Erythrocytes as Carriers of Therapeutic Enzymes
Abstract
:1. Introduction
2. Therapeutic Strategies
3. Therapeutic Applications
3.1. Detoxification of Exogenous Chemicals
3.2. Thrombolytic Therapy
3.3. Enzyme Replacement for Metabolic Diseases
3.3.1. Lysosomal Storage Disorders
3.3.2. Hyperammonemia
3.3.3. Hyperglycemia
3.3.4. Hyperlactatemia
3.3.5. Glucose-6-Phosphate Dehydrogenase Deficiency
3.3.6. Adenosine Deaminase Deficiency
3.3.7. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)
3.3.8. Hyperuricemia
3.3.9. Phenylketonuria
3.4. Antitumor Therapy
4. Challenges and Limitations of Erythrocyte-Based Enzyme Therapy
5. Conclusions
Funding
Conflicts of Interest
References
- Baldo, B.A. Enzymes Approved for Human Therapy: Indications, Mechanisms and Adverse Effects. BioDrugs 2015, 29, 31–55. [Google Scholar] [CrossRef]
- Purcell, R.T.; Lockey, R.F. Immunologic Responses to Therapeutic Biologic Agents. J. Investig. Allergol. Clin. Immunol. 2008, 18, 335–342. [Google Scholar] [PubMed]
- Ihler, G.M.; Glew, R.H.; Schnure, F.W. Enzyme Loading of Erythrocytes. Proc. Natl. Acad. Sci. USA 1973, 70, 2663–2666. [Google Scholar] [CrossRef]
- Hoffman, J.F. Physiological Characteristics of Human Red Blood Cell Ghosts. J. Gen. Physiol. 1958, 42, 9–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, J.F. On Red Blood Cells, Hemolysis and Resealed Ghosts. Adv. Exp. Med. Biol. 1992, 326, 1–15. [Google Scholar]
- Sprandel, U. Erythrocytes as Carrier for Therapeutic Enzymes--an Approach towards Enzyme Therapy of Inborn Errors of Metabolism. Bibl. Haematol. 1985, 51, 7–14. [Google Scholar]
- Bratosin, D.; Mazurier, J.; Tissier, J.P.; Estaquier, J.; Huart, J.J.; Ameisen, J.C.; Aminoff, D.; Montreuil, J. Cellular and Molecular Mechanisms of Senescent Erythrocyte Phagocytosis by Macrophages. A Review. Biochimie 1998, 80, 173–195. [Google Scholar] [CrossRef]
- Way, J.L.; Leung, P.; Ray, L.; Sander, C. Erythrocyte Encapsulated Thiosulfate Sulfurtransferase. Bibl. Haematol. 1985, 75–81. [Google Scholar]
- Leung, P.; Ray, L.E.; Sander, C.; Way, J.L.; Sylvester, D.M.; Way, J.L. Encapsulation of Thiosulfate: Cyanide Sulfurtransferase by Mouse Erythrocytes. Toxicol. Appl. Pharmacol. 1986, 83, 101–107. [Google Scholar] [CrossRef]
- Hall, A.H.; Rumack, B.H. Hydroxycobalamin/sodium Thiosulfate as a Cyanide Antidote. J. Emerg. Med. 1987, 5, 115–121. [Google Scholar] [CrossRef]
- Leung, P.; Cannon, E.P.; Petrikovics, I.; Hawkins, A.; Way, J.L. In Vivo Studies on Rhodanese Encapsulation in Mouse Carrier Erythrocytes. Toxicol. Appl. Pharmacol. 1991, 110, 268–274. [Google Scholar] [CrossRef]
- Way, J.L.; Cannon, E.P.; Leung, P.; Hawkins-Zitzer, A.; Pei, L.; Petrikovics, I. Antagonism of the Lethal Effects of Cyanide with Resealed Erythrocytes Containing Rhodanese and Thiosulfate. Adv. Exp. Med. Biol. 1992, 326, 159–161. [Google Scholar] [PubMed]
- Cannon, E.P.; Leung, P.; Hawkins, A.; Petrikovics, I.; Deloach, J.; Way, J.L. Antagonism of Cyanide Intoxication with Murine Carrier Erythrocytes Containing Bovine Rhodanese and Sodium Thiosulfate. J. Toxicol. Environ. Health 1994, 41, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Petrikovics, I. Cyanide Antagonism with Carrier Erythrocytes and Organic Thiosulfonates. Fundam. Appl. Toxicol. 1995, 24, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Jan, Y.H.; Richardson, J.R.; Baker, A.A.; Mishin, V.; Heck, D.E.; Laskin, D.L.; Laskin, J.D. Novel Approaches to Mitigating Parathion Toxicity: Targeting Cytochrome P450–mediated Metabolism with Menadione. Ann. N. Y. Acad. Sci. 2016, 1378, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.P.; Roh, H.K. Antidote for Organophosphate Insecticide Poisoning: Atropine and Pralidoxime. J. Korean Med Assoc. 2013, 56, 1057–1066. [Google Scholar] [CrossRef] [Green Version]
- Pei, L. Antagonism of the Lethal Effects of Paraoxon by Carrier Erythrocytes Containing Phosphotriesterase. Fundam. Appl. Toxicol. 1995, 28, 209–214. [Google Scholar] [CrossRef]
