Chronopharmacology in Therapeutic Drug Monitoring—Dependencies between the Rhythmics of Pharmacokinetic Processes and Drug Concentration in Blood
Abstract
:1. Introduction: Definition of Chronopharmacology and the Objective of the Review
2. Aim of the Review
3. Chronopharmacology—A Brief Theoretical Overview
3.1. A Brief Historical Overview and Current Position in Pharmacology
3.2. The Features Characterizing Biological Rhythms: The Examples of Physiological Phenomena and Pathophysiological Conditions Characterized by a Chronobiological Background
3.3. The Regulation of Biological Rhythms: The Genes That Control the Biological Clock
3.4. The Impact of Biological Rhythms on Pharmacology of Selected Diseases
4. Chronopharmacokinetics—Impact of Cyclicity of Biological Phenomena on the Pharmacokinetic Processes
5. Therapeutic Drug Monitoring—Basic Assumptions and Rules
6. Chronopharmacology and Conducting a Therapeutical Drug Monitoring
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Andrys-Wawrzyniak, I.; Jabłecka, A. Chronobiology, chronopharmacology on medicine (part I). Farm. Współ. 2008, 1, 94–108. (In Polish) [Google Scholar]
- Andrys-Wawrzyniak, I.; Jabłecka, A. Chronobiology, chronopharmacology on medicine (part II). Farm. Współ. 2008, 1, 156–168. (In Polish) [Google Scholar]
- Ballesta, A.; Innominato, P.F.; Dallmann, R.; Rand, D.A.; Levi, F.A. Systems chronotherapeutics. Pharmacol. Rev. 2017, 69, 161–199. [Google Scholar] [CrossRef] [Green Version]
- Lesko, L.J.; Schmidt, S.S. Individualization of drug therapy: History, present state and opportunities for the future. Clin. Pharmacol. Ther. 2012, 92, 458–466. [Google Scholar] [CrossRef]
- Chemello, C.; de Souza, F.; de Souza, P.E.; Farias, M.R. Pharmaceutical care as a strategy to improve the safety and effectiveness of patients’ pharmacotherapy at a pharmacy school: A practical proposal. Braz. J. Pharm. Sci. 2014, 50, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, J.T. Twenty years with personalized medicine: Past, present and future of individualized pharmacotherapy. Oncologist 2019, 24, e432–e440. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Chanda, P.; Tambuwala, M.M.; Suttee, A. Personalized medicine: An overview. Int. J. Pharm. Qual. Assur. 2019, 10, 290–294. [Google Scholar] [CrossRef]
- Von Gunten, S. The future of pharmacology: Towards more personalized pharmacotherapy and reverse translational research. Pharmacology 2020, 105, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Reinberg, A.; Ashkenazi, I. Concepts in human biological rhythms. Dialogues Clin. Neurosci. 2003, 5, 327–342. [Google Scholar] [PubMed]
- Lemmer, B. Discoveries of rhythms in human biological functions: A historical review. Chronobiol. Int. 2009, 26, 1019–1068. [Google Scholar] [CrossRef]
- The Nobel Assembly at Karolinska Institutet. Scientific Background Discoveries of Molecular Mechanisms Controlling the Circadian Rhytms. 2017. Available online: https://www.nobelprize.org/uploads/2018/06/advanced-medicineprize2017.pdf (accessed on 30 October 2021).
