Variability of Tacrolimus Trough Concentration in Liver Transplant Patients: Which Role of Inflammation?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Analytical Methods
2.2.1. Tacrolimus Quantification by LC-MS
2.2.2. Hematocrit, CRP, ALAT, ASAT, Bilirubin and Tota Protein Quantification
2.3. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Determinants of Tacrolimus Cmin Variability
3.3. Role of Inflammation in Tacrolimus Overexposure
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brunet, M.; Gelder, T.V.; Åsberg, A.; Haufroid, V.; Hesselink, D.A.; Langman, L.; Lemaitre, F.; Marquet, P.; Seger, C.; Shipkova, M.; et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther. Drug Monit. 2019, 41, 261–307. [Google Scholar] [CrossRef]
- Venkataramanan, R.; Swaminathan, A.; Prasad, T.; Jain, A.; Zuckerman, S.; Warty, V.; McMichael, J.; Lever, J.; Burckart, G.; Starzl, T. Clinical pharmacokinetics of tacrolimus. Clin. Pharmacokinet. 1995, 29, 404–430. [Google Scholar] [CrossRef] [PubMed]
- Staatz, C.; Tett, S. Clinical Pharmacokinetics and Pharmacodynamics of Tacrolimus in Solid Organ Transplantation. Clin. Pharmacokinet. 2004, 43, 623–653. [Google Scholar] [CrossRef]
- Borra, L.C.P.; Roodnat, J.I.; Kal, J.A.; Mathot, R.A.; Weimar, W.; van Gelder, T. High within-patient variability in the clearance of tacrolimus is a risk factor for poor long-term outcome after kidney transplantation. Nephrol. Dial. Transplant. 2010, 25, 2757–2763. [Google Scholar] [CrossRef] [Green Version]
- Shuker, N.; Shuker, L.; van Rosmalen, J.; Roodnat, J.I.; Borra, L.; Weimar, W.; Hesselink, D.A.; van Gelder, T. A high intrapatient variability in tacrolimus exposure is associated with poor long-term outcome of kidney transplantation. Transpl. Int. 2016, 29, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, T.; Vermeulen, T.; Annaert, P.; Lerut, E.; Kuypers, D.R.J. High Intrapatient Variability of Tacrolimus Concentrations Predicts Accelerated Progression of Chronic Histologic Lesions in Renal Recipients. Am. J. Transplant. 2016, 16, 2954–2963. [Google Scholar] [CrossRef] [Green Version]
- Rayar, M.; Tron, C.; Jézéquel, C.; Beaurepaire, J.M.; Petitcollin, A.; Houssel-Debry, P.; Camus, C.; Verdier, M.C.; Dehlawi, A.; Lakéhal, M.; et al. High Intrapatient Variability of Tacrolimus Exposure in the Early Period After Liver Transplantation Is Associated With Poorer Outcomes. Transplantation 2018, 102, e108–e114. [Google Scholar] [CrossRef]
- Jouve, T.; Noble, J.; Rostaing, L.; Malvezzi, P. An update on the safety of tacrolimus in kidney transplant recipients, with a focus on tacrolimus minimization. Expert Opin. Drug Saf. 2019, 18, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, D.R.J. Intrapatient Variability of Tacrolimus Exposure in Solid Organ Transplantation: A Novel Marker for Clinical Outcome. Clin. Pharmacol Ther. 2020, 107, 347–358. [Google Scholar] [CrossRef]
- Hsiao, C.Y.; Ho, M.C.; Ho, C.M.; Wu, Y.M.; Lee, P.H.; Hu, R.H. Long-Term Tacrolimus Blood Trough Level and Patient Survival in Adult Liver Transplantation. J. Pers. Med. 2021, 11, 90. [Google Scholar] [CrossRef]