- Way, J.L.; Pei, L.; Petrikovics, I.; McGuinn, D.; Tamulinas, C.; Hu, Q.Z.; Cannon, E.P.; Zitzer, A. Organophosphorus Antagonism by Resealed Erythrocytes Containing Recombinant Paraoxonase. In Erythrocytes as Drug Carriers in Medicine; Springer: Boston, MA, USA, 1997; pp. 89–92. [Google Scholar]
- Magnani, M.; Laguerre, M.; Rossi, L.; Bianchi, M.; Ninfali, P.; Mangani, F.; Ropars, C. In Vivo Accelerated Acetaldehyde Metabolism Using Acetaldehyde Dehydrogenase-Loaded Erythrocytes. Alcohol Alcohol. 1990, 25, 627–637. [Google Scholar] [CrossRef]
- Lizano, C.; Sanz, S.; Luque, J.; Pinilla, M. In Vitro Study of Alcohol Dehydrogenase and Acetaldehyde Dehydrogenase Encapsulated into Human Erythrocytes by an Electroporation Procedure. Biochim. Biophys. Acta Gen. Subj. 1998, 1425, 328–336. [Google Scholar] [CrossRef]
- Lizano, C.; Pérez, M.T.; Pinilla, M. Mouse Erythrocytes as Carriers for Coencapsulated Alcohol and Aldehyde Dehydrogenase Obtained by Electroporation - In Vivo Survival Rate in Circulation, Organ Distribution and Ethanol Degradation. Life Sci. 2001, 68, 2001–2016. [Google Scholar] [CrossRef]
- Kaminsky, Y.G.; Kosenko, E.A.; Alexandrovich, Y.G.; Ataullakhanov, F.I. Experiments on Alcocytes Containing Enzyme Nanoparticles for Reducing Toxic Blood Concentration of Ethanol. Bull. Exp. Biol. Med. 2012, 153, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Alexandrovich, Y.G.; Kosenko, E.A.; Sinauridze, E.I.; Obydennyi, S.I.; Kireev, I.I.; Ataullakhanov, F.I.; Kaminsky, Y.G. Rapid Elimination of Blood Alcohol Using Erythrocytes: Mathematical Modeling and In Vitro Study. Biomed Res. Int. 2017, 2017, 5849593. [Google Scholar] [CrossRef] [PubMed]
- Johlin, F.C.; Fortman, C.S.; Nghiem, D.D.; Tephly, T.R. Studies on the Role of Folic Acid and Folate-Dependent Enzymes in Human Methanol Poisoning. Mol. Pharmacol. 1987, 31, 557–561. [Google Scholar] [PubMed]
- Magnani, M.; Fazi, A.; Mangani, F.; Rossi, L.; Mancini, U. Methanol Detoxification by Enzyme-Loaded Erythrocytes. Biotechnol. Appl. Biochem. 1993, 18, 217–226. [Google Scholar]
- Muthuvel, A.; Rajamani, R.; Manikandan, S.; Sheeladevi, R. Detoxification of Formate by Formate Dehydrogenase-Loaded Erythrocytes and Carbicarb in Folate-Deficient Methanol-Intoxicated Rats. Clin. Chim. Acta 2006, 367, 162–169. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Bustos, N.L.; Stella, A.M.; Wider, E.A.; Alcira, A.M. Enzyme Replacement Therapy in Porphyrias-III: Potential Use of Erythrocyte Ghosts as Carriers of δ-Aminolaevulinate Dehydratase. Int. J. Biochem. 1983, 15, 447–452. [Google Scholar] [CrossRef]
- Bustos, N.L.; Batlle, A.M. Enzyme Replacement Therapy in Porphyrias--V. In Vivo Correction of Delta-Aminolaevulinate Dehydratase Defective in Erythrocytes in Lead Intoxicated Animals by Enzyme-Loaded Red Blood Cell Ghosts. Drug Des. Deliv. 1989, 5, 125–131. [Google Scholar]
- Batlle, A.M.; Bustos, N.L.; Stella, A.M.; Wider, E.A.; Conti, H.A.; Mendez, A. Enzyme Replacement Therapy in Porphyrias--IV. First Successful Human Clinical Trial of Delta-Aminolevulinate Dehydratase-Loaded Erythrocyte Ghosts. Int. J. Biochem. 1983, 15, 1261–1265. [Google Scholar] [CrossRef]
- Axley, M.J.; Dad, L.K.; Harabin, A.L. Hydrogenase Encapsulation into Red Blood Cells and Regeneration of Electron Acceptor. Biotechnol. Appl. Biochem. 1996, 24, 95–100. [Google Scholar]
- Adivitiya; Khasa, Y.P. The Evolution of Recombinant Thrombolytics: Current Status and Future Directions. Bioengineered 2017, 8, 331–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delahousse, B.; Kravtzoff, R.; Ropars, C. Use of Erythrocytes as a New Route of Administration of Fibrinolytic Agents. In Erythrocytes as Drug Carriers in Medicine; Springer: Boston, MA, USA, 1997; pp. 35–42. [Google Scholar]