- Ayyar, V.S.; Sukumaran, S. Circadian rhythms: Influence on physiology, pharmacology and therapeutic interventions. J. Pharmacokinet. Pharmacodyn. 2021, 48, 321–338. [Google Scholar] [CrossRef]
- Griffett, K.; Burris, T.P. The mammalian clock and chronopharmacology. Bioorgan. Med. Chem. Lett. 2013, 23, 1929–1934. [Google Scholar] [CrossRef] [Green Version]
- Bicker, J.; Alves, G.; Falcao, A.; Fortuna, A. Timing in drug absorption and disposition: The past, present and future of chronopharmacokinetics. Br. J. Pharmacol. 2020, 177, 2215–2239. [Google Scholar] [CrossRef]
- Smith, D.H.G. Pharmacology of cardiovascular chronotherapeutic agents. Am. J. Hypertens. 2001, 14, 296S–301S. [Google Scholar] [CrossRef]
- Lemmer, B. Chronopharmacology of cardiovascular medications. Biol. Rhythm Res. 2007, 38, 247–258. [Google Scholar] [CrossRef]
- Lemmer, B. The importance of biological rhythms in drug treatment of hypertension and sex-dependent modifications. ChronoPhysiol. Ther. 2012, 2, 9–18. [Google Scholar] [CrossRef]
- Latha, K.; Uhumwangho, M.U.; Sunil, S.A.; Srikant, M.V.; Murthy, K.V.R. Chronobiology and chronotherapy of hypertension—A review. Int. J. Health Res. 2010, 3, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Mahabala, C.; Kamath, P.; Bhaskaran, U.; Pai, N.D.; Pai, A.U. Antihypertensive therapy: Nocturnal dippers and non-dippers. Do we treat them differently? Vasc. Health Risk Manag. 2013, 9, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Dubielski, Z.; Zamojski, M.; Wiechecki, B.; Możeńska, O.; Petelczyc, M.; Kosior, D.A. The current state of knowledge about the dipping and non-dipping hypertension. Arter. Hypertens. 2016, 20, 33–43. [Google Scholar] [CrossRef]
- Bilo, G.; Grillo, A.; Guida, V.; Parati, G. Morning blood pressure surge: Pathophysiology, clinical revelance and therapeutic aspects. Integr. Blood Press. Control 2018, 11, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Kario, K. Morning surge in blood pressure and cardiovascular risk. Evidence and perspectives. Hypertension 2010, 56, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Potucek, P.; Klimas, J. Chronopharmacology of high blood pressure—A critical review of clinical evidence. Eur. Pharm. J. 2019, 66, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Satyanarayana, V.; Krishnan, P. Chronopharmacology: Tailoring therapy to endogenous rhythms. J. Int. Med. Dent. 2015, 2, 3–16. [Google Scholar]
- Neubauer, D.N.; Pandi-Perumal, S.R.; Spence, D.W.; Buttoo, K.; Monti, J.M. Pharmacotherapy of insomnia. J. Cent. Nerv. Syst. Dis. 2018, 10, 1179573518770672. [Google Scholar] [CrossRef] [Green Version]
- Golombek, D.A.; Pandi-Perumal, S.R.; Brown, G.M.; Cardinali, D.P. Some implications of melatonin use in chronopharmacology of insomnia. Eur. J. Pharmacol. 2015, 762, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Emet, M.; Ozcan, H.; Ozel, L.; Yayla, M.; Halici, Z.; Hacimuftuoglu, A. A review of melatonin, its receptors and drugs. Eurasian J. Med. 2016, 48, 135–141. [Google Scholar] [CrossRef]
- Williams, W.P., 3rd; McLin, D.E., 3rd; Dressman, M.A.; Neubauer, D.N. Comparative review of approved melatonin agonists for the treatment of circadian rhythm sleep-wake disorders. Pharmacotherapy 2016, 36, 1028–1041. [Google Scholar] [CrossRef]
- Wichniak, A.; Wierzbicka, A.; Walęcka, M.; Jernajczyk, W. Effects of antidepressants on sleep. Curr. Psychiatry Rep. 2017, 19, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altınyazar, V.; Kiylioglu, N. Insomnia and dementia: Is agomelatine treatment helpful? Case report and review of the literature. Ther. Adv. Psychopharmacol. 2016, 6, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, N.; Ozturk, D.; Kavakli, I.H.; Okyar, A. Molecular aspects of circadian pharmacology and relevance for cancer chronotherapy. Int. J. Mol. Sci. 2017, 18, 2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherholz, M.L.; Schlesinger, N.; Androulakis, I.P. Chronopharmacology of glucocorticoids. Adv. Drug Deliv. Rev. 2019, 151–152, 245–261. [Google Scholar] [CrossRef]
