Nonpeptidic Z360-Analogs Tagged with Trivalent Radiometals as Anti-CCK2R Cancer Theranostic Agents: A Preclinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Ligands
2.2. Labeling of GAS-Compounds with Ga-67, In-111 and Lu-177
2.3. Quality Control of Radiolabeled GAS1/2/3
2.4. Cell Culture
2.5. Competition Binding Assays in HEK293-CCK2i4svR Cell Membranes
2.6. Uptake of Radiolabeled GAS1/2/3 in HEK293-CCK2i4svR Cells
2.7. Radioligand Stability in Mice
2.8. Biodistribution in Mice Bearing Twin HEK293-CCK2i4svR and wtHEK293 Xenografts
2.9. Statistical Analysis
2.10. SPECT/CT of HEK293-CCK2i4svR and wtHEK293 Xenografts with [111In]In-GAS1/2/3
3. Results
3.1. Ligands and Radioligands
3.2. Receptor Affinity Determination and Functional Studies of Z360-Analogs
3.3. Uptake of GAS1/2/3-Radioligands in HEK293-CCK2i4svR Cells
3.4. Radioligand Stability in Mice
3.5. Biodistribution in Mice Bearing Twin HEK293-CCK2i4svR and wtHEK293 Xenografts
3.6. SPECT/CT with [111In]In-GAS1/2/3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reubi, J.C.; Schaer, J.C.; Waser, B. Cholecystokinin(CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res. 1997, 57, 1377–1386. [Google Scholar]
- Reubi, J.C.; Waser, B. Unexpected high incidence of cholecystokinin-B/gastrin receptors in human medullary thyroid carcinomas. Int. J. Cancer 1996, 67, 644–647. [Google Scholar] [CrossRef]
- Ferrand, A.; Wang, T.C. Gastrin and cancer: A review. Cancer Lett. 2006, 238, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, M.; Seva, C.; Fourmy, D. Cholecystokinin and gastrin receptors. Physiol. Rev. 2006, 86, 805–847. [Google Scholar] [CrossRef] [Green Version]
- Reubi, J.C. CCK receptors in human neuroendocrine tumors: Clinical implications. Scand. J. Clin. Lab. Investig. 2001, 234, 101–104. [Google Scholar] [CrossRef]
- Gotthardt, M.; Béhé, M.P.; Grass, J.; Bauhofer, A.; Rinke, A.; Schipper, M.L.; Kalinowski, M.; Arnold, R.; Oyen, W.J.G.; Behr, T.M. Added value of gastrin receptor scintigraphy in comparison to somatostatin receptor scintigraphy in patients with carcinoids and other neuroendocrine tumours. Endocr. Relat. Cancer 2006, 13, 1203–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béhé, M.; Behr, T.M. Cholecystokinin-B (CCK-B)/gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing malignancies. Biopolymers 2002, 66, 399–418. [Google Scholar] [CrossRef] [PubMed]
- von Guggenberg, E.; Kolenc, P.; Rottenburger, C.; Mikolajczak, R.; Hubalewska-Dydejczyk, A. Update on preclinical development and clinical translation of cholecystokinin-2 receptor targeting radiopharmaceuticals. Cancers 2021, 13, 5776. [Google Scholar] [CrossRef] [PubMed]
- Nock, B.A.; Maina, T.; Krenning, E.P.; de Jong, M. “To Serve and Protect”: Enzyme Inhibitors as Radiopeptide Escorts Promote Tumor Targeting. J. Nucl. Med. 2014, 55, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laverman, P.; Joosten, L.; Eek, A.; Roosenburg, S.; Peitl, P.K.; Maina, T.; Mäcke, H.; Aloj, L.; Von Guggenberg, E.; Sosabowski, J.K.; et al. Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides. Eur. J. Pediatr. 2011, 38, 1410–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fröberg, A.C.; De Jong, M.; Nock, B.A.; Breeman, W.A.P.; Erion, J.L.; Maina, T.; Verdijsseldonck, M.; De Herder, W.W.; Van Der Lugt, A.; Kooij, P.P.M.; et al. Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in medullary thyroid carcinoma. Eur. J. Pediatr. 2009, 36, 1265–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaloudi, A.; Nock, B.A.; Lymperis, E.; Krenning, E.P.; De Jong, M.; Maina, T. Improving the In Vivo Profile of Minigastrin Radiotracers: A Comparative Study Involving the Neutral Endopeptidase Inhibitor Phosphoramidon. Cancer Biother. Radiopharm. 2016, 31, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Kaloudi, A.; Nock, B.A.; Lymperis, E.; Krenning, E.P.; de Jong, M.; Maina, T. 99mTc-Labeled gastrins of varying peptide chain length: Distinct impact of NEP/ACE-inhibition on stability and tumor uptake in mice. Nucl. Med. Biol. 2016, 43, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Kaloudi, A.; Nock, B.A.; Lymperis, E.; Sallegger, W.; Krenning, E.P.; de Jong, M.; Maina, T. In vivo inhibition of neutral endo-peptidase enhances the diagnostic potential of truncated gastrin 111In-radioligands. Nucl. Med. Biol. 2015, 42, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Kaloudi, A.; Nock, B.A.; Lymperis, E.; Valkema, R.; Krenning, E.P.; De Jong, M.; Maina, T. Impact of clinically tested NEP/ACE inhibitors on tumor uptake of [111In-DOTA]MG11—First estimates for clinical translation. EJNMMI Res. 2016, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valkema, R.; Fröberg, A.; Maina, T.; Nock, B.A.; de Blois, E.; Melis, M.; Konijnenberg, M.W.; Koolen, S.L.W.; Peeters, R.P.; de Herder, W.W.; et al. Clinical translation of the PepProtect concept: Improved detection of cancer and metastases, applied in medullary thyroid cancer patients with [111In]In-MG11 scanning during neprilysin inhibition. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, S701–S702. [Google Scholar]
- Maina, T.; Konijnenberg, M.W.; Kolenc-Peitl, P.; Garnuszek, P.; Nock, B.A.; Kaloudi, A.; Kroselj, M.; Zaletel, K.; Maecke, H.; Mansi, R.; et al. Preclinical pharmacokinetics, biodistribution, radiation dosimetry and toxicity studies required for regulatory approval of a phase I clinical trial with 111In-CP04 in medullary thyroid carcinoma patients. Eur. J. Pharm. Sci. 2016, 91, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Kolenc-Peitl, P.; Mansi, R.; Tamma, M.; Gmeiner-Stopar, T.; Sollner-Dolenc, M.; Waser, B.; Baum, R.P.; Reubi, J.C.; Maecke, H.R. Highly Improved Metabolic Stability and Pharmacokinetics of Indium-111-DOTA-Gastrin Conjugates for Targeting of the Gastrin Receptor. J. Med. Chem. 2011, 54, 2602–2609. [Google Scholar] [CrossRef] [PubMed]
- Corlett, A.; Sani, M.-A.; Van Zuylekom, J.; Ang, C.-S.; von Guggenberg, E.; Cullinane, C.; Blyth, B.; Hicks, R.J.; Roselt, P.D.; E Thompson, P.; et al. A New Turn in Peptide-Based Imaging Agents: Foldamers Afford Improved Theranostics Targeting Cholecystokinin-2 Receptor-Positive Cancer. J. Med. Chem. 2021, 64, 4841–4856. [Google Scholar] [CrossRef] [PubMed]
- Uprimny, C.; Bayerschmidt, S.; di Santo, G.; Klingler, M.; Hormann, A.; Warwitz, B.; Rangger, C.; von Guggenberg, E.; Virgolini, I. First results of biodistribution and tumour targeting of 68Ga-DOTA-MGS5 PET/CT in advanced medullary thyroid cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, S302–S303. [Google Scholar]
