A Mixed Micellar Formulation for the Transdermal Delivery of an Indirubin Analog
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solubility Test
2.3. Construction of Phase Diagrams
2.4. Droplet Size and Polydispersity
2.5. Viscosity
2.6. Drug Release and Skin Permeation Tests
2.7. Transmission Electron Microscopy (TEM)
2.8. Thermodynamic Stability Study
2.9. Statistical Analysis
3. Results
3.1. Screening of the Mixed Micellar Formulation Components
3.2. Construction of Pseudoternary Phase Diagrams
3.3. The Characterization and Evaluation of Mixed Micellar Formulations
3.4. Skin Permeation Study
3.5. Thermodynamic Stability of the Mixed Micellar Formulations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000, 287, 1964–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012, 2012, 195727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tetko, I.V.; Novotarskyi, S.; Sushko, I.; Ivanov, V.; Petrenko, A.E.; Dieden, R.; Lebon, F.; Mathieu, B. Development of dimethyl sulfoxide solubility models using 163,000 molecules: Using a domain applicability metric to select more reliable predictions. J. Chem. Inf. Model. 2013, 53, 1990–2000. [Google Scholar] [CrossRef] [PubMed]
- Galvao, J.; Davis, B.; Tilley, M.; Normando, E.; Duchen, M.R.; Cordeiro, M.F. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 2014, 28, 1317–1330. [Google Scholar] [CrossRef]
- Dangol, M.; Yang, H.; Li, C.G.; Lahiji, S.F.; Kim, S.; Ma, Y.; Jung, H. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles. J. Control. Release. 2016, 223, 118–125. [Google Scholar] [CrossRef]
- Goke, K.; Lorenz, T.; Repanas, A.; Schneider, F.; Steiner, D.; Baumann, K.; Bunjes, H.; Dietzel, A.; Finke, J.H.; Glasmacher, B.; et al. Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2017, 126, 40–56. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Fan, Y.; Zhou, Y.; Wang, X.; Fan, C.; Liu, Y.; Zhang, Q. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol. Nanoscale Res. Lett. 2011, 6, 275. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, X.; Zhou, Y.; Wang, X.; Fan, Y.; Huang, Y.; Liu, Y. Preparation and evaluation of poly(ethylene glycol)-poly(lactide) micelles as nanocarriers for oral delivery of cyclosporine a. Nanoscale Res. Lett. 2010, 5, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Funari, S.S.; Nuscher, B.; Rapp, G.; Beyer, K. Detergent-phospholipid mixed micelles with a crystalline phospholipid core. Proc. Natl. Acad. Sci. USA 2001, 98, 8938–8943. [Google Scholar] [CrossRef] [Green Version]
- Karande, P.; Mitragotri, S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. Biophys. Acta. 2009, 1788, 2362–2373. [Google Scholar] [CrossRef] [Green Version]
- Akula, S.; Gurram, A.K.; Devireddy, S.R. Self-Microemulsifying Drug Delivery Systems: An Attractive Strategy for Enhanced Therapeutic Profile. Int. Sch. Res. Notices 2014, 2014, 964051. [Google Scholar] [CrossRef] [PubMed]
- Alkilani, A.Z.; McCrudden, M.T.; Donnelly, R.F. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum. Pharmaceutics 2015, 7, 438–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.V.; Patel, H.K.; Panchal, S.S.; Mehta, T.A. Self micro-emulsifying drug delivery system of tacrolimus: Formulation, in vitro evaluation and stability studies. Int. J. Pharm. Investig. 2013, 3, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgetti, S.R.; Casagrande, R.; Verri, W.A.; Lopez, R.F.; Fonseca, M.J. Evaluation of in vivo efficacy of topical formulations containing soybean extract. Int. J. Pharm. 2008, 352, 189–196. [Google Scholar] [CrossRef]
- Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B. 2015, 5, 442–453. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Hussain, A.; Hussain, M.S.; Mirza, M.A.; Iqbal, Z. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Dev. Ind. Pharm. 2013, 39, 1–19. [Google Scholar] [CrossRef]