- Jough, S.S.; Singh, S.P.; Singh, Y.; Gupta, D.; Saxena, P.; Gupta, S.; Singh, A.; Srivastva, A. Chronopharmacology: Recent advancements in the treatment of diabetes mellitus through chronotherapy. Int. J. Pharm. Pharm. Res. 2017, 9, 87–99. [Google Scholar]
- Tognini, P.; Thaiss, C.A.; Elinav, E.; Sassone-Corsi, P. Circadian coordination of antimicrobial responses. Cell Host Microbe 2017, 22, 185–191. [Google Scholar] [CrossRef]
- Gupta, P.D. Chronopharmacology: A new approach for drug delivery schedules. J. Clin. Res. Clin. Trials 2021, 3, 1–3. [Google Scholar] [CrossRef]
- Ohdo, S. Chrono-drug discovery and development based on circadian rhythm of molecular, cellular and organ level. Biol. Pharm. Bull. 2021, 44, 747–761. [Google Scholar] [CrossRef]
- Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. Circadian rhythms: A regulator of gastrointestinal health and dysfunction. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Dallmann, R.; Brown, S.A.; Gachon, F. Chronopharmacology: New insights and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 339–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapadia, S.; Kanase, V.; Kadam, S.; Gupta, P.; Yadav, V. Chronopharmacology: The biological clock. Int. J. Pharm. Sci. Res. 2020, 11, 2018–2026. [Google Scholar]
- Erkekoglu, P.; Baydar, T. Chronopharmacokinetics of drugs in toxological aspects: A short review for pharmacy practitioners. J. Res. Pharm. Pract. 2012, 1, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Baraldo, M. The influence of circadian rhythms on the kinetics of drugs in humans. Expert Opin. Drug Metab. Toxicol. 2008, 4, 175–192. [Google Scholar] [CrossRef]
- Lemmer, B. Chronopharmacokinetics: Implications for drug therapy. J. Pharm. Pharmacol. 1999, 51, 887–890. [Google Scholar] [CrossRef]
- Bass, J.; Takahashi, J.S. Circadian integration of metabolism and energetics. Science 2010, 33, 1349–1354. [Google Scholar] [CrossRef] [Green Version]
- Bellet, M.M.; Sassone-Corsi, P. Mammalian circadian clock and metabolism—The epigenetic link. J. Cell Sci. 2010, 123, 3837–3848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, D.A.; Wallace, S.M.; Verbeeck, R.K. Circadian rhythm of serum sulfate levels in man and acetaminophen pharmacokinetics. Eur. J. Clin. Pharmacol. 1990, 39, 143–148. [Google Scholar] [CrossRef]
- Qatanani, M.; Moore, D.D. CAR, the continuously advancing receptor, in drug metabolism and disease. Curr. Drug Metab. 2005, 6, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Gachon, F.; Olela, F.F.; Schaad, O.; Descombes, P.; Schibler, U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006, 4, 25–63. [Google Scholar] [CrossRef]
- Takiguchi, T.; Tomita, M.; Matsunaga, N.; Koyanagi, S.; Ohdo, S. Molecular basis for rhythmic expression of CYP3A4 in serum-shocked HepG2 cells. Pharmacogenet. Genom. 2007, 17, 1047–1056. [Google Scholar] [CrossRef]
- Murakami, Y.; Higashi, Y.; Matsunaga, N.; Koyanagi, S.; Ohdo, S. Circadian clock-controlled intestinal expression of the multidrug-resistance gene MDR1A in mice. Gastroenterology 2008, 135, 1636–1644.e3. [Google Scholar] [CrossRef]
- Mesnard-Ricci, B.; White, C.A. Chronokinetics of active biliary ampicillin secretion in rats. Chronobiol. Int. 1998, 15, 309–321. [Google Scholar] [CrossRef]
- Lo Sasso, G.; Petruzzelli, M.; Moschetta, A. A translational view on the biliary lipid secretory network. Biochim. Biophys. Acta 2008, 1781, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Prins, J.M.; Weverling, G.J.; van Ketel, R.J.; Speelman, P. Circadian variations in serum levels and the renal toxicity of aminoglycosides in patients. Clin. Pharmacol. Ther. 1997, 62, 106–111. [Google Scholar] [CrossRef]
- Ben-Cherif, W.; Dridi, I.; Aouam, K.; Ben-Attia, M.; Reinberg, A.; Boughattas, N.A. Chronotolerance study of the antiepileptic drug valproic acid in mice. J. Circadian Rhythm. 2012, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Ben-Cherif, W.; Dridi, I.; Aouam, K.; Ben-Attia, M.; Reinberg, A.; Boughattas, N.A. Circadian variation of valproic acid pharmacokinetics in mice. Eur. J. Pharm. Sci. 2013, 49, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.S. Best practice in therapeutic drug monitoring. Br. J. Clin. Pharmacol. 2001, 52, 5S–10S. [Google Scholar] [PubMed]
