunan Province of central South China. Virol. J. 2020, 17, 38. [Google Scholar] [CrossRef]
- Sluis-Cremer, N.; Wainberg, M.A.; Schinazi, R.F. Resistance to reverse transcriptase inhibitors used in the treatment and prevention of HIV-1 infection. Future Microbiol. 2015, 10, 1773–1782. [Google Scholar] [CrossRef]
- Shafer, R.W. Rationale and uses of a public HIV drug-resistance database. J. Infect. Dis. 2006, 194 (Suppl. S1), S51–S58. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.N.C.; Piqueira, J.R.C.; Camargo, M.; Galinskas, J.; Sucupira, M.C.; Diaz, R.S. Impact of antiretroviral resistance and virological failure on HIV-1 informational entropy. J. Antimicrob. Chemother. 2018, 73, 1054–1059. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Perlina, A.; Lee, C.J. Positive selection detection in 40,000 human immunodeficiency virus (HIV) type 1 sequences automatically identifies drug resistance and positive fitness mutations in HIV protease and reverse transcriptase. J. Virol. 2004, 78, 3722–3732. [Google Scholar] [CrossRef] [PubMed]
Characteristic | |
---|---|
Participants | |
Total number of participants | 268 |
ART-Experienced n (%) | 163 (60.8) |
ART-Naïve n (%) | 37 (13.8) |
Unknown status n (%) | 68 (25.3) |
Sex | |
Male, n (%) | 236 (88) |
Female, n (%) | 30 (11.2) |
No record, n (%) | 2 (0.74) |
Age (years), median (IQR) | 36 (30–40) |
CD4 count (cells/mm3), median (IQR) | 429 (422–490) |
ART regimen | |
TDF + 3TC + EFV, n (%) | 163 (60.8) |
Year of diagnosis | |
1995–2010 n (%) | 45 (16.8) |
2011–2022 n (%) | 219 (82) |
No record n (%) | 4 (1.5%) |
Risk factor | |
PWID n (%) | 166 (61.9) |
MSM n (%) | 9 (3.35) |
FSW n (%) | 3 (1.1) |
No record n (%) | 90 (33.5) |
Subtype | Total n (%) | ART-Experienced | ART-Naïve | Unknown ART Status |
---|---|---|---|---|
Subtype A1 | 107 (40) | 60 (22.3) | 15 (5.6) | 32 (11.9) |
CRF02_AG | 89 (33.2) | 69 (25.7) | 6 (2.2) | 14 (5.2) |
Subtype C | 21 (7.8) | 12 (4.5) | 3 (1.1) | 6 (2.2) |
CRF35_A1D | 15 (5.6) | 4 (1.86) | 4 (1.5) | 7 (2.6) |
DG (URFs) | 9 (3.35) | 3 (1.1) | 4 (1.5) | 2 (0.7) |
Subtype D | 6 (2.2) | 4 (1.5) | 0 (0) | 2 (0.7) |
CRF01_AE | 5 (1.86) | 3 (1.1) | 1 (0.37) | 1 (0.37) |
Subtype G | 5 (1.86) | 1 (0.4) | 2 (0.74) | 2 (0.7) |
02A1 (URFs) | 3 (1.1) | 2 (0.74) | 1 (0.37) | 0 (0) |
Subtype B | 3 (1.1) | 3 (1.1) | 0 (0) | 0 (0) |
A1G (URFs) | 2 (0.7) | 1 (0.4) | 0 (0) | 1 (0.37) |
Sub-subtype A6 | 2 (0.7) | 1 (0.4) | 1 (0.37) | 0 (0) |
CRF56_cpx | 1 (0.37) | 0 (0) | 0 (0) | 1 (0.37) |