- Tiwari, G.; Tiwari, R.; Rai, A.K. Cyclodextrins in delivery systems: Applications. J. Pharm. Bioallied. Sci. 2010, 2, 72–79. [Google Scholar] [CrossRef]
- Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol. 2008, 36, 30–42. [Google Scholar] [CrossRef]
- Choi, S.; Kim, H.Y.; Cha, P.H.; Seo, S.H.; Lee, C.; Choi, Y.; Shin, W.; Heo, Y.; Han, G.; Lee, W.; et al. CXXC5 mediates growth plate senescence and is a target for enhancement of longitudinal bone growth. Life Sci. Alliance 2019, 10, 2. [Google Scholar] [CrossRef]
- Efstathiou, A.; Gaboriaud-Kolar, N.; Smirlis, D.; Myrianthopoulos, V.; Vougogiannopoulou, K.; Alexandratos, A.; Kritsanida, M.; Mikros, E.; Soteriadou, K.; Skaltsounis, A.L. An inhibitor-driven study for enhancing the selectivity of indirubin derivatives towards leishmanial Glycogen Synthase Kinase-3 over leishmanial cdc2-related protein kinase 3. Parasit. Vectors 2014, 7, 234. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, S.; Garnier, M.; Hoessel, R.; Marko, D.; Bibb, J.A.; Snyder, G.L.; Greengard, P.; Biernat, J.; Wu, Y.Z.; Mandelkow, E.M.; et al. Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem. 2001, 276, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Gong, W.; Wang, Y.; Shan, L.; Li, Y.; Gao, C. Bioavailability Improvement Strategies for Poorly Water-Soluble Drugs Based on the Supersaturation Mechanism: An Update. J. Pharm. Pharm. Sci. 2016, 19, 208–225. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Qiao, Y.; Wang, L.; Guo, J.; Wang, G.; He, W.; Yin, L.; Zhao, J. A Self-microemulsifying Drug Delivery System (SMEDDS) for a Novel Medicative Compound Against Depression: A Preparation and Bioavailability Study in Rats. AAPS Pharm. Sci. Tech. 2015, 16, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Tinwalla, A.Y.; Hoesterey, B.L.; Xiang, T.X.; Lim, K.; Anderson, B.D. Solubilization of thiazolobenzimidazole using a combination of pH adjustment and complexation with 2-hydroxypropyl-beta-cyclodextrin. Pharm. Res. 1993, 10, 1136–1143. [Google Scholar] [CrossRef]
- Franco, R.W.A.; Brasil, C.A.; Mantovani, G.L.; Azevedo, E.R.; Bonagamba, T.J. Molecular Dynamics of Poly(Ethylene Glycol) Intercalated in Clay, Studied Using (13)C Solid-State NMR. Materials 2012, 6, 47–64. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Liu, Y.; Zhao, J.H.; Wang, L.; Feng, N.P. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. Int. J. Nanomedicine 2012, 7, 1115–1125. [Google Scholar]
- Mittal, A.; Sara, U.V.; Ali, A.; Aqil, M. The effect of penetration enhancers on permeation kinetics of nitrendipine in two different skin models. Biol. Pharm. Bull. 2008, 31, 1766–1772. [Google Scholar] [CrossRef] [Green Version]
- Som, I.; Bhatia, K.; Yasir, M. Status of surfactants as penetration enhancers in transdermal drug delivery. J. Pharm. Bioallied Sci. 2012, 4, 2–9. [Google Scholar]
- Erdal, M.S.; Özhan, G.; Mat, M.C.; Özsoy, Y.; Güngör, S. Colloidal nanocarriers for the enhanced cutaneous delivery of naftifine: Characterization studies and in vitro and in vivo evaluations. Int. J. Nanomedicine 2016, 11, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqbal, Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion components screening and selection: A technical note. AAPS Pharm. Sci. Tech. 2009, 10, 69–76. [Google Scholar] [CrossRef]
- Prajapati, S.T.; Joshi, H.A.; Patel, C.N. Preparation and Characterization of Self-Microemulsifying Drug Delivery System of Olmesartan Medoxomil for Bioavailability Improvement. J. Pharm. 2013, 2013, 728425. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, S.M.; Mo, F.K.; Zhong, D.F. Investigation of microemulsion system for transdermal delivery of meloxicam. Int. J. Pharm. 2006, 321, 117–123. [Google Scholar] [CrossRef]
