High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Liposomal Dispersion Preparation
2.2.2. Microcalorimetry (mDSC)
2.2.3. High-Sensitive Ultrasound Spectroscopy (HR-US)
2.2.4. Dynamic Light Scattering (DLS)
3. Results
3.1. Particle Size Determination of the Liposomal Dispersions
3.2. Characterization of Single-Phospholipid Liposomal Dispersions
3.3. Characterization of Mixed-Phospholipid Liposomal Dispersions
3.4. Characterization of Phospholipid Liposomal Dispersions in Presence of Cholesterol
3.5. Thermal Transition of Phospholipids by DLS Analysis
3.6. Characterization of Phospholipid Liposomal Dispersions in the Presence of Model Drugs with a Different Hydrophobicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Has, C.; Sunthar, P. A comprehensive review on recent preparation techniques of liposomes. J. Liposome Res. 2020, 30, 336–365. [Google Scholar] [CrossRef] [PubMed]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- El-Hammadi, M.M.; Arias, J.L. An update on liposomes in drug delivery: A patent review (2014–2018). Expert Opin Ther. Pat. 2019, 29, 891–907. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol. 2019, 10, 1–40. [Google Scholar] [CrossRef]
- Taylor, K.M.G.; Morris, R.M. Thermal analysis of phase transition behaviour in liposomes. Thermochim. Acta 1995, 248, 289–301. [Google Scholar] [CrossRef]
- Demetzos, C. Differential Scanning Calorimetry (DSC): A Tool to Study the Thermal Behavior of Lipid Bilayers and Liposomal Stability. J. Liposome Res. 2008, 18, 159–173. [Google Scholar] [CrossRef]
- Bonacucina, G.; Perinelli, D.R.; Cespi, M.; Casettari, L.; Cossi, R.; Blasi, P.; Palmieri, G.F. Acoustic spectroscopy: A powerful analytical method for the pharmaceutical field? Int. J. Pharm. 2016, 503, 174–195. [Google Scholar] [CrossRef]
- Buckin, V. High-resolution ultrasonic spectroscopy. J. Sens. Sens. Syst. 2018, 7, 207–217. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Cespi, M.; Pucciarelli, S.; Casettari, L.; Palmieri, G.F.; Bonacucina, G. Effect of phosphate buffer on the micellisation process of Poloxamer 407: Microcalorimetry, acoustic spectroscopy and dynamic light scattering (DLS) studies. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 123–129. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Cespi, M.; Lorusso, N.; Palmieri, G.F.; Bonacucina, G.; Blasi, P. Surfactant Self-Assembling and Critical Micelle Concentration: One Approach Fits All? Langmuir 2020, 36, 5745–5753. [Google Scholar] [CrossRef]
- Taylor, T.M.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Ultrasonic Spectroscopy and Differential Scanning Calorimetry of Liposomal-Encapsulated Nisin. J. Agric. Food Chem. 2005, 53, 8722–8728. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Cespi, M.; Bonacucina, G.; Rendina, F.; Palmieri, G.F. Heating treatments affect the thermal behaviour of doxorubicin loaded in PEGylated liposomes. Int. J. Pharm. 2017, 534, 81–88. [Google Scholar] [CrossRef]
- Schrader, W.; Ebel, H.; Grabitz, P.; Hanke, E.; Heimburg, T.; Hoeckel, M.; Kahle, M.; Wente, F.; Kaatze, U. Compressibility of Lipid Mixtures Studied by Calorimetry and Ultrasonic Velocity Measurements. J. Phys. Chem. B 2002, 106, 6581–6586. [Google Scholar] [CrossRef]
- GE Healthcare. PD-10 Desalting Columns Instructions 52-1308-00 BB 2007; GE Healthcare: Chicago, IL, USA, 2007. [Google Scholar]
- Michel, N.; Fabiano, A.-S.; Polidori, A.; Jack, R.; Pucci, B. Determination of phase transition temperatures of lipids by light scattering. Chem. Phys. Lipids 2006, 139, 11–19. [Google Scholar] [CrossRef]
- Bhardwaj, U.; Burgess, D.J. Physicochemical properties of extruded and non-extruded liposomes containing the hydrophobic drug dexamethasone. Int. J. Pharm. 2010, 388, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Perinelli, D.R.; Cespi, M.; Rendina, F.; Bonacucina, G.; Palmieri, G.F. Effect of the concentration process on unloaded and doxorubicin loaded liposomal dispersions. Int. J. Pharm. 2019, 560, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Losada-Pérez, P.; Mertens, N.; De Medio-Vasconcelos, B.; Slenders, E.; Leys, J.; Peeters, M.; Van Grinsven, B.; Gruber, J.; Glorieux, C.; Pfeiffer, H.; et al. Phase transitions of binary lipid mixtures: A combined study by adiabatic scanning calorimetry and quartz crystal microbalance with dissipation monitoring. Adv. Condens. Matter Phys. 2015, 2015, 479318. [Google Scholar] [CrossRef] [Green Version]
- Leidy, C.; Wolkers, W.F.; Jørgensen, K.; Mouritsen, O.G.; Crowe, J.H. Lateral organization and domain formation in a two-component lipid membrane system. Biophys. J. 2001, 80, 1819. [Google Scholar] [CrossRef] [Green Version]
- Sugár, I.P.; Michonova-Alexova, E.; Chong, P.L.G. Geometrical properties of gel and fluid clusters in DMPC/DSPC bilayers: Monte Carlo simulation approach using a two-state model. Biophys. J. 2001, 81, 2425. [Google Scholar] [CrossRef] [Green Version]
- Hung, W.C.; Lee, M.T.; Chen, F.Y.; Huang, H.W. The condensing effect of cholesterol in lipid bilayers. Biophys. J. 2007, 92, 3960–3967. [Google Scholar] [CrossRef] [Green Version]
- De Meyer, F.; Smit, B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl. Acad. Sci. USA 2009, 106, 3654–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, P.N.; MacDonald, R.C. Temperature dependence of optical properties of aqueous dispersions of phosphatidylcholine. Chem. Phys. Lipids 1973, 11, 114–134. [Google Scholar] [CrossRef]
- World Helth Organization. Tramadol Update Review Report Agenda Item 6.1 Expert Committee on Drug Dependence Thirty-Sixth Meeting; World Helth Organization: Geneva, Switzerland, 2014.