Drugs | Mutation | Naïve, N (%) n = 37 | Experienced, N (%) n = 163 | Unknown Status, N (%) n = 68 | Mutation Classification | Drugs Affected by the DRMs |
---|---|---|---|---|---|---|
PIs | * M46I | 0 (0) | 2 (1.2) | 0 (0) | Minor/Major | FPV/r, * IDV/r |
* I54V | 0 (0) | 1 (0.6) | 0 (0) | Major | * FPV/r, * IDV/r | |
* D30N | 0 (0) | 0 (0) | 1 (1.5) | Major | TPV/r | |
* I47V | 0 (0) | 1 (0.6) | 0 (0) | Minor/Major | FPV/r, NFV, * TPV/r | |
L10F | 1 (2.7) | 4 (2.4) | 1 (1.5) | Minor | FPV/r, IDV/r, NFV | |
L33F | 0 (0) | 1 (0.6) | 0 (0) | Minor | FPV/r, IDV/r, NFV | |
G73S | 0 (0) | 1 (0.6) | 1 (1.5) | Minor | FPV/r, IDV/r, NFV, SQV/r | |
G48R | 0 (0) | 1 (0.6) | 1 (1.5) | Minor | FPV/r, IDV/r, NFV | |
NRTIs | * M41L | 0 (0) | 0 (0) | 2 (2.9) | TAM, Major | * ABC, * AZT, * D4T, * DDI, * FTC, * 3TC, * TDF |
* M184I | 0 (0) | 4 (2.4) | 1 (1.5) | Major | * ABC, * FTC, DDI, * 3TC | |
* M184V | 0 (0) | 11 (6.7) | 4 (5.8) | Major | * ABC, * FTC, * 3TC | |
* A62V | 0 (0) | 1 (0.6) | 0 (0) | TAM, Major | * ABC, * DDI, * FTC, * 3TC | |
* K65R | 0 (0) | 3 (1.8) | 2 (2.9) | Major | * ABC, DDI, * FTC, * 3TC | |
* D67N | 0 (0) | 3 (1.8) | 1 (1.5) | TAM, Major | * ABC, * AZT, * D4T, * DDI, FTC, 3TC | |
* K70R | 0 (0) | 3 (1.8) | 0 (0) | TAM, Major | * ABC, * AZT, * D4T, * DDI | |
* K70E | 0 (0) | 1 (0.6) | 0 (0) | Major | ABC, D4T, DDI, FTC, 3TC, * TDF | |
* T215Y | 0 (0) | 2 (1.2) | 0 (0) | TAM, Major | * ABC, * AZT, * D4T, * DDI, FTC, 3TC | |
* K219E | 0 (0) | 4 (2.4) | 0 (0) | TAM, Major | * ABC, * AZT, * D4T, * DDI, FTC, 3TC | |
* T69D | 0 (0) | 2 (1.2) | 1 (1.5) | Major | * AZT, * D4T, * DDI, * FTC, * 3TC | |
T215I | 0 (0) | 2 (1.2) | 0 (0) | Minor | AZT, D4T, DDI, FTC, 3TC | |
* Y115F | 0 (0) | 2 (1.2) | 2 (2.9) | Major | ABC, DDI, FTC, 3TC | |
NNRTIs | * K103N | 0 (0) | 20 (12.2) | 4 (5.8) | Major | * EFV, * NVP |
* K103S | 0 (0) | 2 (1.2) | 0 (0) | Major | * EFV, * NVP | |
* E138A | 14 (37.8) | 55 (33.7) | 24 (35.3) | Minor/Major | ETR, * RPV | |
* E138G | 1 (2.7) | 0 (0) | 0 (0) | Minor/Major | * RPV | |
V179E | 0 (0) | 5 (3.0) | 0 (0) | Minor | EFV, NVP, RPV | |
V179T | 0 (0) | 1 (0.6) | 2 (2.9) | Minor | EFV, NVP, RPV | |
V179D | 0 (0) | 1 (0.6) | 1 (1.5) | Minor | EFV, NVP, RPV | |
* V179L | 0 (0) | 2 (1.2) | 0 (0) | Minor/Major | EFV, ETR, NVP, * RPV | |
* M230I | 0 (0) | 3 (1.8) | 1 (1.5) | Minor/Major | NVP, * RPV | |
* Y188L | 0 (0) | 4 (2.4) | 0 (0) | Major | * DOR, * EFV, * NVP, * RPV | |
* H221Y | 0 (0) | 2 (1.2) | 0 (0) | Major | EFV, ETR, NVP, * RPV | |
G190S | 0 (0) | 0 (0) | 1 (1.5) | Minor | NVP, RPV | |
