Antimicrobial Activities of Chitosan Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials: Obtaining and Characterization
2.2. Preparation of Bacterial Cultures
3. Results and Discussions
3.1. Characterization of Materials Obtained by Functionalization of Chitosan
- the presence of DDTPPBr and HDTBPBr on the surface Ch is highlighted by the appearance of the specific P and Br pick;
- the presence of TDTMABr, HDTMAC1 and DDTMABr on the surface Ch is highlighted by the appearance of the specific pick N and Br or N and Cl depending on the compound;
- the presence of MBT and THIO on the surface Ch is highlighted by the appearance of the specific pick N and S.
3.2. Studies on the Antimicrobial Activity of Materials
3.2.1. Chitosan Functionalized with Quaternary Nitrogen Salts
3.2.2. Chitosan Functionalized with Phosphorus Heteroatom
3.2.3. Chitosan Functionalized with Sulfur Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadu Nath, V.K.; Raghvendrakumar, M.; Aswathy, V.; Parvathy, P.; Sunija, S.; Neelakandan, M.S.; Nitheesha, S.; Vishnu, K.A. Chitosan as Promising Materials for Biomedical Application: Review. Res. Dev. Mater. Sci. 2017, 2, 170–185. [Google Scholar]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef] [PubMed]
- Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Chitosan-Based (Nano)Materials for Novel Biomedical Applications. Molecules 2019, 24, 1960. [Google Scholar] [CrossRef] [Green Version]
- Kabanov, V.L.; Novinyuk, L.V. Chitosan application in food technology: A review of recent advances. Food Syst. 2020, 3, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Zambrano-Zaragoza, M.L.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.F.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. Int. J. Mol. Sci. 2018, 19, 705. [Google Scholar] [CrossRef] [Green Version]
- Mofidfar, M.; Kim, E.S.; Larkin, E.L.; Long, L.; Jennings, W.D.; Ahadian, S.; Ghannoum, M.A.; Wnek, G.E. Antimicrobial Activity of Silver Containing Crosslinked Poly(Acrylic Acid) Fibers. Micromachines 2019, 10, 829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhuang, S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020, 138. [Google Scholar] [CrossRef]
- Bian, N.; Yang, X.; Zhang, X.; Zhang, F.; Hou, Q.; Pei, J. A complex of oxidised chitosan and silver ions grafted to cotton fibres with bacteriostatic properties. Carbohydr. Polym. 2021, 262, 117714. [Google Scholar] [CrossRef]
- Leceta, I.; Guerrero, P.; Ibarburu, I.; Dueñas, M.T.; de la Caba, K. Characterization and antimicrobial analysis of chitosan-based films. J. Food Eng. 2013, 116, 889–899. [Google Scholar] [CrossRef]
- Johnson, S.M.; John, B.E.S.; Dine, A.P. Local Anesthetics as Antimicrobial Agents: A Review. Surg. Infect. 2008, 9, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Lunkov, A.P.; Ilyina, A.V.; Varlamov, V.P. Antioxidant, Antimicrobial, and Fungicidal Properties of Chitosan Based Films (Review). Appl. Biochem. Microbiol. 2018, 54, 449–458. [Google Scholar] [CrossRef]
- Verlee, A.; Mincke, S.; Stevens, C.V. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 2017, 164, 268–283. [Google Scholar] [CrossRef]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Andres, Y.; Giraud, L.; Gerente, C.; Le Cloirec, P. Antibacterial Effects of Chitosan Powder: Mechanisms of Action. Environ. Technol. 2007, 28, 1357–1363. [Google Scholar] [CrossRef]
- Kaplan, S.; Aslan, S.; Ulusoy, S.; Oral, A. Natural-based polymers for antibacterial treatment of absorbent materials. J. Appl. Polym. Sci. 2019, 137, 48302. [Google Scholar] [CrossRef]