- Flynn, G.; Hackett, T.J.; McHale, L.; McHale, A.P. Encapsulation of the Thrombolytic Enzyme, Brinase, in Photosensitized Erythrocytes: A Novel Thrombolytic System Based on Photodynamic Activation. J. Photochem. Photobiol. B Biol. 1994, 26, 193–196. [Google Scholar] [CrossRef]
- Muzykantov, V.R.; Sakharov, D.V.; Smirnov, M.D.; Samokhin, G.P.; Smirnov, V.N. Immunotargeting of Erythrocytes-Bound Streptokinase Provides Local Lysis of a Fibrin Clot. BBA Gen. Subj. 1986, 884, 355–362. [Google Scholar] [CrossRef]
- Murciano, J.C.; Medinilla, S.; Eslin, D.; Atochina, E.; Cines, D.B.; Muzykantov, V.R. Prophylactic Fibrinolysis through Selective Dissolution of Nascent Clots by tPA-Carrying Erythrocytes. Nat. Biotechnol. 2003, 21, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Danielyan, K.; Ganguly, K.; Ding, B.-S.; Atochin, D.; Zaitsev, S.; Murciano, J.-C.; Huang, P.L.; Kasner, S.E.; Cines, D.B.; Muzykantov, V.R. Cerebrovascular Thromboprophylaxis in Mice by Erythrocyte-Coupled Tissue-Type Plasminogen Activator. Circulation 2008, 118, 1442–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vankayala, R.; Corber, S.R.; Mac, J.T.; Rao, M.P.; Shafie, M.; Anvari, B. Erythrocyte-Derived Nanoparticles as a Theranostic Agent for Near-Infrared Fluorescence Imaging and Thrombolysis of Blood Clots. Macromol. Biosci. 2018, 18, 1700379. [Google Scholar] [CrossRef]
- Deloach, J.R.; Widnell, C.C.; Ihler, G.M. Phagocytosis of Enzyme-Containing Carrier Erythrocytes by Macrophages. J. Appl. Biochem. 1979, 1, 95–103. [Google Scholar]
- Thorpe, S.R.; Fiddler, M.B.; Desnick, R.J. Enzyme Therapy. V. In Vivo Fate of Erythrocyte-Entrapped β-Glucuronidase in β- Glucuronidase-Deficient Mice. Pediatr. Res. 1975, 9, 918–923. [Google Scholar] [CrossRef]
- Stirnemann, J.Ô.; Belmatoug, N.; Camou, F.; Serratrice, C.; Froissart, R.; Caillaud, C.; Levade, T.; Astudillo, L.; Serratrice, J.; Brassier, A.; et al. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments. Int. J. Mol. Sci. 2017, 18, 441. [Google Scholar] [CrossRef]
- Beutler, E.; Dale, G.L.; Guinto, E.; Kuhl, W. Enzyme Replacement Therapy in Gaucher’s Disease: Preliminary Clinical Trial of a New Enzyme Preparation. Proc. Natl. Acad. Sci. USA 1977, 74, 4620–4623. [Google Scholar] [CrossRef] [Green Version]
- Dale, G.L.; Kuhl, W.; Beutler, E. Incorporation of Glucocerebrosidase into Gaucher’s Disease Monocytes in Vitro. Proc. Natl. Acad. Sci. USA 1979, 76, 473–475. [Google Scholar] [CrossRef] [Green Version]
- Bax, B.E.; Bain, M.D.; Ward, C.P.; Fensom, A.H.; Chalmers, R.A. The Entrapment of Mannose-Terminated Glucocerebrosidase (Alglucerase) in Human Carrier Erythrocytes. In Biochemical Society Transactions; Springer: Boston, MA, USA, 1996; Volume 24, p. 441S. [Google Scholar]
- Bax, B.E.; Bain, M.D.; Ward, C.P.; Fensom, A.H.; Chalmers, R.A. The Entrapment of Mannose-Terminated Glucocerebrosidase (Alglucerase) in Human Carrier Erythrocytes. In Erythrocytes as Drug Carriers in Medicine; Springer: Boston, MA, USA, 1997; pp. 59–62. [Google Scholar]
- Sanz, S.; Lizano, C.; Garín, M.I.; Luque, J.; Pinilla, M. Biochemical Properties of Alcohol Dehydrogenase and Glutamate Dehydrogenase Encapsulated into Human Erythrocytes by a Hypotonic-Dialysis Procedure. In Erythrocytes as Drug Carriers in Medicine; Springer: Boston, MA, USA, 1997; pp. 101–108. [Google Scholar]
- Sanz, S.; Lizano, C.; Luque, J.; Pinilla, M. In Vitro and in Vivo Study of Glutamate Dehydrogenase Encapsulated into Mouse Erythrocytes by a Hypotonic Dialysis Procedure. Life Sci. 1999, 65, 2781–2789. [Google Scholar] [CrossRef]
- Venediktova, N.I.; Kosenko, E.A.; Kaminsky, Y.G. Studies on Ammocytes: Development, Metabolic Characteristics, and Detoxication of Ammonium. Bull. Exp. Biol. Med. 2008, 146, 730–732. [Google Scholar] [CrossRef] [PubMed]