- Buchthal, F.; Svensmark, O.; Schiller, P.J. Clinical and electroencephalographic correlations with serum levels of diphenylhydantoin. Arch. Neurol. 1960, 2, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Baastrup, P.C.; Schou, M. Lithium as a prophylactic agent. Arch. Gen. Psychiatry 1967, 16, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Ghiculescu, R.A. Therapeutic drug monitoring: Which drugs, why, when and how to do it. Aust. Prescr. 2008, 31, 42–44. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.S.; Lee, M.H. Overview of therapeutic drug monitoring. Korean J. Intern. Med. 2009, 24, 1–10. [Google Scholar] [CrossRef]
- Gawade, S.P. Overview on monitoring of therapeutic drugs. Indian J. Pharm. Pract. 2016, 9, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Ashbee, H.R.; Barnes, R.A.; Johnson, E.M.; Richardson, M.D.; Gorton, R.; Hope, W.W. Therapeutic drug monitoring (TDM) of antifungal agents: Guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 2014, 69, 1162–1176. [Google Scholar] [CrossRef] [Green Version]
- Myers, E.; Ashley, E.D. Antifungal drug therapeutic monitoring: What are the issues? Curr. Clin. Microbiol. Rep. 2015, 2, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Punyawudho, B.; Singkham, N.; Thammajaruk, N.; Dalodom, T.; Kerr, S.J.; Burger, D.M.; Ruxrungtham, K. Therapeutic drug monitoring of antiretroviral drugs in HIV-infected patients. Expert Rev. Clin. Pharmacol. 2016, 9, 1583–1595. [Google Scholar] [CrossRef]
- Ostad Haji, E.; Hiemke, C.; Pfuhlmann, B. Therapeutic drug monitoring for antidepressant drug treatment. Curr. Pharm. Des. 2012, 18, 5818–5827. [Google Scholar] [CrossRef]
- Grundmann, M.; Kacirova, I.; Urinovska, R. Therapeutic monitoring of psychoactive drugs—Antidepressants: A review. Biomed. Pap. 2015, 159, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Schoretsanitis, G.; Paulzen, M.; Unterecker, S.; Schwarz, M.; Conca, A.; Zernig, G.; Gründer, G.; Haen, E.; Baumann, P.; Bergemann, N.; et al. TDM in psychiatry and neurology: A comprehensive summary of the consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology, update 2017; a tool for clinicians. World J. Biol. Psychiatry 2018, 19, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Schoretsanitis, G.; Kane, J.M.; Correll, C.U.; Marder, S.R.; Citrome, L.; Newcomer, J.W.; Robinson, D.G.; Goff, D.C.; Kelly, D.L.; Freudenreich, O.; et al. Blood levels to optimize antipsychotic treatment in clinical practice: A joint consensus statement of the American Society of Clinical Psychopharmacology and the Therapeutic Drug Monitoring Task Force of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie. J. Clin. Psychiatry 2020, 81, 19cs13169. [Google Scholar]
- Benet, L.Z.; Zia-Amirhosseini, P. Basic principles of pharmacokinetics. Toxicol. Pathol. 1995, 23, 115–123. [Google Scholar] [CrossRef]
- Urso, R.; Blardi, P.; Giorgi, G. A short introduction to pharmacokinetics. Eur. Rev. Med. Pharmacol. Sci. 2002, 6, 33–44. [Google Scholar]
- Dhillon, S.; Gill, K. Basic pharmacokinetics. In Clinical Pharmacokinetics; Dhillon, S., Kostrzewski, A., Eds.; Pharmaceutical Press: London, UK; Chicago, IL, USA, 2006; pp. 1–43. [Google Scholar]
- Sion, B.; Begou, M. Can chronopharmacology improve the therapeutic management of neurological diseases? Fundam. Clin. Pharmacol. 2021, 35, 564–581. [Google Scholar] [CrossRef]
- Patel, I.H.; Venkataramanan, R.; Levy, R.H.; Viswanathan, C.T.; Ojemann, L.M. Diurnal oscillations in plasma protein binding of valproic acid. Epilepsia 1982, 23, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Reith, D.M.; Andrews, J.; McLaughlin, D. Valproic acid has temporal variability in urinary clearance of metabolites. Chronobiol. Int. 2001, 18, 123–129. [Google Scholar] [CrossRef]