- Kim, S.W.; Park, J.K.; Lee, C.H.; Hahn, B.-S.; Koo, J.C. Comparison of the Antimicrobial Properties of Chitosan Oligosaccharides (COS) and EDTA against Fusarium fujikuroi Causing Rice Bakanae Disease. Curr. Microbiol. 2016, 72, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Noshirvani, N.; Ghanbarzadeh, B.; Gardrat, C.; Rezaei, M.R.; Hashemi, M.; Le Coz, C.; Coma, V. Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocoll. 2017, 70, 36–45. [Google Scholar] [CrossRef]
- Avelelas, F.; Horta, A.; Pinto, L.F.; Marques, S.C.; Nunes, P.M.; Pedrosa, R.; Leandro, S.M. Antifungal and Antioxidant Properties of Chitosan Polymers Obtained from Nontraditional Polybius henslowii Sources. Mar. Drugs 2019, 17, 239. [Google Scholar] [CrossRef] [Green Version]
- Allan, C.R.; Hadwiger, L.A. The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp. Mycol. 1979, 3, 285–287. [Google Scholar] [CrossRef]
- Ganan, M.; Lorentzen, S.B.; Agger, J.W.; Heyward, C.A.; Bakke, O.; Knutsen, S.H.; Aam, B.B.; Eijsink, V.G.H.; Gaustad, P.; Sørlie, M. Antifungal activity of well-defined chito-oligosaccharide preparations against medically relevant yeasts. PLoS ONE 2019, 14, e0210208. [Google Scholar] [CrossRef]
- Martins, A.F.; Facchi, S.P.; Follmann, H.D.; Pereira, A.G.; Rubira, A.F.; Muniz, E.C. Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review. Int. J. Mol. Sci. 2014, 15, 20800–20832. [Google Scholar] [CrossRef]
- Andreica, B.-I.; Cheng, X.; Marin, L. Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. Eur. Polym. J. 2020, 139, 110016. [Google Scholar]
- Ergene, C.; Palermo, E.F. Antimicrobial Synthetic Polymers: An Update on Structure-Activity Relationships. Curr. Pharm. Des. 2018, 24, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, H.F.; Attjioui, M.; Leitao, A.; Moerschbacher, B.M.; Cavalheiro, T. Characterization, solubility and biological activity of amphihilic biopolymeric Schiff bases synthesized using chitosans. Carbohydr. Polym. 2019, 220, 1–11. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Fundamentals and Applications of Chitosan. Sustain. Agric. Rev. 2019, 49–123. [Google Scholar] [CrossRef]
- Meng, X.; Xing, R.; Liu, S.; Yu, H.; Li, K.; Qin, Y.; Li, P. Molecular weight and pH effects of aminoethyl modified chitosan on antibacterial activity in vitro. Int. J. Biol. Macromol. 2012, 50, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Soliman, E.A.; El-Kousy, S.M.; Abd-Elbary, H.M.; Abou-Zeid, A.R. Low Molecular Weight Chitosan-based Schiff Bases: Synthesis, Characterization and Antibacterial Activity. Am. J. Food Technol. 2012, 8, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Kalwar, K.; Bhutto, M.A.; Dali, L.; Shan, D. Cellulose based nanofabrication; immobilization of silver nanoparticales and its size effect againstEscherichia coli. Mater. Res. Express 2017, 4, 105405. [Google Scholar] [CrossRef]
- Sahariah, P.; Gaware, V.S.; Lieder, R.; Jónsdóttir, S.; Hjálmarsdóttir, M.Á.; Sigurjonsson, O.E.; Másson, M. The Effect of Substituent, Degree of Acetylation and Positioning of the Cationic Charge on the Antibacterial Activity of Quaternary Chitosan Derivatives. Mar. Drugs 2014, 12, 4635–4658. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, F.; Yang, R. Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups. Int. J. Biol. Macromol. 2015, 75, 378–387. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Abd El-Ghany, N.A. Synthesis, characterization, and antimicrobial activity of chitosan hydrazide derivative. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 410–415. [Google Scholar] [CrossRef]