- Kosenko, E.A.; Venediktova, N.I.; Kudryavtsev, A.A.; Ataullakhanov, F.I.; Kaminsky, Y.G.; Felipo, V.; Montoliu, C. Encapsulation of Glutamine Synthetase in Mouse Erythrocytes: A New Procedure for Ammonia Detoxification. Biochem. Cell Biol. 2008, 86, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Protasov, E.S.; Borsakova, D.V.; Alexandrovich, Y.G.; Korotkov, A.V.; Kosenko, E.A.; Butylin, A.A.; Ataullakhanov, F.I.; Sinauridze, E.I. Erythrocytes as Bioreactors to Decrease Excess Ammonium Concentration in Blood. Sci. Rep. 2019, 9, 1455. [Google Scholar] [CrossRef]
- Ah Mew, N.; Simpson, K.L.; Gropman, A.L.; Lanpher, B.C.; Chapman, K.A.; Summar, M.L. Urea Cycle Disorders Overview; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Adriaenssens, K.; Karcher, D.; Lowenthal, A.; Terheggen, H.G. Use of Enzyme Loaded Erythrocytes in in Vitro Correction of Arginase Deficient Erythrocytes in Familial Hyperargininemia. Clin. Chem. 1976, 22, 323–326. [Google Scholar] [CrossRef]
- Baysal, Ş.H.; Uslan, A.H. Encapsulation of Urease and PEG-Urease in Erythrocyte. Artif. Cells Blood Substit. Immobil. Biotechnol. 2000, 28, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Hamarat Baysal, S.; Uslan, A.H. Encapsulation of PEG-urease/PEG-AlaDH Enzyme System in Erythrocyte. Artif. Cells Blood Substit. Immobil. Biotechnol. 2001, 29, 405–412. [Google Scholar] [CrossRef]
- Baysal, S.H.; Uslan, A.H. In Vitro Study of urease/AlaDH Enzyme System Encapsulated into Human Erythrocytes and Research into Its Medical Applications. Artif. Cells Blood Substit. Immobil. Biotechnol. 2002, 30, 71–77. [Google Scholar] [CrossRef]
- Baysal, S.H.; Uslan, A.H.; Pala, H.H.; Tunçoku, O. Encapsulation of PEG-urease/PEG-AlaDH within Sheep Erythrocytes and Determination of the System’s Activity in Lowering Blood Levels of Urea in Animal Models. Artif. Cells Blood Substit. Immobil. Biotechnol. 2007, 35, 391–403. [Google Scholar] [CrossRef]
- Magnani, M.; Rossi, L.; Bianchi, M.; Fornaini, G.; Benatti, U.; Guida, L.; Zocchi, E.; De Flora, A. Improved Metabolic Properties of Hexokinase-Overloaded Human Erythrocytes. Biochim. Biophys. Acta 1988, 972, 1–8. [Google Scholar]
- De Flora, A.; Guida, L.; Zocchi, E.; Tonetti, M.; Benatti, U. Construction of Glucose Oxidase-Loaded human Erythrocytes: A Model of Oxidative Cytotoxicity. Available online: https://www.ncbi.nlm.nih.gov/pubmed/3804702 (accessed on 27 March 2020).
- Zocchi, E.; Benatti, U.; Guida, L.; Tonetti, M.; Damonte, G.L.; De Flora, A. Encapsulation of Glucose Oxidase in Mouse Erythrocytes: An Experimental Model of Oxidant-Induced Cytotoxicity and a Means for Splenic Targeting of. In Red Blood Cells as Carriers for Drugs; Ropars, C., Chassaigne, M., Nicolau, C., Eds.; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Rossi, L.; Bianchi, M.; Magnani, M. Increased Glucose Metabolism by Enzyme-loaded Erythrocytes in Vitro and in Vivo Normalization of Hyperglycemia in Diabetic Mice. Biotechnol. Appl. Biochem. 1992, 15, 207–216. [Google Scholar] [PubMed]
- Garin, M.; Rossi, L.; Luque, J.; Magnani, M. Lactate Catabolism by Enzyme-Loaded Red Blood Cells. Biotechnol. Appl. Biochem. 1995, 22, 295–303. [Google Scholar] [PubMed]
- Belfield, K.D.; Tichy, E.M. Review and Drug Therapy Implications of Glucose-6-Phosphate Dehydrogenase Deficiency. Am. J. Health-Syst. Pharm. 2018, 75, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Gerli, G.C.; Agostoni, A.; Fiorelli, G. G-6PD Loading of G-6PD-Deficient Erythrocytes. Experientia 1978, 34, 431–432. [Google Scholar] [CrossRef]
- Morelli, A.; Benatti, U.; Salamino, F.; Sparatore, B.; Michetti, M.; Melloni, E.; Pontremoli, S.; De Flora, A. In Vitro Correction of Erythrocyte Glucose 6-Phosphate Dehydrogenase (G6PD) Deficiency. Arch. Biochem. Biophys. 1979, 197, 543–550. [Google Scholar] [CrossRef]
- Bax, B.E.; Fairbanks, L.D.; Bain, M.D.; Simmonds, H.A.; Chalmers, R.A. The Entrapment of Polyethylene Glycol-Bound Adenosine Deaminase (Pegademase) in Human Carrier Erythrocytes. In Biochemical Society Transactions; Springer: Boston, MA, USA, 1996; Volume 24, p. 442S. [Google Scholar]