- Wang, P.; Mao, Y.; Razo, J.; Zhou, X.; Wong, S.T.; Patel, S.; Elliott, E.; Shea, E.; Wu, A.H.; Gaber, A.O. Using genetic and clinical factors to predict tacrolimus dose in renal transplant recipients. Pharmacogenomics 2010, 11, 1389–1402. [Google Scholar] [CrossRef] [PubMed]
- Staatz, C.E.; Goodman, L.K.; Tett, S.E. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin. Pharmacokinet. 2010, 49, 141–175. [Google Scholar] [CrossRef]
- Rancic, N.; Vavic, N. Drug-drug interactions of tacrolimus. Hosp. Pharmacol.-Int. Multidiscip. J. 2015, 2, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Abu-Elmagd, K.; Fung, J.J.; Alessiani, M.; Jain, A.; Venkataramanan, R.; Warty, V.S.; Takaya, S.; Todo, S.; Shannon, W.D.; Starzl, T.E. The effect of graft function on FK506 plasma levels, dosages, and renal function, with particular reference to the liver. Transplantation 1991, 52, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Degraeve, A.L.; Moudio, S.; Haufroid, V.; Chaib Eddour, D.; Mourad, M.; Bindels, L.B.; Elens, L. Predictors of tacrolimus pharmacokinetic variability: Current evidences and future perspectives. Expert Opin. Drug Metab. Toxicol. 2020, 16, 769–782. [Google Scholar] [CrossRef]
- Bonneville, E.; Gautier-Veyret, E.; Ihl, C.; Hilleret, M.N.; Baudrant, M.; Fonrose, X.; Stanke-Labesque, F. Unexpected overdose blood concentration of tacrolimus: Keep in mind the role of inflammation. Br. J. Clin. Pharmacol. 2020, 86, 1888–1891. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, W.; Ma, K.; Duan, X.; Wang, F.; Huang, M.; Zhang, W. Variation in Tacrolimus Trough Concentrations in Liver Transplant Patients Undergoing Endoscopic Retrograde Cholangiopancreatography: A Retrospective, Observational Study. Front. Pharmacol. 2020, 19, 1252. [Google Scholar] [CrossRef] [PubMed]
- Stanke-Labesque, F.; Gautier-Veyret, E.; Chhun, S.; Guilhaumou, R.; French Society of Pharmacology and Therapeutics. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol. Ther. 2020, 215, 107627–107649. [Google Scholar] [CrossRef] [PubMed]
- Stanke-Labesque, F.; Concordet, D.; Djerada, Z.; Bouchet, S.; Solas, C.; Mériglier, E.; Bonnet, F.; Mourvillier, B.; Ruiz, S.; Martin-Blondel, G.; et al. Neglecting Plasma Protein Binding in COVID-19 Patients Leads to a Wrong Interpretation of Lopinavir Overexposure. Clin. Pharmacol. Ther. 2021, 109, 1030–1033. [Google Scholar] [CrossRef]
- Gérard, C.; Stocco, J.; Hulin, A.; Blanchet, B.; Verstuyft, C.; Durand, F.; Conti, F.; Duvoux, C.; Tod, M. Determination of the Most Influential Sources of Variability in Tacrolimus Trough Blood Concentrations in Adult Liver Transplant Recipients: A Bottom-Up Approach. AAPS J. 2014, 16, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Emoto, C.; Johnson, T.N.; Hahn, D.; Christians, U.; Alloway, R.R.; Vinks, A.; Fukuda, T. A Theoretical Physiologically-Based Pharmacokinetic Approach to Ascertain Covariates Explaining the Large Interpatient Variability in Tacrolimus Disposition. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Campagne, O.; Mager, D.E.; Tornatore, K.M. Population Pharmacokinetics of Tacrolimus in Transplant Recipients: What Did We Learn About Sources of Interindividual Variabilities? J. Clin. Pharmacol. 2019, 59, 309–325. [Google Scholar] [CrossRef]