- Xu, R.; Aotegen, B.; Zhong, Z. Preparation and antibacterial activity of C2-benzaldehyde-C6-aniline double Schiff base derivatives of chitosan. Int. J. Polym. Mater. 2017, 67, 181–191. [Google Scholar] [CrossRef]
- Rajkumar, I.M.; Asaithambi, D.; Chidambaram, R.R.; Rajkumar, P. Double Schiff bases derivatives of chitosan by selective C-6 and C-2 oxidation mediated by 5-fluorosalicylaldehyde aniline by TG-GC-MS and TG-FTIR analysis. Synth. Commun. 2020, 50, 2617–2628. [Google Scholar] [CrossRef]
- Mourya, V.; Inamdar, N.N. Chitosan-modifications and applications: Opportunities galore. React. Funct. Polym. 2008, 68, 1013–1051. [Google Scholar] [CrossRef]
- Belbekhouche, S.; Bousserrhine, N.; Alphonse, V.; Le Floch, F.; Mechiche, Y.C.; Menidjel, I.; Carbonnier, B. Chitosan based self-assembled nanocapsules as antibacterial agent. Colloids Surf. B Biointerfaces 2019, 181, 158–165. [Google Scholar] [CrossRef]
- Lo, W.-H.; Deng, F.-S.; Chang, C.-J.; Lin, C.-H. Synergistic Antifungal Activity of Chitosan with Fluconazole against Candida albicans, Candida tropicalis, and Fluconazole-Resistant Strains. Molecules 2020, 25, 5114. [Google Scholar] [CrossRef] [PubMed]
- Jiao, T.F. Synthesis and characterization of chitosan-based schiff base compounds with aromatic substituent groups. Iran. Polym. J. 2011, 20, 123–136. [Google Scholar]
- Lal, S.; Arora, S.; Sharma, C. Synthesis, thermal and antimicrobial studies of some Schiff bases of chitosan. J. Therm. Anal. Calorim. 2016, 124, 909–916. [Google Scholar] [CrossRef]
- Sahariah, P.; Másson, M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017, 18, 3846–3868. [Google Scholar] [CrossRef]
- Byun, S.M.; No, H.K.; Hong, J.-H.; Lee, S.I.; Prinyawiwatkul, W. Comparison of physicochemical, binding, antioxidant and antibacterial properties of chitosans prepared from ground and entire crab leg shells. Int. J. Food Sci. Technol. 2012, 48, 136–142. [Google Scholar] [CrossRef]
- Kulikov, S.N.; Tikhonov, V.E.; Bezrodnykh, E.A.; Lopatin, S.A.; Varlamov, V.P. Comparative evaluation of antimicrobial activity of oligochitosans against Klebsiella pneumoniae. Russ. J. Bioorganic Chem. 2015, 41, 57–62. [Google Scholar] [CrossRef]
- Khattak, S.; Wahid, F.; Liu, L.-P.; Jia, S.-R.; Chu, L.-Q.; Xie, Y.-Y.; Li, Z.-X.; Zhong, C. Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 1989–2006. [Google Scholar] [CrossRef] [PubMed]
- Younes, I.; Sellimi, S.; Rinaudo, M.; Jellouli, K.; Nasri, M. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int. J. Food Microbiol. 2014, 185, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-H.; Lin, H.-T.V.; Wu, G.-J.; Tsai, G.J. pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr. Polym. 2015, 134, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Rajoka, M.S.R.; Mehwish, H.M.; Wu, Y.; Zhao, L.; Arfat, Y.; Majeed, K.; Anwaar, S. Chitin/chitosan derivatives and their interactions with microorganisms: A comprehensive review and future perspectives. Crit. Rev. Biotechnol. 2020, 40, 365–379. [Google Scholar] [CrossRef]
- Ardean, C.; Davidescu, C.; Nemeş, N.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duda-Seiman, D.; Musta, V. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int. J. Mol. Sci. 2021, 22, 7449. [Google Scholar] [CrossRef]
- Tachaboonyakiat, W. 9 Antimicrobial applications of chitosan. In Chitosan Based Biomaterials; Jennings, J.A., Bumgardner, J.D., Eds.; Woodhead Publishing: Cambridge, UK, 2017; Volume 2, pp. 245–274. [Google Scholar]