- Grob, N.; Häussinger, D.; Deupi, X.; Schibli, R.; Behe, M.; Mindt, T.L. Triazolo-Peptidomimetics: Novel Radiolabeled Minigastrin Analogs for Improved Tumor Targeting. J. Med. Chem. 2020, 63, 4484–4495. [Google Scholar] [CrossRef] [PubMed]
- Erba, P.A.; Maecke, H.; Mikolajczak, R.; Decristoforo, C.; Zaletel, K.; Maina-Nock, T.; Peitl, P.K.; Garnuszek, P.; Fröberg, A.; Goebel, G.; et al. A novel CCK2/gastrin receptor-localizing radiolabeled peptide probe for personalized diagnosis and therapy of patients with progressive or metastatic medullary thyroid carcinoma: A multicenter phase I GRAN-T-MTC study. Pol. Arch. Intern. Med. 2018, 128, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Rottenburger, C.; Nicolas, G.P.; McDougall, L.; Kaul, F.; Cachovan, M.; Vija, A.H.; Schibli, R.; Geistlich, S.; Schumann, A.; Rau, T.; et al. Cholecystokinin 2 Receptor Agonist 177Lu-PP-F11N for Radionuclide Therapy of Medullary Thyroid Carcinoma: Results of the Lumed Phase 0a Study. J. Nucl. Med. 2020, 61, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Uprimny, C.; von Guggenberg, E.; Svirydenka, A.; Mikolajczak, R.; Hubalewska-Dydejczyk, A.; Virgolini, I.J. Comparison of PET/CT imaging with [18F]FDOPA and cholecystokinin-2 receptor targeting [68Ga]Ga-DOTA-MGS5 in a patient with advanced medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 935–936. [Google Scholar] [CrossRef] [PubMed]
- Ubl, P.; Gincu, T.; Keilani, M.; Ponhold, L.; Crevenna, R.; Niederle, B.; Hacker, M.; Li, S. Comparison of side effects of pentagastrin test and calcium stimulation test in patients with increased basal calcitonin concentration: The gender-specific differences. Endocrine 2014, 46, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Grzmil, M.; Imobersteg, S.; Blanc, A.; Frank, S.; Schibli, R.; Béhé, M.P. Therapeutic Response of CCKBR-Positive Tumors to Combinatory Treatment with Everolimus and the Radiolabeled Minigastrin Analogue [177Lu]Lu-PP-F11N. Pharmaceutics 2021, 13, 2156. [Google Scholar] [CrossRef] [PubMed]
- Novak, D.; Anderluh, M.; Peitl, P.K. CCK2R antagonists: From SAR to clinical trials. Drug Discov. Today 2020, 25, 1322–1336. [Google Scholar] [CrossRef] [PubMed]
- Morita, H.; Miura, N.; Hori, Y.; Matsunaga, Y.; Ukawa, H.; Suda, H.; Yoneta, T.; Kurimoto, T.; Itoh, Z. Effects of Z-360, a novel CCKB/gastrin (CCK2) receptor antagonist, on meal-induced acid secretion and experimental ulcer models in dogs and rats. Gastroenterology 2001, 120, A311. [Google Scholar] [CrossRef]
- Miura, N.; Yoneta, T.; Ukawa, H.; Fukuda, Y.; Eta, R.; Mera, Y.; Omata, T.; Kinomoto, T.; Kurimoto, T.; Itoh, Z. Pharmacological profiles of Z-360, a novel CCKB/gastrin (CCK2) receptor antagonist with excellent oral potency. Gastroenterology 2001, 120, A311. [Google Scholar] [CrossRef]
- Ukawa, H.; Miura, N.; Morita, H.; Hori, Y.; Ueki, S.; Yoneta, T.; Kurimoto, T.; Itoh, Z. Effect of Z-360, a selective CCKB/gastrin receptor antagonist, on chronic acid reflux esophagitis in rats. Gastroenterology 2002, 122, A194. [Google Scholar]