- Sikma, M.A.; Van Maarseveen, E.M.; Hunault, C.C.; Moreno, J.M.; Van de Graaf, E.A.; Kirkels, J.H.; Verhaar, M.C.; Grutters, J.C.; Kesecioglu, J.; De Lange, D.W.; et al. Unbound Plasma, Total Plasma, and Whole-Blood Tacrolimus Pharmacokinetics Early After Thoracic Organ Transplantation. Clin. Pharmacokinet. 2020, 59, 771–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikma, M.A.; Hunault, C.C.; Huitema, A.D.R.; De Lange, D.W.; Van Maarseveen, E.M. Clinical Pharmacokinetics and Impact of Hematocrit on Monitoring and Dosing of Tacrolimus Early After Heart and Lung Transplantation. Clin. Pharmacokinet. 2020, 59, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Möller, A.; Iwasaki, K.; Kawamura, A.; Teramura, Y.; Shiraga, T.; Hata, T.; Schäfer, A.; Undre, N.A. The disposition of 14C-labeled tacrolimus after intravenous and oral administration in healthy human subjects. Drug Metab. Dispos. Biol. Fate Chem. 1999, 27, 633–636. [Google Scholar]
- Boffito, M.; Back, D.J.; Flexner, C.; Sjö, P.; Blaschke, T.F.; Horby, P.W.; Cattaneo, D.; Acosta, E.P.; Anderson, P.; Owen, A. Toward Consensus on Correct Interpretation of Protein Binding in Plasma and Other Biological Matrices for COVID-19 Therapeutic Development. Clin. Pharmacol. Ther. 2021, 110, 64–68. [Google Scholar] [CrossRef]
- Ofotokun, I.; Lennox, J.L.; Eaton, M.E.; Ritchie, J.C.; Easley, K.A.; Masalovich, S.E.; Long, M.C.; Acosta, E.P. Immune Activation Mediated Change in Alpha-1-Acid Glycoprotein: Impact on Total and Free Lopinavir Plasma Exposure. J. Clin. Pharmacol. 2011, 51, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Mühlbacher, J.; Schörgenhofer, C.; Doberer, K.M.; Budde, K.; Eskandary, F.; Mayer, K.A.; Schranz, S.; Ely, S.; Reiter, B.; Chong, E.; et al. Anti-interleukin-6 antibody clazakizumab in late antibody-mediated kidney transplant rejection: Effect on cytochrome P450 drug metabolism. Transpl. Int. 2021, 34, 1542–1552. [Google Scholar] [CrossRef]
- Benet, L.Z.; Hoener, B. Changes in plasma protein binding have little clinical relevance. Clin. Pharmacol. Ther. 2002, 71, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; Bousquet-Melou, A. Free drug fraction vs free drug concentration: A matter of frequent confusion. J. Vet. Pharmacol. Ther. 2002, 25, 460–463. [Google Scholar] [CrossRef] [PubMed]
Demographics (n = 248 Patients) | |
---|---|
Gender (male) % (n) | 82 (202) |
Age (years) | 64 (51–72) |
Duration of hospital stay (Days) | 8 (0–76) |
Number of recurrent hospitalizations | 5 (2–17) |
Post-transplant delays (months) | 14.2 (1.60–45.2) |
Tacrolimus pharmacological data (n = 1573) | |
Concentration (µg/L) | 6.9 (3.4–12.7) |
Concentration/Dose | 2.16 (0.92–6.47) |
Dose (mg/Day) | 3 (1–7) |
Number of tacrolimus Cmin measurements/patient | 4 (2–16) |
Laboratory parameters | |
CRP (mg/l) n = 1573 | 14 (3–100) |
ASAT(UI/L) n = 1341 | 25 (10–97) |
ALAT (UI/L) n = 1342 | 34 (16–149) |
Total bilirubin (mg/L) n = 1445 | 11 (5–41) |
Hematocrit (%) n = 1404 | 0.32 (0.25–0.42) |
White blood cell count (G/L) n = 1404 | 5.4 (2.6–10.3) |
Total protein (g/L) n = 1522 | 66 (51–77) |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Estimate ± SE | p Value | Estimate ± SE | p Value | |