- Bax, B.E.; Fairbanks, L.D.; Bain, M.D.; Simmonds, H.A.; Chalmers, R.A. The Entrapment of Polyethylene Glycol-Conjugated Adenosine Deaminase (Pegademase) and Native Adenosine Deaminase in Human Carrier Erythrocytes. In Erythrocytes as Drug Carriers in Medicine; Springer: Boston, MA, USA, 1997; pp. 31–34. [Google Scholar]
- Bax, B.E.; Bain, M.D.; Fairbanks, L.D.; Anne Simmonds, H.; David Webster, A.; Chalmers, R.A. Carrier Erythrocyte Entrapped Adenosine Deaminase Therapy in Adenosine Deaminase Deficiency. Adv. Exp. Med. Biol. 2000, 486, 47–50. [Google Scholar]
- Bax, B.E.; Bain, M.D.; Fairbanks, L.D.; Webster, A.D.B.; Chalmers, R.A. In Vitro and in Vivo Studies with Human Carrier Erythrocytes Loaded with Polyethylene Glycol-Conjugated and Native Adenosine Deaminase. Br. J. Haematol. 2000, 109, 549–554. [Google Scholar] [CrossRef]
- Bax, B.E.; Bain, M.D.; Fairbanks, L.D.; Webster, A.D.B.; Ind, P.W.; Hershfield, M.S.; Chalmers, R.A. A 9-Yr Evaluation of Carrier Erythrocyte Encapsulated Adenosine Deaminase (ADA) Therapy in a Patient with Adult-Type ADA Deficiency. Eur. J. Haematol. 2007, 79, 338–348. [Google Scholar] [CrossRef]
- Flinn, A.M.; Gennery, A.R. Adenosine Deaminase Deficiency: A Review. Orphanet J. Rare Dis. 2018, 13, 65. [Google Scholar] [CrossRef]
- Bax, B.E. Mitochondrial Neurogastrointestinal Encephalomyopathy: Approaches to Diagnosis and Treatment. J. Transl. Genet. Genom. 2020, 4, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Godfrin, Y.; Horand, F.; Franco, R.; Dufour, E.; Kosenko, E.; Bax, B.E.; Banz, A.; Skorokhod, O.A.; Lanao, J.M.; Vitvitsky, V.; et al. International Seminar on the Red Blood Cells as Vehicles for Drugs. Expert Opin. Biol. Ther. 2012, 12, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Godfrin, Y.; Bax, B.E. Enzyme bioreactors as drugs. Drugs Future 2012, 37, 263–272. [Google Scholar] [CrossRef]
- Pacitti, D.; Levene, M.; Garone, C.; Nirmalananthan, N.; Bax, B.E. Mitochondrial Neurogastrointestinal Encephalomyopathy: Into the Fourth Decade, What We Have Learned So Far. Front. Genet. 2018, 9, 669. [Google Scholar] [CrossRef] [Green Version]
- Moran, N.F.; Bain, M.D.; Muqit, M.M.K.; Bax, B.E. Carrier Erythrocyte Entrapped Thymidine Phosphorylase Therapy for Mngie. Neurology 2008, 71, 686–688. [Google Scholar] [CrossRef]
- Levene, M.; Coleman, D.G.; Kilpatrick, H.C.; Fairbanks, L.D.; Gangadharan, B.; Gasson, C.; Bax, B.E. Preclinical Toxicity Evaluation of Erythrocyte-Encapsulated Thymidine Phosphorylase in BALB/c Mice and Beagle Dogs: An Enzyme-Replacement Therapy for Mitochondrial Neurogastrointestinal Encephalomyopathy. Toxicol. Sci. 2013, 131, 311–324. [Google Scholar] [CrossRef]
- Gasson, C.; Levene, M.; Bax, B.E. The Development and Validation of an Immunoassay for the Measurement of Anti-Thymidine Phosphorylase Antibodies in Mouse and Dog Sera. J. Pharm. Biomed. Anal. 2013, 72, 16–24. [Google Scholar] [CrossRef]
- Levene, M.; Bain, M.; Moran, N.; Nirmalananthan, N.; Poulton, J.; Scarpelli, M.; Filosto, M.; Mandel, H.; MacKinnon, A.; Fairbanks, L.; et al. Safety and Efficacy of Erythrocyte Encapsulated Thymidine Phosphorylase in Mitochondrial Neurogastrointestinal Encephalomyopathy. J. Clin. Med. 2019, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Bax, B.E.; Bain, M.D.; Scarpelli, M.; Filosto, M.; Tonin, P.; Moran, N. Clinical and Biochemical Improvements in a Patient with MNGIE Following Enzyme Replacement. Neurology 2013, 81, 1269–1271. [Google Scholar] [CrossRef] [Green Version]
- Kipper, K.; Hecht, M.; Antunes, N.J.; Fairbanks, L.D.; Levene, M.; Uçar, S.K.; Schaefer, A.; Blakely, E.L.; Bax, B.E. Quantification of Plasma and Urine Thymidine and 2 ’ -Deoxyuridine by LC-MS / MS for the Pharmacodynamic Evaluation of Erythrocyte Encapsulated Thymidine Phosphorylase in Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy. J. Clin. Med. 2020, 9, 788. [Google Scholar] [CrossRef] [Green Version]
