Organic Salts Based on Isoniazid Drug: Synthesis, Bioavailability and Cytotoxicity Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Organic Salts Based on Isoniazid
2.2.1. Isoniazid Monochloride [INH][Cl]
2.2.2. Isoniazid Dichloride [INH][Cl]2
2.2.3. Isoniazid Mesylate [INH][MsO]
2.2.4. Isoniazid Glycolate [INH][GcO]
2.2.5. Isoniazid mono(S-Camphorsulfonate) [INH][S-CsO]
2.2.6. Isoniazid di(S-Camphorsulfonate) [INH][S-CsO]2
2.2.7. Isoniazid mono(R-Camphorsulfonate) [INH][R-CsO]
2.2.8. Isoniazid di(R-Camphorsulfonate) [INH][R-CsO]2
2.2.9. Isoniazid Vanillate [INH][VanO]
2.2.10. Isoniazid Saccharinate [INH][Sac]
2.3. Physical-Chemical Characterization
2.4. Solubility Studies
2.5. Permeability Studies
2.6. Cell Culture and Cytotoxicity Assays
3. Results
3.1. Synthesis and Characterization of Isoniazid-Based Salts
3.2. Thermal Characterization
3.3. Solubility and Permeability Studies
3.4. Biological Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Francisco, M.; Van Den Bruinhorst, A.; Kroon, M.C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angew. Chem. Int. Ed. 2013, 52, 3074–3085. [Google Scholar] [CrossRef]
- Sekhon, B.S. Ionic liquids: Pharmaceutical and Biotechnological Applications. Asian J. Pharm. Biol. Res. 2011, 1, 395–411. [Google Scholar]
- Hough, W.L.; Rogers, R.D. Ionic Liquids Then and Now: From Solvents to Materials to Active Pharmaceutical Ingredients. Bull. Chem. Soc. Jpn. 2007, 80, 2262–2269. [Google Scholar] [CrossRef]
- Frizzo, C.P.; Gindri, I.M.; Tier, A.Z.; Buriol, L.; Moreira, D.N.; Martins, M.A.P. Pharmaceutical Salts: Solids to Liquids by Using Ionic Liquid Design. In Ionic Liquids—New Aspects for the Future; InTech Open: Rijeka, Croatia, 2013; pp. 557–578. [Google Scholar] [CrossRef] [Green Version]
- Marrucho, I.M.; Branco, L.C.; Rebelo, L.P.N. Ionic Liquids in Pharmaceutical Applications. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 527–546. [Google Scholar] [CrossRef]
- Balk, A.; Holzgrabe, U.; Meinel, L. Pro et contra’ ionic liquid drugs—Challenges and opportunities for pharmaceutical translation. Eur. J. Pharm. Biopharm. 2015, 94, 291–304. [Google Scholar] [CrossRef]
- Abbott, A.P.; Ahmed, E.I.; Prasad, K.; Qader, I.B.; Ryder, K.S. Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilib. 2017, 448, 2–8. [Google Scholar] [CrossRef]
- Berton, P.; Di Bona, K.R.; Yancey, D.; Rizvi, S.A.A.; Gray, M.; Gurau, G.; Shamshina, J.L.; Rasco, J.F.; Rogers, R.D. Transdermal Bioavailability in Rats of Lidocaine in the Forms of Ionic Liquids, Salts, and Deep Eutectic. ACS Med. Chem. Lett. 2017, 8, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Florindo, C.; Araújo, J.M.M.; Alves, F.; Matos, C.; Ferraz, R.; Prudêncio, C.; Noronha, J.P.; Petrovski, Ž.; Branco, L.; Rebelo, L.P.N.; et al. Evaluation of solubility and partition properties of ampicillin-based ionic liquids. Int. J. Pharm. 2013, 456, 553–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraz, R.; Costa-Rodrigues, J.; Fernandes, M.H.; Santos, M.M.; Marrucho, I.M.; Rebelo, L.P.N.; Prudêncio, C.; Noronha, J.P.; Petrovski, Ž.; Branco, L.C. Antitumor Activity of Ionic Liquids Based on Ampicillin. ChemMedChem 2015, 10, 1480–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraz, R.; Branco, L.C.; Marrucho, I.M.; Araújo, J.M.M.; Rebelo, L.P.N.; Nunes da Ponte, M.; Prudêncio, C.; Noronha, J.P.; Petrovski, Z. Development of novel ionic liquids based on ampicillin. Medchemcomm 2012, 3, 494–497. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, S.; Santos, M.M.; Ferraz, R.; Prudêncio, C.; Fernandes, M.H.; Costa-Rodrigues, J.; Branco, L.C. A Novel Approach for Bisphosphonates: Ionic Liquids and Organic Salts from Zoledronic Acid. ChemMedChem 2019, 14, 1767–1770. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.M.; Raposo, L.R.; Carrera, G.V.S.M.; Costa, A.; Dionísio, M.; Baptista, P.V.; Fernandes, A.R.; Branco, L.C. Ionic Liquids and Salts from Ibuprofen as Promising Innovative Formulations of an Old Drug. ChemMedChem 2019, 14, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, R.; Branco, L.C.; Prudêncio, C.; Noronha, J.P.; Petrovski, Ž. Ionic liquids as active pharmaceutical ingredients. ChemMedChem 2011, 6, 975–985. [Google Scholar] [CrossRef]
- Teixeira, S.; Santos, M.M.; Fernandes, M.H.; Costa-Rodrigues, J.; Branco, L.C. Alendronic Acid as Ionic Liquid: New Perspective on Osteosarcoma. Pharmaceutics 2020, 12, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pai, M.; Behr, M.A.; Dowdy, D.; Dheda, K.; Divangahi, M.; Boehme, C.C.; Ginsberg, A.; Swaminathan, S.; Spigelman, M.; Getahun, H.; et al. Tuberculosis. Nat. Rev. Dis. Primers 2016, 2, 1–23. [Google Scholar] [CrossRef]
- Murray, J.F.; Schraufnagel, D.E.; Hopewell, P.C. Treatment of tuberculosis: A historical perspective. Ann. Am. Thorac. Soc. 2015, 12, 1749–1759. [Google Scholar] [CrossRef]
- WHO. Global Tuberculosis Report 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Sosnik, A.; Carcaboso, Á.M.; Glisoni, R.J.; Moretton, M.A.; Chiappetta, D.A. New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev. 2010, 62, 547–559. [Google Scholar] [CrossRef]
- Wallis, R.S.; Maeurer, M.; Mwaba, P.; Chakaya, J.; Rustomjee, R.; Migliori, G.B.; Marais, B.; Schito, M.; Churchyard, G.; Swaminathan, S.; et al. Tuberculosis-advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. Lancet Infect. Dis. 2016, 16, e34–e46. [Google Scholar] [CrossRef] [Green Version]
- Machado, D.; Perdigão, J.; Portugal, I.; Pieroni, M.; Silva, P.; Couto, I.; Viveiros, M. Efflux Activity Differentially Modulates the Levels of Isoniazid and Rifampicin Resistance among Multidrug Resistant and Monoresistant Mycobacterium Tuberculosis Strains. Antibiotics 2018, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Machado, D.; Couto, I.; Perdigão, J.; Rodrigues, L.; Portugal, I.; Baptista, P.; Veigas, B.; Amaral, L.; Viveiros, M. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS ONE 2012, 7, e34538. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.; Santos, S.; Ventura, C.; Elvas-Leitão, R.; Santos, L.; Vitorino, S.; Reis, M.; Miranda, V.; Correia, H.F.; Aires-De-Sousa, J.; et al. Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity. Eur. J. Med. Chem. 2014, 81, 119–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, F.; Ventura, C.; Santos, S.; Viveiros, M. QSAR Based Design of New Antitubercular Compounds: Improved Isoniazid Derivatives Against Multidrug-Resistant TB. Curr. Pharm. Des. 2013, 20, 4427–4454. [Google Scholar] [CrossRef] [PubMed]