Age | 2. 55 ± 1.59 × 10−3 | 0.110 | / | / |
Gender | / | / | ||
women | −0.05 ± 0.33 | 0.874 | / | / |
men | 0.011 ± 0.33 | 0.966 | / | / |
Hematocrit | 0.30 ± 0.16 | 0.049 | 0.51 ± 0.18 | 0.004 |
Log (ALAT) | 0.10 ± 0.02 | <0.001 | 0.10 ± 0.02 | <0.001 |
Log (total bilirubin) | 0.04 ± 0.02 | 0.060 | 0.01 ± 0.03 | 0.594 |
Log (post-transplant delay) | 0.01 ± 0.02 | 0.382 | / | / |
Log (CRP) | 0.05 ± 0.01 | <0.001 | / | / |
1st–2nd quartile | 4.32 ± 21.80 × 10−3 | 0.843 | 0.03 ± 0.02 | 0.159 |
3rd–1st quartile | 3.00 ± 0.02 | 0.895 | 0.02 ± 0.03 | 0.510 |
4th–1st quartile | 0.07 ± 0.02 | 0.003 | 0.10 ± 0.03 | <0.001 |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Estimate ± SE | p Value | Estimate ± SE | p Value | |
Hematocrit | 0.23 ± 0.10 | 0.023 | −0.08 ± 0.12 | 0.518 |
Log (ALAT) | −0.11 ± 0.01 | <0.001 | 0.10 ± 0.02 | <0.001 |
Age | 8.90 ± 7.03 × 10−3 | 0.207 | / | / |
Gender | ||||
women | −0.05 ± 0.23 | 0.841 | / | / |
men | −0.06 ± 0.23 | 0.800 | / | / |
Log (total bilirubin) | −0.09 ± 0.01 | <0.001 | 0.04 ± 0.02 | 0.078 |
Log (CRP) | −0.03 ± 0.01 | 0.001 | / | / |
1st–2nd quartile | 0.01 ± 0.01 | 0.526 | −2.70 ± 17.51 × 10−3 | 0.878 |
3rd–1st quartile | 0.2 ± 1.69 × 10−3 | 0.991 | −0.12 ± 0.02 × 10−3 | 0.995 |
4th–1st quartile | −0.05 ± 0.02 | 0.005 | −0.06 ± 0.02 | 0.005 |
Log (post-transplant delays) | 0.04 ± 0.02 | 0.002 | 0.019 | |
1st–2nd quartile | −0.02 ± 0.02 | 0.140 | −0.05 ± 0.01 | 0.029 |
3rd–1st quartile | −0.06 ± 0.02 | <0.001 | −0.06 ± 0.02 | 0.003 |
4th–1st quartile | −0.04 ± 0.02 | 0.013 | −0.05 ± 0.02 | 0.025 |
Variable | Odd Ratio | IC 95% | p Value |
---|---|---|---|
Log (ALAT) | 4.10 | 2.32–7.27 | <0.001 |
log (total bilirubin) | 1.61 | 0.85–3.08 | 0.146 |
Hematocrit | 0.23 | 0.13–40.25 | 0.577 |
CRP | |||
1st–2nd quartile | 1.09 | 0.46–2.55 | 0.846 |
3rd–1st quartile | 1.22 | 0.50–2.98 | 0.656 |
4th–1st quartile | 2.64 | 1.13–6.17 | 0.024 |
Log (Post-transplant delay) | 0.72 | 0.56–0.93 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavant, A.; Fonrose, X.; Gautier-Veyret, E.; Hilleret, M.N.; Roustit, M.; Stanke-Labesque, F. Variability of Tacrolimus Trough Concentration in Liver Transplant Patients: Which Role of Inflammation? Pharmaceutics 2021, 13, 1960. https://doi.org/10.3390/pharmaceutics13111960
Chavant A, Fonrose X, Gautier-Veyret E, Hilleret MN, Roustit M, Stanke-Labesque F. Variability of Tacrolimus Trough Concentration in Liver Transplant Patients: Which Role of Inflammation? Pharmaceutics. 2021; 13(11):1960. https://doi.org/10.3390/pharmaceutics13111960
Chicago/Turabian StyleChavant, Anaelle, Xavier Fonrose, Elodie Gautier-Veyret, Marie Noelle Hilleret, Matthieu Roustit, and Francoise Stanke-Labesque. 2021. "Variability of Tacrolimus Trough Concentration in Liver Transplant Patients: Which Role of Inflammation?" Pharmaceutics 13, no. 11: 1960. https://doi.org/10.3390/pharmaceutics13111960
APA StyleChavant, A., Fonrose, X., Gautier-Veyret, E., Hilleret, M. N., Roustit, M., & Stanke-Labesque, F. (2021). Variability of Tacrolimus Trough Concentration in Liver Transplant Patients: Which Role of Inflammation? Pharmaceutics, 13(11), 1960. https://doi.org/10.3390/pharmaceutics13111960