Human Skin Permeation Enhancement Using PLGA Nanoparticles Is Mediated by Local pH Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Nanoparticles Preparation and Characterization
2.4. Microparticles from PLGA and Arabic Gum/Gelatine A
2.5. Non-Buffered Gel Preparations
2.6. Determination of the Saturation Concentration of Flufenamic Acid in Different Solutions
2.7. Buffered Gels Preparation with Soerensen Buffer
2.8. Flufenamic Acid Solutions and NP Suspensions
Non-Buffered Formulations
2.9. Caffeine Solution and NP Suspension
2.10. Skin Preparation
2.10.1. Preparation of Heat Separated Epidermis
2.10.2. Reconstructed Human Epidermis Equivalents
2.10.3. Permeation Experiments
2.10.4. HPLC Methods
2.11. CLSM-Measurements
2.12. Statistical Evaluation
3. Results
3.1. Infinite Dose Permeation Experiments Using Unbuffered Hydrogels and Heat Separated Human Epidermis
3.2. Permeation Experiments Using Hydrogels and Reconstituted Human Epidermis (Skinethic®)—Infinite Dose Regime
3.3. Flufenamic Acid Saturation Concentration and Percentage of Ionized Drug in Solutions of Different pH Values
3.4. Infinite Dose Permeation Studies Using Buffered Hydrogels and Heat Separated Human Epidermis
3.5. Permeation Studies with Non-Buffered and Buffered Solutions in Presence and Absence of Nanoparticles
3.6. Permeation Studies with Caffeine
3.7. Investigation of the pH in the Surrounding of the Particles’ Surface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez Cruz, I.; Domínguez-Delgado, C.; Escobar-Chávez, J.; López-Cervantes, M.; Díaz-Torres, R. Physical Penetration Enhancers: An Overview. In Current Technologies to Increase the Transdermal Delivery of Drugs; Bentham Science Publishers: Sharjah, United Arab Emirates, 2016; Volume 2, pp. 3–34. [Google Scholar]
- Wang, F.-Y.; Chen, Y.; Huang, Y.-Y.; Cheng, C.-M. Transdermal drug delivery systems for fighting common viral infectious diseases. Drug Deliv. Transl. Res. 2021, 11, 1498–1508. [Google Scholar] [CrossRef]
- Mota, A.H.; Rijo, P.; Molpeceres, J.; Reis, C.P. Broad overview of engineering of functional nanosystems for skin delivery. Int. J. Pharm. 2017, 532, 710–728. [Google Scholar] [CrossRef]
- Palmer, B.C.; DeLouise, L.A. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting. Molecules 2016, 21, 1719. [Google Scholar] [CrossRef]
- Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.T.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; et al. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 470–491. [Google Scholar] [CrossRef]
- Schneider, M.; Stracke, F.; Hansen, S.; Schaefer, U.F. Nanoparticles and their interactions with the dermal barrier. J. Derm. Endocrinol. 2009, 1, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luengo, J.; Weiss, B.; Schneider, M.; Ehlers, A.; Stracke, F.; König, K.; Kostka, K.-H.; Lehr, C.-M.; Schaefer, U.F. Influence of Nanoencapsulation on Human Skin Transport of Flufenamic Acid. Ski. Pharmacol. Physiol. 2006, 19, 190–197. [Google Scholar] [CrossRef]
- Santander-Ortega, M.; Stauner, T.; Loretz, B.; Ortega-Vinuesa, J.L.; Bastos-González, D.; Wenz, G.; Schaefer, U.; Lehr, C.-M. Nanoparticles made from novel starch derivatives for transdermal drug delivery. J. Control. Release 2009, 141, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Melero, A.; Ferreira Ourique, A.; Stanisçuaski Guterres, S.; Raffin Pohlmann, A.; Lehr, C.M.; Ruver Beck, R.C.; Schaefer, U. Nanoencapsulation in Lipid-Core Nanocapsules Controls Mometasone Furoate Skin Permeability Rate and Its Penetration to the Deeper Skin Layers. Ski. Pharmacol. Physiol. 2014, 27, 217. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.G.; Yang, J.; Ryman-Rasmussen, J.P.; Barron, A.R.; Monteiro-Riviere, N.A. Effects of Mechanical Flexion on the Penetration of Fullerene Amino Acid-Derivatized Peptide Nanoparticles through Skin. Nano Lett. 2007, 7, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Stracke, F.; Weiss, B.; Lehr, C.-M.; Konig, K.; Schaefer, U.F.; Schneider, M. Multiphoton microscopy for the investigation of dermal penetration of nanoparticle-borne drugs. J. Investig. Dermatol. 2006, 126, 2224–2233. [Google Scholar] [CrossRef] [Green Version]