- Sousa, E.H.S.; Basso, L.A.; Santos, D.S.; Diógenes, I.C.N.; Longhinotti, E.; De França Lopes, L.G.; De Sousa Moreira, Í. Isoniazid metal complex reactivity and insights for a novel anti-tuberculosis drug design. J. Biol. Inorg. Chem. 2012, 17, 275–283. [Google Scholar] [CrossRef]
- Swapna, B.; Mannava, M.K.C.; Nangia, A. Improved Stability of TB Drug Fixed Dose Combination Using Isoniazid-Caffeic acid and Vanillic acid Cocrystal. J. Pharm. Sci. 2018, 107, 1667–1679. [Google Scholar] [CrossRef]
- Swapna, B.; Maddileti, D.; Nangia, A. Cocrystals of the Tuberculosis Drug Isoniazid: Polymorphism, Isostructurality, and Stability. Cryst. Growth Des. 2014, 14, 5991–6005. [Google Scholar] [CrossRef]
- Diniz, L.F.; Souza, M.S.; Carvalho, P.S.; da Silva, C.C.P.; D’Vries, R.F.; Ellena, J. Novel Isoniazid cocrystals with aromatic carboxylic acids: Crystal engineering, spectroscopy and thermochemical investigations. J. Mol. Struct. 2018, 1153, 58–68. [Google Scholar] [CrossRef]
- Forte, A.; Melo, C.I.; Bogel-łukasik, R.; Bogel-łukasik, E. A favourable solubility of isoniazid, an antitubercular antibiotic drug, in alternative solvents. Fluid Phase Equilib. 2012, 318, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Aitipamula, S.; Wong, A.B.H.; Chow, P.S.; Tan, R.B.H. Novel solid forms of the anti-tuberculosis drug, Isoniazid: Ternary and polymorphic cocrystals. CrystEngComm 2013, 15, 5877–5887. [Google Scholar] [CrossRef]
- Duarte, A.R.C.; Ferreira, A.S.D.; Barreiros, S.; Cabrita, E.; Reis, R.L.; Paiva, A. A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies. Eur. J. Pharm. Biopharm. 2017, 114, 296–304. [Google Scholar] [CrossRef] [Green Version]
- Krstić, M.; Popović, M.; Dobričić, V.; Ibrić, S. Influence of Solid Drug Delivery System Formulation on Poorly Water-Soluble Drug Dissolution and Permeability. Molecules 2015, 20, 14684–14698. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.M.; Duarte, A.R.C.; Caridade, S.G.; Picart, C.; Reis, R.L.; Mano, J.F. Tailored freestanding multilayered membranes based on chitosan and alginate. Biomacromolecules 2014, 15, 3817–3826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, F.; Leitão, M.I.P.S.; Duarte, A.R.C. Properties of Therapeutic Deep Eutectic Solvents of Tuberculosis Treatment. Molecules 2018, 24, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Fellah, N.; Shtukenberg, A.G.; Fu, X.; Hu, C.; Ward, M.D. Discovery of new polymorphs of the tuberculosis drug isoniazid. CrystEngComm 2020, 22, 2705–2708. [Google Scholar] [CrossRef]
- Sarcevica, I.; Orola, L.; Veidis, M.V.; Podjava, A.; Belyakov, S. Crystal and Molecular Structure and Stability of Isoniazid Cocrystals with Selected Carboxylic Acids. Cryst. Growth Des. 2013, 13, 1082–1090. [Google Scholar] [CrossRef]
- Frade, R.F.M.; Matias, A.; Branco, L.C.; Afonso, C.A.M.; Duarte, C.M.M.; Afonso, A.M.; Duarte, C.M.M. Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines. Green Chem. 2007, 9, 873. [Google Scholar] [CrossRef]