- Grabowska, A.; Morris, T.; McKenzie, A.; Kumari, R.; Hamano, H.; Emori, Y.; Yoshinaga, K.; Watson, S. Pre-clinical evaluation of a new orally-active CCK-2R antagonist, Z-360, in gastrointestinal cancer models. Regul. Pept. 2008, 146, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, D.; Emori, Y.; Eta, R.; Iino, Y.; Hamano, H.; Yoshinaga, K.; Tanaka, T.; Takei, M.; Watson, S.A. Effect of Z-360, a novel orally active CCK-2/gastrin receptor antagonist on tumor growth in human pancreatic adenocarcinoma cell lines in vivo and mode of action determinations in vitro. Cancer Chemother. Pharm. 2008, 61, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.; Caplin, M.; Palmer, D.; Valle, J.; Larvin, M.; Waters, J.; Coxon, F.; Borbath, I.; Peeters, M.; Nagano, E.; et al. A phase Ib/IIa trial to evaluate the CCK2 receptor antagonist Z-360 in combination with gemcitabine in patients with advanced pancreatic cancer. Eur. J. Cancer 2010, 46, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Ueno, M.; Li, C.P.; Ikeda, M.; Ishii, H.; Mizuno, N.; Yamaguchi, T.; Ioka, T.; Oh, D.Y.; Ichikawa, W.; Okusaka, T.; et al. A randomized phase II study of gemcitabine plus Z-360, a CCK2 receptor-selective antagonist, in patients with metastatic pancreatic cancer as compared with gemcitabine plus placebo. Cancer Chemother. Pharmacol. 2017, 80, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Wayua, C.; Roy, J.; Putt, K.S.; Low, P.S. Selective Tumor Targeting of Desacetyl Vinblastine Hydrazide and Tubulysin B via Conjugation to a Cholecystokinin 2 Receptor (CCK2R) Ligand. Mol. Pharm. 2015, 12, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Wayua, C.; Low, P.S. Evaluation of a Cholecystokinin 2 Receptor-Targeted Near-Infrared Dye for Fluorescence-Guided Surgery of Cancer. Mol. Pharm. 2013, 11, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Wayua, C.; Low, P.S. Evaluation of a Nonpeptidic Ligand for Imaging of Cholecystokinin 2 Receptor–Expressing Cancers. J. Nucl. Med. 2015, 56, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Kaloudi, A.; Kanellopoulos, P.; Radolf, T.; Chepurny, O.G.; Rouchota, M.; Loudos, G.; Andreae, F.; Holz, G.G.; Nock, B.A.; Maina, T. [99mTc]Tc-DGA1, a Promising CCK2R-Antagonist-Based Tracer for Tumor Diagnosis with Single-Photon Emission Computed Tomography. Mol. Pharm. 2020, 17, 3116–3128. [Google Scholar] [CrossRef]
- Körner, M.; Waser, B.; Reubi, J.-C.; Miller, L.J. CCK2 receptor splice variant with intron 4 retention in human gastrointestinal and lung tumours. J. Cell Mol. Med. 2010, 14, 933–943. [Google Scholar] [CrossRef] [Green Version]
- Chao, C.; Han, X.; Ives, K.; Park, J.; Kolokoltsov, A.A.; Davey, R.; Moyer, M.P.; Hellmich, M.R. CCK2 receptor expression transforms non-tumorigenic human NCM356 colonic epithelial cells into tumor forming cells. Int. J. Cancer 2009, 126, 864–875. [Google Scholar] [CrossRef] [Green Version]
- Laverman, P.; Roosenburg, S.; Gotthardt, M.; Park, J.; Oyen, W.J.G.; De Jong, M.; Hellmich, M.R.; Rutjes, F.P.J.T.; Van Delft, F.L.; Boerman, O.C. Targeting of a CCK2 receptor splice variant with 111In-labelled cholecystokinin-8 (CCK8) and 111In-labelled minigastrin. Eur. J. Pediatr. 2007, 35, 386–392. [Google Scholar] [CrossRef]