- Levene, M.; Pacitti, D.; Gasson, C.; Hall, J.; Sellos-Moura, M.; Bax, B.E. Validation of an Immunoassay for Anti-Thymidine Phosphorylase Antibodies in Patients with MNGIE Treated with Enzyme Replacement Therapy. Mol. Ther. Methods Clin. Dev. 2018, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.M.; Pearson, I.F.S.; Fairbanks, L.D.; Chalmers, R.A.; Bain, M.D.; Bax, B.E. The Mouse Immune Response to Carrier Erythrocyte Entrapped Antigens. Vaccine 2006, 24, 6129–6139. [Google Scholar] [CrossRef]
- Bax, B.E.; Levene, M.; Bain, M.D.; Fairbanks, L.D.; Filosto, M.; Kalkan Uçar, S.; Klopstock, T.; Kornblum, C.; Mandel, H.; Rahman, S.; et al. Erythrocyte Encapsulated Thymidine Phosphorylase for the Treatment of Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy: Study Protocol for a Multi-Centre, Multiple Dose, Open Label Trial. J. Clin. Med. 2019, 8, 1096. [Google Scholar] [CrossRef] [Green Version]
- Ihler, G.; Lantzy, A.; Purpura, J.; Glew, R.H. Enzymatic Degradation of Uric Acid by Uricase-Loaded Human Erythrocytes. J. Clin. Investig. 1975, 56, 595–602. [Google Scholar] [CrossRef]
- Magnani, M.; Mancini, U.; Bianchi, M.; Fazi, A. Comparison of Uricase-Bound and Uricase-Loaded Erythrocytes as Bioreactors for Uric Acid Degradation. Adv. Exp. Med. Biol. 1992, 326, 189–194. [Google Scholar]
- Williams, R.A.; Mamotte, C.D.S.; Burnett, J.R. Phenylketonuria: An Inborn Error of Phenylalanine Metabolism. Clin. Biochem. Rev. 2008, 29, 31–41. [Google Scholar]
- Sprandel, U.; Zöllner, N. Biochemical Studies of Phenylalanine Ammonia-Lyase Encapsulated in Erythrocytes. Biochem. Soc. Trans. 1990, 18, 654–655. [Google Scholar] [CrossRef] [Green Version]
- Yew, N.S.; Dufour, E.; Przybylska, M.; Putelat, J.; Crawley, C.; Foster, M.; Gentry, S.; Reczek, D.; Kloss, A.; Meyzaud, A.; et al. Erythrocytes Encapsulated with Phenylalanine Hydroxylase Exhibit Improved Pharmacokinetics and Lowered Plasma Phenylalanine Levels in Normal Mice. Mol. Genet. Metab. 2013, 109, 339–344. [Google Scholar] [CrossRef]
- Rossi, L.; Pierigè, F.; Carducci, C.; Gabucci, C.; Pascucci, T.; Canonico, B.; Bell, S.M.; Fitzpatrick, P.A.; Leuzzi, V.; Magnani, M. Erythrocyte-Mediated Delivery of Phenylalanine Ammonia Lyase for the Treatment of Phenylketonuria in BTBR-Pahenu2mice. J. Control. Release 2014, 194, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Pascucci, T.; Rossi, L.; Colamartino, M.; Gabucci, C.; Carducci, C.; Valzania, A.; Sasso, V.; Bigini, N.; Pierigè, F.; Viscomi, M.T.; et al. A New Therapy Prevents Intellectual Disability in Mouse with Phenylketonuria. Mol. Genet. Metab. 2018, 124, 39–49. [Google Scholar] [CrossRef]
- Kidd, J.G. Regression of Transplanted Lymphomas Induced in Vivo by Means of Normal Guinea Pig Serum. I. Course of Transplanted Cancers of Various Kinds in Mice and Rats given Guinea Pig Serum, Horse Serum, or Rabbit Serum. J. Exp. Med. 1953, 98, 565–582. [Google Scholar] [CrossRef]
- Wriston, J.C.; Yellin, T.O. L-Asparaginase: A Review. In Advances in Enzymology and Related Areas of Molecular Biology; Wiley: Hoboken, NJ, USA, 2006; Volume 39, pp. 185–248. [Google Scholar]
- Heo, Y.A.; Syed, Y.Y.; Keam, S.J. Pegaspargase: A Review in Acute Lymphoblastic Leukaemia. Drugs 2019, 79, 767–777. [Google Scholar] [CrossRef] [Green Version]
- Updike, S.J.; Wakamiya, R.T.; Lightfoot, E.N. Asparaginase Entrapped in Red Blood Cells: Action and Survival. Science 1976, 193, 681–683. [Google Scholar] [CrossRef]
- Updike, S.J.; Wakamiya, R.T. Infusion of Red Blood Cell-Loaded Asparaginase in Monkey. Immunologic, Metabolic, and Toxicologic Consequences. J. Lab. Clin. Med. 1983, 101, 679–691. [Google Scholar]
- Kravtzoff, R.; Colombat, P.; Desbois, I.; Linassier, C.; Muh, J.P.; Philip, T.; Blay, J.Y.; Gardenbas, M.; Poumier-Gaschard, P.; Lamagnere, J.P.; et al. Tolerance Evaluation of L-Asparaginase Loaded in Red Blood Cells. Eur. J. Clin. Pharmacol. 1996, 51, 221–225. [Google Scholar] [CrossRef]
- Kravtzoff, R.; Desbois, I.; Lamagnere, J.P.; Muh, J.P.; Valat, C.; Chassaigne, M.; Colombat, P.; Ropars, C. Improved Pharmacodynamics of L-Asparaginase-Loaded in Human Red Blood Cells. Eur. J. Clin. Pharmacol. 1996, 49, 465–470. [Google Scholar] [CrossRef]