- Lademann, J.; Weigmann, H.-J.; Rickmeyer, C.; Barthelmes, H.; Schaefer, H.; Mueller, G.; Sterry, W. Penetration of Titanium Dioxide Microparticles in a Sunscreen Formulation into the Horny Layer and the Follicular Orifice. Ski. Pharmacol. Appl. Ski. Physiol. 1999, 12, 247–256. [Google Scholar] [CrossRef]
- Toll, R.; Jacobi, U.; Richter, H.; Lademann, J.; Schaefer, H.; Blume-Peytavi, U. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J. Investig. Dermatol. 2004, 123, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Kim, C.S.; Saylor, D.M.; Koo, D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1692–1716. [Google Scholar] [CrossRef]
- Abignente, E.; De Caprariis, P. Flufenamic Acid. In Analytical Profiles of Drug Substances; Florey, K., Ed.; Academic Press, Inc.: Cambridge, MA, USA, 1982; Volume 11, pp. 313–346. [Google Scholar]
- Moffat, A.C. Clarke’s Isolation and Identification of Drugs; Pharmaceutical Press: London, UK, 1986. [Google Scholar]
- Schäfer-Korting, M.; Bock, U.; Diembeck, W.; Düsing, H.J.; Gamer, A.; Haltner-Ukomadu, E.; Hoffmann, C.; Kaca, M.; Kamp, H.; Kersen, S.; et al. The use of reconstructed human epidermis for skin absorption testing: Results of the validation study. Altern. Lab. Anim. 2008, 36, 161–187. [Google Scholar] [CrossRef]
- PubChem. CID 2519. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Caffeine (accessed on 26 July 2021).
- Geigy, D. Wissenschaftliche Tabellen, 7th ed.; Sonderausgabe Georg Tieme Verlag: Stuttgart, Germany, 1975. [Google Scholar]
- Bronaugh, R.L.; Stewart, R.F.; Morton, S. Methods of in vitro percutaneous absorption studies VII: Use of excised human skin. J. Pharm. Sci. 1986, 75, 1094–1097. [Google Scholar] [CrossRef]
- Wagner, H.; Kostka, K.-H.; Adelhardt, W.; Schaefer, U.F. Effects of various vehicles on the penetration of flufenamic acid into human skin. Eur. J. Pharm. Biopharm. 2004, 58, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Netzlaff, F.; Lehr, C.-M.; Wertz, P.W.; Schaefer, U.F. The human epidermis models EpiSkin(R), SkinEthic(R) and EpiDerm(R): An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur. J. Pharm. Biopharm. 2005, 60, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Rosdy, M.; Clauss, L.-C. Terminal Epidermal Differentiation of Human Keratinocytes Grown in Chemically Defined Medium on Inert Filter Substrates at the Air-Liquid Interface. J. Investig. Dermatol. 1990, 95, 409–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, H.; Kostka, K.-H.; Lehr, C.-M.; Schaefer, U.F. Drug distribution in human skin using two different in vitro test systems: Comparison with in vivo data. Pharm. Res. 2000, 17, 1475–1481. [Google Scholar] [CrossRef]
- Schneider, M.; Barozzi, S.; Testa, I.; Faretta, M.; Diaspro, A. Two-photon activation and excitation properties of PA-GFP in the 720–920 nm region. Biophys. J. 2005, 89, 1346–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmook, F.P.; Meingassner, J.G.; Billich, A. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int. J. Pharm. 2001, 215, 51–56. [Google Scholar] [CrossRef]
- Schafer-Korting, M.; Bock, U.; Gamer, A.; Haberland, A.; Haltner-Ukomadu, E.; Kaca, M.; Kamp, H.; Kietzmann, M.; Korting, H.C.; Krachter, H.U.; et al. Reconstructed human epidermis for skin absorption testing: Results of the German prevalidation study. Altern. Lab. Anim. 2006, 34, 283–294. [Google Scholar] [CrossRef]
- Labouta, H.I.; Schneider, M. Interaction of inorganic nanoparticles with the skin barrier: Current status and critical review. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Shive, M.S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 1997, 28, 5–24. [Google Scholar] [CrossRef]