* G190A | 0 (0) | 2 (1.2) | 0 (0) | Minor/Major | * EFV, * NVP, RPV | |
G190E | 0 (0) | 0 (0) | 1 (1.5) | Minor | DOR, EFV, ETR, NVP, RPV | |
* V106M | 0 (0) | 2 (1.2) | 1 (1.5) | Major | DOR, * EFV, * NVP, RPV | |
V106I | 0 (0) | 1 (0.6) | 1 (1.5) | Minor | DOR, EFV, NVP, RPV | |
* Y181C | 0 (0) | 1 (0.6) | 1 (1.5) | Major | * EFV, * ETR, * NVP, RPV | |
* P225H | 0 (0) | 1 (0.6) | 1 (1.5) | Major | * EFV, NVP | |
P236L | 0 (0) | 1 (0.6) | 0 (0) | Minor | DOR | |
* L100I | 0 (0) | 1 (0.6) | 1 (1.5) | Major | DOR, * EFV, * ETR, * NVP, * RPV | |
K101H | 0 (0) | 1 (0.6) | 0 (0) | Minor | EFV, ETR, NVP, RPV | |
K101E | 0 (0) | 1 (0.6) | 0 (0) | Minor | DOR, EFV, NVP, RPV |
Cluster Name | HIV-1 Subtype | Number of Nodes | Risk Factor | ART History | Number with Shared DRM |
---|---|---|---|---|---|
Clust1 | A1 | 5 | PWID, N/A | Experienced, Naïve, unknown status | E138A, n = 5 |
Clust2 | A1 | 5 | PWID, N/A | Experienced, unknown status | E138A, n = 5, M184V, n = 1, G190A, n = 1 |
Clust3 | A1 | 4 | PWID, N/A | Experienced, Naïve, unknown status | E138A, n = 4 |
Clust4 | A1 | 2 | PWID | unknown status | E138A, n = 2 |
Clust5 | A1 | 2 | PWID | Experienced, unknown status | E138A, n = 2 |
Clust6 | A1 | 2 | PWID | Experienced | E138A, n = 2 |
Clust7 | A1 | 2 | N/A | Experienced, unknown status | E138A, n = 2 |
Clust8 | A1 | 2 | PWID | Experienced, unknown status | E138A, n = 2, K219E n = 1 |
Clust9 | A1 | 4 | PWID, N/A | Experienced | E138A, n = 3, K103N, n = 3, M184V, n = 3 |
Clust10 | A1 | 2 | PWID, N/A | Experienced, unknown status | E138A, n = 2 |
Clust11 | A1 | 3 | PWID, N/A | Experienced, Naïve, unknown status | E138A, n = 3, K103N, n = 1 |
Clust12 | A1 | 2 | PWID, N/A | Experienced, unknown status | E138A, n = 2 |
Clust13 | A1 | 5 | PWID, N/A | Experienced | E138A, n = 2, K103N, n = 1 |
Clust14 | A1 | 2 | PWID, N/A | Experienced | E138A, n = 2 |
Clust15 | A1 | 2 | PWID | Experienced | E138A, n = 2, L10F, n = 1 |
Clust16 | A1 | 2 | PWID, N/A | unknown status | K103N, n = 1 |
Clust17 | A1 | 2 | PWID, N/A | Naïve, unknown status | |
Clust18 | A1 | 2 | N/A | Experienced, Naïve | M230I, n = 1 |
Clust19 | A1 | 2 | N/A | Experienced, Naïve | |
Clust20 | A1 | 3 | PWID | Experienced, Naïve | E138A, n = 2 L10F, n = 2 |
Clust21 | CRF02_AG | 4 | PWID, N/A | Experienced | |
Clust22 | CRF02_AG | 3 | PWID, N/A | Experienced, unknown status | G48R, n = 1, M230I, n = 1 |
Clust23 | CRF02_AG | 2 | PWID, N/A | Experienced | |
Clust24 | CRF02_AG | 3 | PWID, N/A | Experienced | E138A, n = 1 |
Clust25 | CRF02_AG | 3 | PWID | Experienced | T69D, n = 1 |