- Nazar, M.F.; Khan, A.M.; Shah, S.S. Microemulsion system with improved loading of piroxicam: A study of microstructure. AAPS Pharm. Sci. Tech. 2009, 10, 1286–1294. [Google Scholar] [CrossRef]
- Karasulu, H.Y. Microemulsions as novel drug carriers: The formation, stability, applications and toxicity. Expert Opin. Drug Deliv. 2008, 5, 119–135. [Google Scholar] [CrossRef]
- Le Roy Boehm, A.L.; Fessi, H. Pharmaceutical applications of the zeta potential--use in characterization of colloidal drug carriers. J. Pharm. Belg. 2000, 55, 40–48. [Google Scholar]
- Lou, H.; Qiu, N.; Crill, C.; Helms, R.; Almoazen, H. Development of w/o microemulsion for transdermal delivery of iodide ions. AAPS Pharm. Sci. Tech. 2013, 14, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Shang, L.; Zhang, S.; Du, H.; Venkatraman, S.S. A novel approach for the control of drug release rate through hydrogel membrane: I. Effect of drug immobilization on drug release rate by copolymerization method. Eur. J. Pharm. Biopharm. 2008, 68, 715–723. [Google Scholar] [CrossRef]
- Madheswaran, T.; Baskaran, R.; Yong, C.S.; Yoo, B.K. Enhanced topical delivery of finasteride using glyceryl monooleate-based liquid crystalline nanoparticles stabilized by cremophor surfactants. AAPS Pharm. Sci.Tech. 2014, 15, 44–51. [Google Scholar] [CrossRef] [Green Version]
Function in Formulation | Vehicles | Solubility (mg/mL) | p-Value | |
---|---|---|---|---|
Oils | S1 | Olive oil | 0.83 ± 0.02 | 0.0312 |
S2 | Sunflower oil | 1.35 ± 0.98 | 0.0182 | |
Surfactants | S3 | Kolliphor® EL | 5.4 ± 0.95 | 0.0031 |
S4 | Tween 20 | 4.58 ± 0.13 | 0.0269 | |
S5 | Tween 80 | 4.92 ± 0.23 | 0.0005 | |
Co-surfactants | S6 | Transcutol P | 1.15 ± 0.87 | 0.0443 |
S7 | Propylene glycol | 0.25 ± 0.03 | 0.0052 | |
S8 | PEG 400 | 3.1 ± 0.46 | 0.0003 |
Code | Formulation Composition (Kolliphor® EL:Tween 80:PEG400) | Solubility (mg/mL) | Droplet size (nm) | Viscosity (mPas) | Zetapotential (mV) |
---|---|---|---|---|---|
F1 | 10:30:60 | 2.99 ± 0.20 | 1525.7 ± 10.6 | 23.33 ± 0.85 | −5.14 ± 0.14 |
F2 | 20:26:54 | 3.58 ± 0.13 | 921.3 ± 2.6 | 44.46 ± 1.35 | −6.87 ± 0.15 |
F3 | 30:23:47 | 3.81 ± 0.04 | 624.9 ± 9.2 | 59.12 ± 1.66 | −7.23 ± 0.17 |
F4 | 40:20:40 | 4.11 ± 0.20 | 479.4 ± 3.8 | 65.07 ± 1.35 | −6.94 ± 0.16 |
F5 | 50:16:34 | 5.67 ± 0.23 | 332.3 ± 3.8 | 72.72 ± 1.17 | −7.99 ± 0.18 |
F6 | 60:13:27 | 6.86 ± 0.12 | 264.9 ± 4.2 | 88.85 ± 0.98 | −9.72 ± 0.20 |
F7 | 70:10:20 | 7.59 ± 0.23 | 183.8 ± 2.2 | 91.39 ± 0.56 | −10.83 ± 0.22 |
F8 | 80:6:14 | 7.69 ± 0.17 | 41.5 ± 1.7 | 98.3 ± 0.91 | −20.38 ± 0.32 |
F9 | 90:3:7 | 6.88 ± 0.07 | 29.3 ± 1.0 | 99.52 ± 1.27 | −20.99 ± 0.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, S.H.; Kim, E.; Joo, Y.; Lee, J.; Oh, K.T.; Hwang, S.-J.; Choi, K.-Y. A Mixed Micellar Formulation for the Transdermal Delivery of an Indirubin Analog. Pharmaceutics 2020, 12, 175. https://doi.org/10.3390/pharmaceutics12020175
Seo SH, Kim E, Joo Y, Lee J, Oh KT, Hwang S-J, Choi K-Y. A Mixed Micellar Formulation for the Transdermal Delivery of an Indirubin Analog. Pharmaceutics. 2020; 12(2):175. https://doi.org/10.3390/pharmaceutics12020175
Chicago/Turabian StyleSeo, Seol Hwa, Eunhwan Kim, Yechan Joo, Juseung Lee, Kyung Taek Oh, Sung-Joo Hwang, and Kang-Yell Choi. 2020. "A Mixed Micellar Formulation for the Transdermal Delivery of an Indirubin Analog" Pharmaceutics 12, no. 2: 175. https://doi.org/10.3390/pharmaceutics12020175
APA StyleSeo, S. H., Kim, E., Joo, Y., Lee, J., Oh, K. T., Hwang, S.-J., & Choi, K.-Y. (2020). A Mixed Micellar Formulation for the Transdermal Delivery of an Indirubin Analog. Pharmaceutics, 12(2), 175. https://doi.org/10.3390/pharmaceutics12020175