- Garin, M.I.; Kravtzoff, R.; Chestier, N.; Sanz, S.; Pinilla, M.; Luque, J.; Ropars, C. Density Gradient Separation of L-Asparaginase-Loaded Human Erythrocytes. Biochem. Mol. Biol. Int. 1994, 33, 807–814. [Google Scholar]
- Ktavtzoff, R.; Desbois, I.; Doinel, C.; Colombat, P.; Lamagnere, J.P.; Chassaigne, M.; Ropars, C. Immunological Response to L-Asparaginase Loaded into Red Blood Cells. Adv. Exp. Med. Biol. 1992, 326, 175–182. [Google Scholar]
- Kravtzoff, R.; Ropars, C.; Laguerre, M.; Muh, J.P.; Chassaigne, M. Erythrocytes as Carriers for L-Asparaginase. Methodological and Mouse In-vivo Studies. J. Pharm. Pharmacol. 1990, 42, 473–476. [Google Scholar] [CrossRef]
- Halfon-Domenech, C.; Thomas, X.; Chabaud, S.; Baruchel, A.; Gueyffier, F.; Mazingue, F.; Auvrignon, A.; Corm, S.; Dombret, H.; Chevallier, P.; et al. L-Asparaginase Loaded Red Blood Cells in Refractory or Relapsing Acute Lymphoblastic Leukaemia in Children and Adults: Results of the GRASPALL 2005-01 Randomized Trial. Br. J. Haematol. 2011, 153, 58–65. [Google Scholar] [CrossRef]
- Hunault-Berger, M.; Leguay, T.; Huguet, F.; Leprêtre, S.; Deconinck, E.; Ojeda-Uribe, M.; Bonmati, C.; Escoffre-Barbe, M.; Bories, P.; Himberlin, C.; et al. Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL). A Phase 2 Study of L-Asparaginase Encapsulated in Erythrocytes in Elderly Patients with Philadelphia Chromosome Negative Acute Lymphoblastic Leukemia: The GRASPALL/GRAALL-SA2-2008 Study. Am. J. Hematol. 2015, 90, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Bachet, J.-B.; Gay, F.; Maréchal, R.; Galais, M.-P.; Adenis, A.; MsC, D.S.; Cros, J.; Demetter, P.; Svrcek, M.; Bardier-Dupas, A.; et al. Asparagine Synthetase Expression and Phase I Study With L-Asparaginase Encapsulated in Red Blood Cells in Patients With Pancreatic Adenocarcinoma. Pancreas 2015, 44, 1141–1147. [Google Scholar] [CrossRef]
- Hammel, P.; Fabienne, P.; Mineur, L.; Metges, J.P.; Andre, T.; De La Fouchardiere, C.; Louvet, C.; El Hajbi, F.; Faroux, R.; Guimbaud, R.; et al. Erythrocyte-Encapsulated Asparaginase (Eryaspase) Combined with Chemotherapy in Second-Line Treatment of Advanced Pancreatic Cancer: An Open-Label, Randomized Phase IIb Trial. Eur. J. Cancer 2020, 124, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Gay, F.; Aguera, K.; Sénéchal, K.; Tainturier, A.; Berlier, W.; Maucort-Boulch, D.; Honnorat, J.; Horand, F.; Godfrin, Y.; Bourgeaux, V. Methionine Tumor Starvation by Erythrocyte-Encapsulated Methionine Gamma-Lyase Activity Controlled with per Os Vitamin B6. Cancer Med. 2017, 6, 1437–1452. [Google Scholar] [CrossRef]
- Sénéchal, K.; Maubant, S.; Leblanc, M.; Ciré, S.; Gallix, F.; Andrivon, A.; Duchamp, O.; Viviani, F.; Horand, F.; Scheer, A.; et al. Abstract 2258: Erymethionase (Methionine-Gamma-Lyase Encapsulated into Red Blood Cells) Potentiates Anti-PD-1 Therapy in TNBC Syngeneic Mouse Model. In Cancer Research; American Association for Cancer Research (AACR): Philadelphia, PA, USA, 2019; Volume 79, p. 2258. [Google Scholar]
- Gay, F.; Aguera, K.; Senechal, K.; Bes, J.; Chevrier, A.-M.; Gallix, F.; Guicher, C.; Lorenzi, P.; Bourgeaux, V.; Berlier, W.; et al. Abstract 4812: Arginine Deiminase Loaded in Erythrocytes: A Promising Formulation for L-Arginine Deprivation Therapy in Cancers. In Cancer Research; American Association for Cancer Research (AACR): Philadelphia, PA, USA, 2016; Volume 76, p. 4812. [Google Scholar]
- Magnani, M.; Rossi, L.; D’ascenzo, M.; Panzani, I.; Bigi, L.; Zanella, A. Erythrocyte Engineering for Drug Delivery and Targeting. Biotechnol. Appl. Biochem. 1998, 28, 1–6. [Google Scholar]
- Bourgeaux, V.; Lanao, J.M.; Bax, B.E.; Godfrin, Y. Drug-Loaded Erythrocytes: On the Road toward Marketing Approval. Drug Des. Dev. Ther. 2016, 10, 665–676. [Google Scholar] [CrossRef] [Green Version]