- Frade, R.F.M.; Matias, A.; Branco, L.C.; Lourenço, N.M.T.; Rosa, J.N.; Afonso, C.A.M.; Duarte, C.M.M. Toxicological Evaluation of Ionic Liquids Effect of Ionic Liquids on Human Colon Carcinoma HT-29 and CaCo-2 Cell Lines. In Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology; American Chemical Society: Washington, DC, USA, 2010; pp. 1–144. [Google Scholar]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Di Cagno, M.; Bibi, H.A.; Bauer-Brandl, A. New biomimetic barrier PermeapadTM for efficient investigation of passive permeability of drugs. Eur. J. Pharm. Sci. 2015, 73, 29–34. [Google Scholar] [CrossRef]
Compounds | Physical State at Room Temperature | Tg (°C) | Tm (°C) | Tc (°C) |
---|---|---|---|---|
Isoniazid | White crystalline powder | - | 173 | 86 |
[INH][Cl] | Pale pink solid | - | 93 | −10 |
[INH][Cl]2 | Pale white solid | 7 | 160 | 65 |
[INH][MsO] | Pale white solid | - | 133 | 54 |
[INH][GcO] | White solid | 39 | - | - |
[INH][S-CsO] | Yellow solid | - | - | - |
[INH][S-CsO]2 | Yellow solid | 14 | - | - |
[INH][R-CsO] | Pale white solid | - | - | - |
[INH][R-CsO]2 | Yellow solid | 17 | 129 | - |
[INH][VanO] | Pale brown solid | 37 | - | - |
[INH][Sac] | Pale orange solid | −64 | 179 | −88 |
Compounds | Solubility in H2O (mg/mL) | pH (H2O) | Solubility in PBS (mg/mL) |
---|---|---|---|
Isoniazid | 152.02 ± 2.93 | 6.56 | 182.58 ± 2.04 |
[INH][Cl] | 141.57 ± 3.52 | 2.63 | 130.69 ± 0.89 |
[INH][Cl]2 | 174.90 ± 0.92 | 1.56 | 204.48 ± 10.49 |
[INH][MsO] | 73.04 ± 2.92 | 2.46 | 38.97 ± 7.24 |
[INH][GcO] | 89.79 ± 1.73 | 4.27 | 84.21 ± 2.81 |
[INH][S-CsO] | 119.07 ± 0.76 | 3.12 | 174.99 ± 0.26 |
[INH][S-CsO]2 | 133.11 ± 11.57 | 2.02 | 147.28 ± 12.76 |
[INH][R-CsO] | 67.07 ± 1.04 | 3.03 | 115.62 ± 2.81 |
[INH][R-CsO]2 | 177.38 ± 5.62 | 1.60 | 198.41 ± 8.14 |
[INH][VanO] | 47.98 ± 1.28 | 4.55 | 45.23 ± 1.02 |
[INH][Sac] | 42.72 ± 2.57 | 5.79 | 54.74 ± 4.26 |
Compounds | Permeability (105 cm s−1) | Diffusion Coefficient (106 cm2 s−1) |
---|---|---|
Isoniazid | 3.63 ± 0.03 | 6.77 ± 0.6 |
[INH][Cl] | 2.14 ± 0.01 | 4.09 ± 0.1 |
[INH][Cl]2 | 3.35 ± 0.04 | 9.53 ± 1.2 |
[INH][S-CsO] | 2.40 ± 0.01 | 6.53 ± 0.8 |
[INH][S-CsO]2 | - | - |
[INH][R-CsO] | 1.38 ± 0.01 | 7.49 ± 0.7 |
[INH][R-CsO]2 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, F.; Branco, L.C.; Duarte, A.R.C. Organic Salts Based on Isoniazid Drug: Synthesis, Bioavailability and Cytotoxicity Studies. Pharmaceutics 2020, 12, 952. https://doi.org/10.3390/pharmaceutics12100952
Santos F, Branco LC, Duarte ARC. Organic Salts Based on Isoniazid Drug: Synthesis, Bioavailability and Cytotoxicity Studies. Pharmaceutics. 2020; 12(10):952. https://doi.org/10.3390/pharmaceutics12100952
Chicago/Turabian StyleSantos, Filipa, Luís C. Branco, and Ana Rita C. Duarte. 2020. "Organic Salts Based on Isoniazid Drug: Synthesis, Bioavailability and Cytotoxicity Studies" Pharmaceutics 12, no. 10: 952. https://doi.org/10.3390/pharmaceutics12100952
APA StyleSantos, F., Branco, L. C., & Duarte, A. R. C. (2020). Organic Salts Based on Isoniazid Drug: Synthesis, Bioavailability and Cytotoxicity Studies. Pharmaceutics, 12(10), 952. https://doi.org/10.3390/pharmaceutics12100952