- Johno, I.; Nakamura, T.A.; Horiuchi, T.; Nadai, M.; Kitazawa, S.; Yoshimine, N.; Kuzuya, F. Diurnal variation in pharmacokinetics of valproic acid with unequal dosing intervals. Chem. Pharm. Bull. 1988, 36, 2551–2556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, S.; Watanabe, H.; Nagai, K.; Ogawa, N. Circadian stage-dependent changes in diazepam kinetics. Clin. Pharmacol. Ther. 1984, 36, 271–277. [Google Scholar] [CrossRef]
- Labrecque, G.; Belanger, P.M. Biological rhythms in the absorption, distribution, metabolism, and excretion of drugs. Pharmacol. Ther. 1991, 52, 95–107. [Google Scholar] [CrossRef]
- Ramgopal, S.; Thome-Souza, S.; Loddenkemper, T. Chronopharmacology of anti-convulsive therapy. Curr. Neurol. Neurosci. Rep. 2013, 13, 339. [Google Scholar] [CrossRef] [Green Version]
- Theisohn, M.; Assion, H.J.; Werner, U. Influence of breakfast and daytime on the disposition of carbamazepine in healthy volunteer safter intake of single dose (600 mg) of a standard or retard preparation of carbamazepine. In Chronopharmacology in Therapy of the Epilepsies; Raven Press: New York, NY, USA, 1989; pp. 31–54, 65. [Google Scholar]
- Ohdo, S.; Nakano, S.; Ogawa, N. Circadian changes of valproate kinetics depending on meal condition in humans. J. Clin. Pharmacol. 1992, 32, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Fang, S.; Wang, L.; Zhu, T.; Yang, H.; Yu, S. Clinical study on chronopharmacokinetics of digoxin in patients with congestive heart failure. J. Tongji Med. Univ. 1998, 18, 21–24. [Google Scholar] [PubMed]
- Erol, K.; Kilic, F.S.; Batu, O.S.; Yildirim, E. Morning-evening administration time defferences in digoxin kinetics in healthy young subjects. Chronobiol. Int. 2001, 18, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Kopecka, J.; Janku, I.; Pidrman, V.; Martinkova, J. Chronopharmacokinetics of digoxin in compensated cardiac patients. Vnitr. Lek. 1992, 38, 566–572. [Google Scholar]
- Fujimura, A.; Kajiyama, H.; Kumagai, Y.; Nakashima, H.; Sugimoto, K.; Ebihara, A. Chronopharmacokinetic studies of pranoprofen and procainamide. J. Clin. Pharmacol. 1989, 29, 786–790. [Google Scholar] [CrossRef]
- Bruguerolle, B.; Jadot, G. Circadian changes in procainamide and N-acetylprocainamide kinetics in the rat. J. Pharm. Pharmacol. 1985, 37, 654–656. [Google Scholar] [CrossRef]
- Taylor, D.R.; Duffin, D.; Kinney, C.D.; McDevitt, D.G. Investigation of diurnal changes in the disposition of theophylline. Br. J. Clin. Pharmacol. 1983, 16, 413–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, R.C.; Schwartz, H.J. Circadian variation in steady-state through theophylline concentrations. Ther. Drug Monit. 1986, 8, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Regazzi, M.B.; Rondanelli, R.; Vida, E.; Farinelli, F.; Upton, R.A. A theophylline dosage regimen which reduces round-the-clock variations in plasma concentrations resulting from diurnal pharmackokinetic variation. Eur. J. Clin. Pharmacol. 1987, 33, 243–247. [Google Scholar] [CrossRef]
- Dridi, I.; Ben-Cherif, W.; Aouam, K.; Ben-Attia, M.; Klouz, A.; Reiberg, A.; Boughattas, N.A. Circadian variation of mycophenolate mofetil pharmacokinetics in rats. Eur. J. Pharm. Sci. 2014, 58, 20–25. [Google Scholar] [CrossRef]
- Fontova, P.; Colom, H.; Rigo-Bonnin, R.; van Merendonk, L.N.; Vidal-Alabro, A.; Montero, N.; Melilli, E.; Meneghini, M.; Manonelles, A.; Cruzado, J.M.; et al. Influence of the circadian timing system on tacrolimus pharmacokinetics and pharmacodynamics after kidney transplantation. Front. Pharmacol. 2021, 12, 636048. [Google Scholar] [CrossRef]
- Baraldo, M.; Furlanut, M. Chronopharmakokinetics of ciclosporin and tacrolimus. Clin. Pharmacokinet. 2006, 45, 775–788. [Google Scholar] [CrossRef]
- Venkataramanan, R.; Yang, S.; Burckart, G.J.; Ptachcinski, R.J.; van Thiel, D.H.; Starzl, T.E. Diurnal variation in cyclosporine kinetics. Ther. Drug Monit. 1986, 8, 380–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraldo, M.; Risaliti, A.; Bresadola, F.; Chiarandini, P.; Rocca, G.D.; Furlanut, M. Circadian variations in cyclosporine C2 concentrations during the first 2 weeks after liver transplantation. Transplant. Proc. 2003, 35, 1449–1451. [Google Scholar] [CrossRef]