- Akpan, E.I. Chapter 5—Solubility, degree of acetylation, and distribution of acetyl groups in chitosan. In Handbook of Chitin and Chitosan; Gopi, S., Pius, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 131–164. [Google Scholar]
- Helander, I.; Nurmiaho-Lassila, E.-L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol. 2001, 71, 235–244. [Google Scholar] [CrossRef]
- Eaton, P.; Fernandes, J.; Pereira, E.; Pintado, M.M.; Malcata, F. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 2008, 108, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Goy, R.C.; de Britto, D.; Assis, O.B.G. A review of the antimicrobial activity of chitosan. Polimeros-Ciencia E Tecnologia 2009, 19, 241–247. [Google Scholar] [CrossRef]
- Jarmila, V.; Eva, V. Chitosan Derivatives with Antimicrobial, Antitumour and Antioxidant Activities a Review. Curr. Pharm. Des. 2011, 17, 3596–3607. [Google Scholar]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz Atay, H. Antibacterial Activity of Chitosan-Based Systems. Funct. Chitosan Drug Deliv. Biomed. Appl. 2020, 457–489. [Google Scholar]
- Chung, Y.-C.; Su, Y.-P.; Chen, C.-C.; Jia, G.; Wang, H.-L.; Wu, J.C.G.; Lin, J.-G. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin. 2004, 25, 25. [Google Scholar]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Technologies, S. Dodecyltrimethylammonium Bromide. 2018. Available online: https://www.sielc.com/dodecyltrimethylammonium-bromide.html (accessed on 15 July 2021).
- Xiamen Xm-Innovation Chemical Co., Ltd. Available online: https://www.made-in-china.com/showroom/innochem/product-detailiqXJKFZYlAUd/China-Tetradecyl-Trimethyl-Ammonium-Bromide-99-.html (accessed on 15 July 2021).
- Clearsynth Labs LTD. Available online: https://www.clearsynth.com/en/CST26102.html (accessed on 15 July 2021).
- Pseudomonas Aeruginosa Resistance. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/pseudomonas-aeruginosa-508.pdf (accessed on 10 July 2021).
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Amro, N.A. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: Structural basis for permeability. Langmuir 2000, 16, 2789–2796. [Google Scholar]
- Kumar, A.B.V.; Varadaraj, M.C.; Gowda, L.R.; Tharanathan, R.N. Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochem. J. 2005, 391, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Palma-Guerrero, J.; Lopez-Jimenez, J.A.; Pérez-Berná, A.J.; Huang, I.C.; Jansson, H.B.; Salinas, J.; Villalain, J.; Read, N.D.; Lopez-Llorca, L.V. Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Mol. Microbiol. 2010, 75, 1021–1032. [Google Scholar] [CrossRef]
- Xing, K.; Li, T.J.; Liu, Y.F.; Zhang, J.; Zhang, Y.; Shen, X.Q.; Li, X.Y.; Miao, X.M.; Feng, Z.Z.; Peng, X.; et al. Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato. Food Chem. 2018, 268, 188–195. [Google Scholar] [CrossRef]
- Pérez-García, L.A.; Ecsonka, K.; Eflores-Carreón, A.; Estrada-Mata, E.; Emellado-Mojica, E.; Enémeth, T.; López-Ramírez, L.A.; Etoth, R.; Elópez, M.G.; Evizler, C.; et al. Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction. Front. Microbiol. 2016, 7, 306. [Google Scholar] [CrossRef]
- Gow, N.; Latge, J.-P.; Munro, C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol. Spectr. 2017, 5, 267–292. [Google Scholar] [CrossRef] [Green Version]
- Santa Cruz Biotechnology. Available online: https://www.scbt.com/p/dodecyltriphenylphosphonium-bromide-15510-55-1 (accessed on 25 June 2021).
- ChemSrc. Available online: https://www.chemsrc.com/en/cas/14937-45-2_339330.html (accessed on 25 June 2021).