Clust26 | CRF02_AG | 2 | PWID, N/A | Experienced, unknown status | |
Clust27 | CRF02_AG | 3 | PWID, N/A | Experienced | |
Clust28 | CRF02_AG | 2 | N/A | Experienced | |
Clust29 | CRF02_AG | 2 | PWID | Experienced | |
Clust30 | CRF02_AG | 2 | N/A, MSM | Experienced, unknown status | |
Clust31 | CRF02_AG | 2 | PWID | Experienced, unknown status | |
Clust32 | C | 2 | N/A | Experienced, unknown status | D67N n = 2, T69D n = 2, K70R n = 2, M184V n = 2, T215I n = 2, K219E n = 2, V106M n = 2, Y188L n = 2 |
Clust33 | C | 2 | PWID, FSW | Experienced | |
Clust34 | C | 2 | PWID, FSW | Experienced | K103N, n = 2, M184V, n = 1 |
Clust35 | CRF35_A1D | 5 | PWID, N/A | Experienced, unknown status | |
Clust36 | CRF35_A1D | 2 | PWID, N/A | Naïve, unknown status | |
Clust37 | CRF35_A1D | 2 | N/A, MSM | Naïve | |
Clust38 | CRF35_A1D | 2 | PWID | Experienced | |
Clust39 | D | 2 | PWID, N/A | Experienced | M184V, n = 1, V179D, n = 1, Y188L, n = 1 |
Clust40 | D | 2 | PWID, N/A | Experienced, unknown status | M46I, n = 1 |
Clust41 | CRF01_AE | 7 | PWID, N/A | Experienced, Naïve, unknown status | |
Clust42 | A1G | 2 | PWID | unknown status | E138A, n = 1 |
Clust43 | DG | 2 | N/A | unknown status |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, A.; Kang, L.; Yi, F.; Chu, Q.; Shah, S.A.; Mahmood, S.F.; Getaneh, Y.; Wei, M.; Chang, S.; Abidi, S.H.; et al. Human Immunodeficiency Virus Type-1 Genetic Diversity and Drugs Resistance Mutations among People Living with HIV in Karachi, Pakistan. Viruses 2024, 16, 962. https://doi.org/10.3390/v16060962
Rashid A, Kang L, Yi F, Chu Q, Shah SA, Mahmood SF, Getaneh Y, Wei M, Chang S, Abidi SH, et al. Human Immunodeficiency Virus Type-1 Genetic Diversity and Drugs Resistance Mutations among People Living with HIV in Karachi, Pakistan. Viruses. 2024; 16(6):962. https://doi.org/10.3390/v16060962
Chicago/Turabian StyleRashid, Abdur, Li Kang, Feng Yi, Qingfei Chu, Sharaf Ali Shah, Syed Faisal Mahmood, Yimam Getaneh, Min Wei, Song Chang, Syed Hani Abidi, and et al. 2024. "Human Immunodeficiency Virus Type-1 Genetic Diversity and Drugs Resistance Mutations among People Living with HIV in Karachi, Pakistan" Viruses 16, no. 6: 962. https://doi.org/10.3390/v16060962
APA StyleRashid, A., Kang, L., Yi, F., Chu, Q., Shah, S. A., Mahmood, S. F., Getaneh, Y., Wei, M., Chang, S., Abidi, S. H., & Shao, Y. (2024). Human Immunodeficiency Virus Type-1 Genetic Diversity and Drugs Resistance Mutations among People Living with HIV in Karachi, Pakistan. Viruses, 16(6), 962. https://doi.org/10.3390/v16060962