- Beauchamp, D.; Labrecque, G. Chronobiology and chronotoxicity of antibiotics and aminoglycosides. Adv. Drug Deliv. Rev. 2007, 59, 896–903. [Google Scholar] [CrossRef]
- Rebuelto, M. The molecular clock: A focus on chronopharmacological strategies for a possible control of aminoglycoside renal toxicity. ChronoPhysiol. Ther. 2012, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
Area | Disease | Chronobiological Aspects in the Pathophysiological Description | Chronopharmalogical Recommendations |
---|---|---|---|
Cardiovascular system | Hypercholesterolemia | Hepatic cholesterol synthesis is intensified in the evening and during the night | Administration of statins in the evening [1,2] |
Acute cardiovascular episodes (acute coronary syndromes and stroke) | There is an increased risk of acute cardiovascular events in early morning hours between 6.00 a.m.–noon. | The drugs should be administrated in the morning hours, e.g., beta-adrenoreceptor antagonists, since the morning dosing of the drugs is correlated with the morning peak of sympathetic activity [1,2,12,16] | |
Hypertension | Among patients with primary arterial hypertension, the population of “dippers” (patients showing a decrease in nighttime RR value) or “nondippers” (patients with no expected night decrease in RR value), as well as patients characterized by the phenomenon of “morning surge” (an excessive morning surge in the value of RR) can be distinguished | “dippers”—antihypertensive drug administered in the morning | |
“nondippers”—antihypertensive drug given in the evening or 2/3 of the dose in the evening and 1/3 in the morning | |||
“dippers” + “morning surge”—antihypertensive drug in the morning or 1/2 dose in the morning and 1/2 in the evening | |||
“nondippers” + “morning surge”—antihypertensive drug given in the evening or 2/3 of the dose in the evening and 1/3 in the morning [1,2,15,16] | |||
Respiratory system | Bronchial asthma | There is an increased risk of an asthma attack between 4.00 a.m. and 6.00 a.m. It is usually correlated with allergic nasal congestion and sneezing, which tends to be greatest during night hours | The administration of an asthma medication in the early morning [1,2] |
Digestive system | Peptic ulcer disease | There is an increase in gastric secretion in the evening and at night | H2 antihistaminics should be administrated at bedtime [1,2] |
Nervous system | Epilepsy | There is an increased risk of a seizure between 6.00 and 7.00 a.m. | Antiepileptic drug should be used in the early morning hours, before getting out of bed [1,2] |
Depression | The occurrence of seasonal—autumn and winter—depression is observed due to the lower insolation | Administration of antidepressant drugs (e.g., agomelatine, St. John’s wort preparations) may be beneficial in the autumn and winter period as a supplement to phototherapy [1,2] | |
Insomnia | The sleep phases change with a certain phasing | Administration of hypnotic drugs in the form of therapeutic systems, pulsating the release of the active substance, which would ensure the continuity of sleep [1,2] | |
Some type of insomnia is related to disturbances in the biological clock (“jet lag”; “shift work”) | Administration of melatonin or agomelatine as compounds that synchronize the biological clock via MT1 and MT2 receptors may have beneficial effects [1,2] | ||
Pain | Pain sensations, especially of a neuropathic nature, increase between 3.00 a.m. and 8 a.m. | Administration of an additional dose of analgesic at bedtime or administration of a higher dose in the evening [1,2] | |
Migraine | Migraine episodes often occur between 8.00 a.m. and 10 a.m. and are preceded by prodromal disturbances in the early morning hours | Administration of triptans in the early morning hours [1,2] | |
Endocrine system | Addison’s disease | Addison’s disease is an autoimmune condition resulting in complete deficiency of aderenal steroids and requiring replacement therapy with gluco- and mineralo-corticoids | The substitutive cortisol therapy is based on the administration of a high dose in the morning and low dose in the afternoon, which is to reflect the circadian variability of the hypothalamic-pituitary–adrenal axis [32] |