- Amaral, I.F.; Granja, P.; Barbosa, M. Chemical modification of chitosan by phosphorylation: An XPS, FT-IR and SEM study. J. Biomater. Sci. Polym. Ed. 2005, 16, 1575–1593. [Google Scholar] [CrossRef]
- Jayakumar, R.; Nagahama, H.; Furuike, T.; Tamura, H. Synthesis of phosphorylated chitosan by novel method and its characterization. Int. J. Biol. Macromol. 2008, 42, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Dash, M.; Chiellini, F.; Ottenbrite, R. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Moreira, C.; Carvalho, S.M.; Mansur, H.; Pereira, M.M. Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater. Sci. Eng. C 2016, 58, 1207–1216. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, C.; Wang, X.; Fang, Q.; Huang, J. Synthesis, characterization, and antimicrobial activities of sulfonated chitosan. Carbohydr. Polym. 2016, 155, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Thauer, R.K.; Jungermann, K.; Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977, 41, 100–180. [Google Scholar] [CrossRef]
- Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free. Radic. Biol. Med. 2014, 80, 148–157. [Google Scholar] [CrossRef] [Green Version]
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), N.C.f.B.I.-P.C.S.f.C., 2-Mercaptobenzothiazole. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2-Mercaptobenzothiazole#section=EU-Pesticides-Data (accessed on 28 January 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 2723790, Thiourea. 2021. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/thiourea (accessed on 1 July 2021).
- Inamdar, N.; Mourya, V.K. Thiolated Chitosan: Preparation, Properties and Applications. In Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments; CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2013; pp. 121–150. [Google Scholar]
- Azam, M.A.; Suresh, B. Biological activities of 2-mercaptobenzothiazole derivatives: A review. Sci. Pharm. 2012, 80, 789–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A. A New Horizon in Modifications of Chitosan: Syntheses and Applications. Crit. Rev. Ther. Drug Carr. Syst. 2013, 30, 91–181. [Google Scholar] [CrossRef]
- De Wever, H.; de Moor, K.; Verachtert, H. Toxicity of 2-mercaptobenzothiazole towards bacterial growth and respiration. Appl. Microbiol. Biotechnol. 1994, 42, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Baez, N.O.D.; Reisz, J.A.; Furdui, C.M. Mass spectrometry in studies of protein thiol chemistry and signaling: Opportunities and caveats. Free. Radic. Biol. Med. 2014, 80, 191–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arslan, H.; Duran, N.; Borekci, G.; Ozer, C.K.; Akbay, C. Antimicrobial Activity of Some Thiourea Derivatives and Their Nickel and Copper Complexes. Molecules 2009, 14, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Henderson, W.; Nicholson, B.K.; Dinger, M.B.; Bennett, R.L. Thiourea monoanion and dianion complexes of rhodium(III) and ruthenium(II). Inorganica Chim. Acta 2002, 338, 210–218. [Google Scholar] [CrossRef]
- Eweis, M.; Elkholy, S.; Elsabee, M. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Int. J. Biol. Macromol. 2006, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
Group | IR Band (cm−1) |
---|---|
Ch | |