- Nock, B.A.; Maina, T.; Béhé, M.; Nikolopoulou, A.; Gotthardt, M.; Schmitt, J.S.; Behr, T.M.; Mäcke, H.R. CCK-2/gastrin receptor-targeted tumor imaging with 99mTc-labeled minigastrin analogs. J. Nucl. Med. 2005, 46, 1727–1736. [Google Scholar] [PubMed]
- Kanellopoulos, P.; Kaloudi, A.; Rouchota, M.; Loudos, G.; de Jong, M.; Krenning, E.P.; Nock, B.A.; Maina, T. One step closer to clinical translation: Enhanced tumor targeting of [99mTc]Tc-DB4 and [111In]In-SG4 in mice treated with Entresto. Pharmaceutics 2020, 12, 1145. [Google Scholar] [CrossRef]
- Gotthardt, M.; van Eerd-Vismale, J.; Oyen, W.J.; de Jong, M.; Zhang, H.; Rolleman, E.; Maecke, H.R.; Béhé, M.; Boerman, O. Indication for different mechanisms of kidney uptake of radiolabeled peptides. J. Nucl. Med. 2007, 48, 596–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansi, R.; Fani, M. Design and development of the theranostic pair 177Lu-OPS201/68Ga-OPS202 for targeting somatostatin receptor expressing tumors. J. Labelled Comp. Radiopharm. 2019, 62, 635–645. [Google Scholar] [CrossRef]
- Maina, T.; Nock, B.A.; Kulkarni, H.; Singh, A.; Baum, R.P. Theranostic prospects of gastrin-releasing peptide receptor-radioantagonists in oncology. PET Clin. 2017, 12, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Kostelnik, T.I.; Orvig, C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem. Rev. 2019, 119, 902–956. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, T.W.; Holst, B. Allosteric enhancers, allosteric agonists and ago-allosteric modulators: Where do they bind and how do they act? Trends Pharmacol. Sci. 2007, 28, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.J.; Henke, B.R.; Miller, L.J. Elimination of a cholecystokinin receptor agonist ‘trigger’ in an effort to develop positive allosteric modulators without intrinsic agonist activity. Bioorganic Med. Chem. Lett. 2015, 25, 1849–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roettger, B.F.; Ghanekar, D.; Rao, R.; Toledo, C.; Yingling, J.; Pinon, D.; Miller, L.J. Antagonist-stimulated internalization of the G protein-coupled cholecystokinin receptor. Mol. Pharmacol. 1997, 51, 357–362. [Google Scholar]
- Akgün, E.; Körner, M.; Gao, F.; Harikumar, K.G.; Waser, B.; Reubi, J.C.; Portoghese, P.S.; Miller, L.J. Synthesis and in Vitro Characterization of Radioiodinatable Benzodiazepines Selective for Type 1 and Type 2 Cholecystokinin Receptors. J. Med. Chem. 2009, 52, 2138–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschodt-Lanckman, M.; Pauwels, S.; Najdovski, T.; Dimaline, R.; Dockray, G. In vitro and in vivo degradation of human gastrin by endopeptidase 24.11. Gastroenterology 1988, 94, 712–721. [Google Scholar] [CrossRef]
- Dubreuil, P.; Fulcrand, P.; Rodriguez, M.; Fulcrand, H.; Laur, J.; Martinez, J. Novel activity of angiotensin-converting enzyme. Hydrolysis of cholecystokinin and gastrin analogues with release of the amidated C-terminal dipeptide. Biochem. J. 1989, 262, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klingler, M.; Hörmann, A.A.; Rangger, C.; Desrues, L.; Castel, H.; Gandolfo, P.; Von Guggenberg, E. Stabilization Strategies for Linear Minigastrin Analogues: Further Improvements via the Inclusion of Proline into the Peptide Sequence. J. Med. Chem. 2020, 63, 14668–14679. [Google Scholar] [CrossRef] [PubMed]