Therapeutic Application | Therapeutic Target/Disorder | Encapsulated/Conjugated Enzyme | Investigations |
---|---|---|---|
Detoxification of exogenous chemicals | Cyanide [8,9,10,11,12,13] | Rhodanase | Mouse in vivo |
Paraoxon [14,15] | Phosphotriesterase | Mouse in vivo | |
Paraoxonase | Mouse in vivo | ||
Ethanol [16,17,18,19,20] | Acetaldehyde dehydrogenase | Mouse in vivo | |
Alcohol dehydrogenase/aldehyde dehydrogenase | Mouse in vitro/in vivo Human in silico/in vitro | ||
Methanol [21,22] | Alcohol oxidase | Mouse in vivo Mouse in vivo | |
Formate dehydrogenase | |||
Lead [23,24,25] | δ-aminolevulinic acid dehydratase | Mouse in vitro/in vivo Human clinical | |
Hydrogen gas [26] | Hydrogenase | Human in vitro | |
Thrombolytic therapy | Plasminogen [27,28,29,30,31] | Urokinase | Human in vitro Mouse in vivo |
Streptokinase | Human in vitro Mouse in vivo | ||
tPA | Human in vitro Mouse/rat in vivo | ||
Brinase | Rabbit in vitro | ||
Treatment of metabolic disease | Sphingolipids (Lysosomal storage disorders) [32,33,34,35,36,37] | β-glucosidase | Human in vitro |
β-galactosidase | Human in vitro | ||
β-glucuronidase | Mouse in vivo | ||
β-glucocerebrosidase | Human in vitro/clinical | ||
Alglucerase | Human in vitro | ||
Ammonia (hyperammonemia) [38,39,40,41,42] | l-glutamate dehydrogenase | Human in vitro Mouse in vivo | |
Glutamine synthetase | Mouse in vivo | ||
Glutamate dehydrogenase/alanine aminotransferase | In silico Human in vitro Mouse in vivo | ||
Arginine and ammonia (arginase-1 deficiency) [43] | Arginase | Human in vitro | |
Urea and ammonia (chronic renal failure) [44,45,46,47] | Urease/alanine dehydrogenase | Human in vitro Sheep in vivo | |
Glucose (hyperglycemia) [48,49,50,51] | Hexokinase | Human in vitro | |
Glucose oxidase | Human in vitro Mouse in vitro/in vivo | ||
Hexokinase/glucose oxidase | Human in vitro Mouse in vitro/in vivo | ||
Lactate (hyperlactatemia) [52] | Lactate 2-mono-oxygenase | Mouse/human in vitro | |
Lactate oxidase | Mouse/human in vitro | ||
Lactate 2-mono-oxygenase/ lactate oxidase | Mouse in vitro/in vivo Human in vitro | ||
NADP (Glucose-6-phosphate dehydrogenase deficiency) [3,54] | Glucose-6-phosphate dehydrogenase | Human in vitro | |
Adenosine and 2‘-deoxyadenosine (Adenosine deaminase deficiency) [55,56,57,58,59] | Adenosine deaminase Pegademase | Human in vitro/in vivo Human in vitro/clinical | |
Thymidine and 2’-deoxyuridine (MNGIE) [60,61,62,63,64,65,66,67,68,69,70,71,72] | Thymidine phosphorylase | Mouse/dog in vivo Human Phase II | |
Uric acid (hyperuricemia) [73,74] | Uricase | Human in vitro Mouse in vivo | |
Phenylalanine (phenylketonuria) [75,76,77,78] | Phenylalanine ammonia lyase | Mouse in vitro/in vivo | |
Phenylalanine hydroxylase | Mouse in vivo | ||
RTX-134 | Human Phase Ib | ||
Antitumor therapy | Asparagine (acute lymphoblastic leukemia) [79,80,81,82,83,84,85,86,87,88,89,90] | Asparaginase GRASPA | Monkey in vivo Human Phase I/II |
Asparagine (pancreatic adenocarcinoma) [91,92] | ERY-ASP Eryaspase | Human Phase I Human Phase IIb/ Phase III | |
(triple negative breast cancer) | Eryaspase | Human Phase II/III | |
Methionine (gastric adenocarcinoma, glioblastoma, breast carcinoma) [93,94] | Methionine-γ-lyase | Mouse in vivo | |
Arginine [95] | Arginine deiminase | Mouse in vivo |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bax, B.E. Erythrocytes as Carriers of Therapeutic Enzymes. Pharmaceutics 2020, 12, 435. https://doi.org/10.3390/pharmaceutics12050435
Bax BE. Erythrocytes as Carriers of Therapeutic Enzymes. Pharmaceutics. 2020; 12(5):435. https://doi.org/10.3390/pharmaceutics12050435
Chicago/Turabian StyleBax, Bridget E. 2020. "Erythrocytes as Carriers of Therapeutic Enzymes" Pharmaceutics 12, no. 5: 435. https://doi.org/10.3390/pharmaceutics12050435
APA StyleBax, B. E. (2020). Erythrocytes as Carriers of Therapeutic Enzymes. Pharmaceutics, 12(5), 435. https://doi.org/10.3390/pharmaceutics12050435