CH2–OH N–H C=O C–H O–H | 1380–1420 1570 1660 2870; 2924 3430 |
Ch-DDTMABr | |
>N–CH2 | 2700–2800 (specific non-participant e− in N) |
Ch-TDTMABr | |
>N–CH2 | 2700–2800 (specific non-participant e− in N) |
Ch-HDTMACl | |
>N–CH2 | 2700–2800 (specific non-participant e− in N) |
Ch-DDTPPBr | |
P–O–Aril C–O (fenil) O–H | 1190–1240 1200 3500–3200 |
Ch-HDTBPBr | |
Alkyl phosphates | 1150–1180; 1080 |
Ch-MBT | |
Aromatic ring—torsion S–C–S C–N stretching C–H; N–H | 568–600 1030–1074 1250–1320 750 |
Ch-THIO | |
N–H C=S | 1520 1074 |
Material | Ratio Ch:Extractant | Inhibition Rate (%) | OBS | |||
---|---|---|---|---|---|---|
S. aureus ATCC 25923 | P. aeruginosa ATCC 27853 | E. coli ATCC 25922 | C. parapsilosis ATCC 22019 | |||
Chitosan | - | 13.1 | 18.5 | 24.5 | 17.7 | Slightly better bactericidal effect on Gram-negative bacteria |
Ch:DDTMABr | 1:0.012 | 100.0 | 31.7 | 25.8 | 76.0 | Maximum bactericidal effect on Gram-positive bacteria |
1:0.1 | 100.0 | 57.2 | 100.0 | 100.0 | ||
Ch:TDTMABr | 1:0.012 | 100.0 | 55.2 | 100.0 | 100.0 | |
1:0.1 | 100.0 | 60.3 | 100.0 | 100.0 | ||
Ch:HDTMACl | 1:0.012 | 100.0 | 13.1 | 52.7 | 100.0 | |
1:0.1 | 100.0 | 29.2 | 69.0 | 100.0 |
Material | Ratio Ch:Extractant | Inhibition Rate (%) | OBS. | |||
---|---|---|---|---|---|---|
S. aureus ATCC 25923 | P. aeruginosa ATCC 27853 | E. coli ATCC 25922 | C.parapsilosis ATCC 22019 | |||
Ch:DDTPPBr | 1:0.012 | 100.0 | 31.0 | 100.0 | 100.0 | Maximum bactericidal effect on Gram-positive bacteria and C. parapsilosis. |
1:0.1 | 100.0 | 46.6 | 100.0 | 100.0 | ||
Ch:HDTPPBr | 1:0.012 | 100.0 | 29.3 | 20.2 | 100.0 | |
1:0.1 | 100.0 | 28.2 | 35.5 | 100.0 | ||
1:0.5 | 100.0 | 48.6 | 40.4 | 100.0 |
Material | Ratio Ch:Extractant | Inhibition Rate (%) | |||
---|---|---|---|---|---|
S. aureus ATCC 25923 | P. aeruginosa ATCC 27853 | E. coli ATCC 25922 | C. parapsilosis ATCC 22019 | ||
Ch:MBT | 1:0.012 | 38.6 | 22.8 | 25.8 | 80.6 |
1:0.1 | 64.0 | 26.3 | 33.6 | 83.6 | |
1:0.3 | 100.0 | 33.5 | 70.3 | 100.0 | |
1:0.5 | 100.0 | 38.8 | 72.3 | 100.0 | |
Ch:Thiourea | 1:0.012 | 43.5 | 36.6 | 38.6 | 81.5 |
1:0.1 | 48.3 | 38.6 | 43.5 | 86.7 | |
1:0.5 | 54.4 | 46.7 | 51.0 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardean, C.; Davidescu, C.M.; Nemeş, N.S.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duda-Seiman, D.; Muntean, D. Antimicrobial Activities of Chitosan Derivatives. Pharmaceutics 2021, 13, 1639. https://doi.org/10.3390/pharmaceutics13101639
Ardean C, Davidescu CM, Nemeş NS, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, Muntean D. Antimicrobial Activities of Chitosan Derivatives. Pharmaceutics. 2021; 13(10):1639. https://doi.org/10.3390/pharmaceutics13101639
Chicago/Turabian StyleArdean, Cristina, Corneliu Mircea Davidescu, Nicoleta Sorina Nemeş, Adina Negrea, Mihaela Ciopec, Narcis Duteanu, Petru Negrea, Daniel Duda-Seiman, and Delia Muntean. 2021. "Antimicrobial Activities of Chitosan Derivatives" Pharmaceutics 13, no. 10: 1639. https://doi.org/10.3390/pharmaceutics13101639
APA StyleArdean, C., Davidescu, C. M., Nemeş, N. S., Negrea, A., Ciopec, M., Duteanu, N., Negrea, P., Duda-Seiman, D., & Muntean, D. (2021). Antimicrobial Activities of Chitosan Derivatives. Pharmaceutics, 13(10), 1639. https://doi.org/10.3390/pharmaceutics13101639