- Novak, D.; Tomašič, T.; Krošelj, M.; Javornik, U.; Plavec, J.; Anderluh, M.; Peitl, P.K. Radiolabelled CCK2R Antagonists Containing PEG Linkers: Design, Synthesis and Evaluation. ChemMedChem 2021, 16, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Verona, M.; Rubagotti, S.; Croci, S.; Sarpaki, S.; Borgna, F.; Tosato, M.; Vettorato, E.; Marzaro, G.; Mastrotto, F.; Asti, M. Preliminary Study of a 1,5-Benzodiazepine-Derivative Labelled with Indium-111 for CCK-2 Receptor Targeting. Molecules 2021, 26, 918. [Google Scholar] [CrossRef]
- Milliken, B.T.; Doyle, R.P.; Holz, G.G.; Chepurny, O.G. FRET reporter assays for cAMP and calcium in a 96-well format using genetically encoded biosensors expressed in living cells. Bio-Protocol 2020, 10, e3641. [Google Scholar] [CrossRef] [PubMed]
- Chepurny, O.G.; Matsoukas, M.T.; Liapakis, G.; Leech, C.A.; Milliken, B.T.; Doyle, R.P.; Holz, G.G. Nonconventional glucagon and GLP-1 receptor agonist and antagonist interplay at the GLP-1 receptor revealed in high-throughput FRET assays for cAMP. J. Biol. Chem. 2019, 294, 3514–3531, Erratum in J. Biol. Chem. 2019, 294, 8714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Z360 | GAS1 | GAS2 | GAS3 |
---|---|---|---|---|
metal-free | 1.2 ± 0.5 (5) | 5.9 ± 1.8 (3) | 4.1 ± 1.1 (3) | 3.1 ± 1.5 (3) |
natGa | na 1 | 13.8 ± 2.7 (3) | 8.8 ± 1.6 (3) | 4.8 ± 0.6 (3) |
natIn | na 1 | 5.0 ± 1.1 (3) | 53.2 ± 2.7 (3) | 1.9 ± 0.2 (3) |
natLu | na 1 | 12.4 ± 0.2 (3) | na 1 | 4.3 ± 0.9 (3) |
Radiometal Chelate/Analog | GAS1 | GAS2 | GAS2 | |
---|---|---|---|---|
[67Ga]Ga | Blood 1 | 93.9 ± 0.6 (3) | 96.3 ± 3.7 (3) | 92.7 ± 0.7 (3) |
Urine 2 | 80.2 ± 1.0 (3) | 81.6 ± 1.5 (3) | 78.3 ± 1.5 (3) | |
[111In]In | Blood | 84.6 ± 2.4 (3) | 73.1 ± 1.8 (3) | 98.3 ± 0.3 (3) |
Urine | 85.2 ± 5.2 (3) | 44.1 ± 2.6 (3) | 94.3 ± 1.3 (3) | |
[177Lu]Lu | Blood | 81.1 ± 8.2 (3) | - | 95.8 ± 2.0 (3) |
Urine | 79.2 ± 10.3 (3) | - | 88.1 ± 0.4 (3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nock, B.A.; Kanellopoulos, P.; Chepurny, O.G.; Rouchota, M.; Loudos, G.; Holz, G.G.; Krenning, E.P.; Maina, T. Nonpeptidic Z360-Analogs Tagged with Trivalent Radiometals as Anti-CCK2R Cancer Theranostic Agents: A Preclinical Study. Pharmaceutics 2022, 14, 666. https://doi.org/10.3390/pharmaceutics14030666
Nock BA, Kanellopoulos P, Chepurny OG, Rouchota M, Loudos G, Holz GG, Krenning EP, Maina T. Nonpeptidic Z360-Analogs Tagged with Trivalent Radiometals as Anti-CCK2R Cancer Theranostic Agents: A Preclinical Study. Pharmaceutics. 2022; 14(3):666. https://doi.org/10.3390/pharmaceutics14030666
Chicago/Turabian StyleNock, Berthold A., Panagiotis Kanellopoulos, Oleg G. Chepurny, Maritina Rouchota, George Loudos, George G. Holz, Eric P. Krenning, and Theodosia Maina. 2022. "Nonpeptidic Z360-Analogs Tagged with Trivalent Radiometals as Anti-CCK2R Cancer Theranostic Agents: A Preclinical Study" Pharmaceutics 14, no. 3: 666. https://doi.org/10.3390/pharmaceutics14030666
APA StyleNock, B. A., Kanellopoulos, P., Chepurny, O. G., Rouchota, M., Loudos, G., Holz, G. G., Krenning, E. P., & Maina, T. (2022). Nonpeptidic Z360-Analogs Tagged with Trivalent Radiometals as Anti-CCK2R Cancer Theranostic Agents: A Preclinical Study. Pharmaceutics, 14(3), 666. https://doi.org/10.3390/pharmaceutics14030666