Diabetes | Blood levels of both insulin and counterregulatory hormones (growth hormone, cortisol) change in a circadian rhythm. In the middle of the night, there is a peak secretion of growth hormone, followed by a surge in cortisol, and these hormonal changes contribute to hyperglycemia. In diabetic patients, due to the lack of insulin action, the “dawn phenomenon”—morning hyperglycaemia—occurs between 4 a.m. and 8 a.m. | Conducting intensive insulin therapy, which normalizes the round-the-clock glycemic profile [33] | |
Locomotor system | Rheumatic arthritis Osteoarthritis | The symptoms intensify after waking up | Administration of an anti-inflammatory drug (NSAID) and cortisol in the morning before starting the daily activity of the patient [1,2] |
Immune system | Infections | The susceptibility to a variety of pathogens (e.g., Streptococcus pneumoniae, Listeria monocytogenes, Herpes, and Influenza viruses) is higher at the beginning of the resting phase and many immunorelated processes show diurnal variations. | The future direction of antimicrobial and anti-inflammatory therapy is time-of-day-specific administration of pharmacologic agents aimed at modulating the immune response [34] |
Cancer | The phenomenon of cancer chronobiology is rapidly explored. The diurnal variability of promotion and progression of carcinogenesis at the molecular level (e.g., DNA synthesis and cell proliferation, angiogenesis, and blood flow through the tumor) has been demonstrated for various tumors. | Experimental and clinical studies increasingly show positive associations between the circadian clock and drug response in cancer patients. The aim of cancer chronopharmacotherapy is to improve the efficacy of drugs and to minimize adverse effects by administering chemotherapeutic drugs at the appropriate time of day [31] |
Class of the Drugs | Examples |
---|---|
Antibiotics | aminoglycosides: gentamicin, amikacin, tobramycin |
glycopeptides: vancomycin | |
Antifungal drugs | triazoles: itraconazole, voriconazole, posaconazole, 5-fluorocytosine |
Antiviral drugs | antiretroviral drugs in HIV-infected patients (protease inhibitors and the non-nucleoside reverse transcriptase inhibitors) |
Neurological and psychiatric drugs | antiepileptic drugs: phenytoin, phenobarbital, carbamazepine, valproate tricyclic antidepressants (and its metabolites): imipramine (and desipramine), amitriptyline (and nortriptyline), clomipramine (and N-desmethyl-clomipramine) mood stabilizers: lithium, carbamazepine, valproate antipsychotics: amisulpride, clozapine, olanzapine, fluphenazine, haloperidol, perazine, perphenazine, thioridazine selective serotonin reuptake inhibitors: citalopram |
Cardiovascular drugs | digoxin |
antiarrhythmic drugs: procainamide, amiodarone, flecainide, | |
Antiasthmatic drugs | theophylline, |
Immunosuppressants | cyclosporin, sirolimus, tacrolimus, |
Anticancer drugs | methotrexate, 5-fluorouracil, paclitaxel, docetaxel, imatinib |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrek, L. Chronopharmacology in Therapeutic Drug Monitoring—Dependencies between the Rhythmics of Pharmacokinetic Processes and Drug Concentration in Blood. Pharmaceutics 2021, 13, 1915. https://doi.org/10.3390/pharmaceutics13111915
Dobrek L. Chronopharmacology in Therapeutic Drug Monitoring—Dependencies between the Rhythmics of Pharmacokinetic Processes and Drug Concentration in Blood. Pharmaceutics. 2021; 13(11):1915. https://doi.org/10.3390/pharmaceutics13111915
Chicago/Turabian StyleDobrek, Lukasz. 2021. "Chronopharmacology in Therapeutic Drug Monitoring—Dependencies between the Rhythmics of Pharmacokinetic Processes and Drug Concentration in Blood" Pharmaceutics 13, no. 11: 1915. https://doi.org/10.3390/pharmaceutics13111915
APA StyleDobrek, L. (2021). Chronopharmacology in Therapeutic Drug Monitoring—Dependencies between the Rhythmics of Pharmacokinetic Processes and Drug Concentration in Blood. Pharmaceutics, 13(11), 1915. https://doi.org/10.3390/pharmaceutics13111915