- Fu, K.; Pack, D.W.; Klibanov, A.M.; Langer, R. Visual Evidence of Acidic Environment Within Degrading Poly(lactic-co-glycolic acid) (PLGA) Microspheres. Pharm. Res. 2000, 17, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Elkharraz, K.; Siepmann, F.; Klose, D. How autocatalysis accelerates drug release from PLGA-based microparticles: A quantitative treatment. Biomacromolecules 2005, 6, 2312–2319. [Google Scholar] [CrossRef]
- Weiss, B.; Schaefer, U.; Zapp, J.; Lamprecht, A.; Stallmach, A.; Lehr, C.-M. Nanoparticles made of Fluorescence-Labelled Poly(L-lactide-co-glycolide): Preparation, Stability, and Biocompatibility. J. Nanosci. Nanotechnol. 2006, 6, 3048–3056. [Google Scholar] [CrossRef]
- Henning, A. Einfluss verschiedener Präparationstechniken auf Die Hautpermeation. Master’s Thesis, Saarland University, Saarbrücken, Germany, 2005. [Google Scholar]
- Potts, R.O.; Guy, R.H. Predicting Skin Permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef]
- Sebastiani, P.; Nicoli, S.; Santi, P. Effect of lactic acid and iontophoresis on drug permeation across rabbit ear skin. Int. J. Pharm. 2005, 292, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.D. Confocal Microscopy: Principles and Modern Practices. Curr. Protoc. Cytom. 2020, 92, e68. [Google Scholar] [CrossRef]
- Perzov, N.; Padler-Karavani, V.; Nelson, H.; Nelson, N. Characterization of yeast V-ATPase mutants lacking Vph1p or Stv1p and the effect on endocytosis. J. Exp. Biol. 2002, 205, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
Formulation Component | FFA Sol | FFA NP Suspension | FFA Solution + DF-NP Suspension |
---|---|---|---|
FFA concentrated solution | 40.464 mL | -- | 40.464 mL |
HCl 0.1 M | 1.480 mL | 1.480 mL | 1.480 mL |
NaOH 0.04 M | -- | 40.464 mL | -- |
FFA NP concentrated suspension | -- | 25.536 mL | -- |
DF-NP concentrated suspension | -- | 25.536 mL | |
Deionized water to | 100 mL | 100 mL | 100 mL |
Solution Component | pH 5.4 | pH 6.4 | pH 7.4 |
---|---|---|---|
Citric acid monohydrate 0.2 M | 44.7 | 31.4 | 9.8 |
Disodium phosphate dihydrate 0.4 M | 55.3 | 68.6 | 90.2 |
Formulation Component | FFA Sol | FFA NP Suspension | FFA Solution + DF-NP Suspension |
---|---|---|---|
FFA sol | FFA NP | FFA + DF-NP | |
Concentrated buffer | 50.000 mL | 50.000 mL | 50.000 mL |
Flufenamic acid | 4000 µg | 4000 µg | |
FFA NP concentrated suspension | 25.536 mL | ||
DF-NP concentrated suspension | 25.536 mL | ||
Deionized water to | 100.000 mL | 100.000 mL | 100.000 mL |
Solvent | Saturation Concentration (µg/mL) | Ionized Percentage (%) | Non-Ionized Percentage (%) | |
---|---|---|---|---|
Water | 5.8 ± 0.8 | n.d. | n.d. | |
Soerensen buffer | pH 6.0 | 29.4 ± 0.4 | 99.21 | 0.79 |
McIlvaine buffer | pH 3.4 | 1.8 ± 0.2 | 24.00 | 76.00 |
pH 4.4 | 5.6 ± 0.5 | 75.97 | 24.03 | |
pH 5.4 | 43.1 ± 1.8 | 96.93 | 3.07 | |
pH 6.4 | 383.4 ± 14.2 | 99.68 | 0.32 | |
pH 7.4 | 2896.1 ± 55.9 | 99.97 | 0.03 | |
Soerensen buffer | pH 7.4 * | 2059.5 ± 21.6 | 99.97 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luengo, J.; Schneider, M.; Schneider, A.M.; Lehr, C.-M.; Schaefer, U.F. Human Skin Permeation Enhancement Using PLGA Nanoparticles Is Mediated by Local pH Changes. Pharmaceutics 2021, 13, 1608. https://doi.org/10.3390/pharmaceutics13101608
Luengo J, Schneider M, Schneider AM, Lehr C-M, Schaefer UF. Human Skin Permeation Enhancement Using PLGA Nanoparticles Is Mediated by Local pH Changes. Pharmaceutics. 2021; 13(10):1608. https://doi.org/10.3390/pharmaceutics13101608
Chicago/Turabian StyleLuengo, Javiana, Marc Schneider, Anna M. Schneider, Claus-Michael Lehr, and Ulrich F. Schaefer. 2021. "Human Skin Permeation Enhancement Using PLGA Nanoparticles Is Mediated by Local pH Changes" Pharmaceutics 13, no. 10: 1608. https://doi.org/10.3390/pharmaceutics13101608