- Vuong, Q.V.; Roach, P.D. Caffeine in Green Tea: Its Removal and Isolation. Sep. Purif. Rev. 2014, 43, 155–174. [Google Scholar] [CrossRef]
- Miconazole: Uses, Interactions, Mechanism of Action DrugBank Online. Available online: https://go.drugbank.com/drugs/DB01110 (accessed on 14 February 2022).
- Sinha, R.; Joshi, A.; Joshi, U.J.; Srivastava, S.; Govil, G. Localization and interaction of hydroxyflavones with lipid bilayer model membranes: A study using DSC and multinuclear NMR. Eur. J. Med. Chem. 2014, 80, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Panicker, L. Interaction of propyl paraben with dipalmitoyl phosphatidylcholine bilayer: A differential scanning calorimetry and nuclear magnetic resonance study. Colloids B Biointerfaces 2008, 61, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Kuntsche, J.; Freisleben, I.; Steiniger, F.; Fahr, A. Temoporfin-loaded liposomes: Physicochemical characterization. Eur. J. Pharm. Sci. 2010, 40, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Onyesom, I.; Lamprou, D.A.; Sygellou, L.; Owusu-Ware, S.K.; Antonijevic, M.; Chowdhry, B.Z.; Douroumis, D. Sirolimus encapsulated liposomes for cancer therapy: Physicochemical and mechanical characterization of sirolimus distribution within liposome bilayers. Mol. Pharm. 2013, 10, 4281–4293. [Google Scholar] [CrossRef] [PubMed]
- Smyth, C.; Kudryashov, E.; O’Driscoll, B.; Buckin, V. High-Resolution Ultrasonic Spectroscopy for Analysis of Industrial Emulsions and Suspensions. JALA J. Assoc. Lab. Autom. 2004, 9, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Buckin, V. Application of High-Resolution Ultrasonic Spectroscopy for analysis of complex formulations. Compressibility of solutes and solute particles in liquid mixtures. IOP Conf. Ser. Mater. Sci. Eng. 2012, 42, 012001. [Google Scholar] [CrossRef]
- Hickey, S.; Lawrence, M.J.; Hagan, S.A.; Buckin, V. Analysis of the Phase Diagram and Microstructural Transitions in Phospholipid Microemulsion Systems Using High-Resolution Ultrasonic Spectroscopy. Langmuir 2006, 22, 5575–5583. [Google Scholar] [CrossRef] [PubMed]
- Ebel, H.; Grabitz, P.; Heimburg, T. Enthalpy and Volume Changes in Lipid Membranes. I. The Proportionality of Heat and Volume Changes in the Lipid Melting Transition and Its Implication for the Elastic Constants. J. Phys. Chem. B 2001, 105, 7353–7360. [Google Scholar] [CrossRef] [Green Version]
- Grabitz, P.; Ivanova, V.P.; Heimburg, T. Relaxation kinetics of lipid membranes and its relation to the heat capacity. Biophys. J. 2002, 82, 299. [Google Scholar] [CrossRef] [Green Version]
- Pippa, N.; Perinelli, D.R.; Pispas, S.; Bonacucina, G.; Demetzos, C.; Forys, A.; Trzebicka, B. Studying the colloidal behavior of chimeric liposomes by cryo-TEM, micro-differential scanning calorimetry and high-resolution ultrasound spectroscopy. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 539–547. [Google Scholar] [CrossRef]
- Riske, K.A.; Barroso, R.P.; Vequi-Suplicy, C.C.; Germano, R.; Henriques, V.B.; Lamy, M.T. Lipid bilayer pre-transition as the beginning of the melting process. Biochim. Biophys. Acta Biomembr. 2009, 1788, 954–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Maghraby, G.M.M.; Williams, A.C.; Barry, B.W. Drug interaction and location in liposomes: Correlation with polar surface areas. Int. J. Pharm. 2005, 292, 179–185. [Google Scholar] [CrossRef]
- Sierra-Valdez, F.J.; Forero-Quintero, L.S.; Zapata-Morin, P.A.; Costas, M.; Chavez-Reyes, A.; Ruiz-Suárez, J.C. The Influence of Non Polar and Polar Molecules in Mouse Motile Cells Membranes and Pure Lipid Bilayers. PLoS ONE 2013, 8, e59364. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Wang, C.; Qian, R.; Chen, M.; Jiang, P.; Wang, T.; Wang, N. Loading drugs into liposomes by temperature up-down cycle procedure with controllable results fitting prediction by mathematical and thermodynamic process. Mater. Sci. Eng. C 2021, 129, 112379. [Google Scholar] [CrossRef]
- Sciolla, F.; Truzzolillo, D.; Chauveau, E.; Trabalzini, S.; Marzio, L.; Carafa, M.; Marianecci, C.; Sarra, A.; Bordi, F.; Sennato, S.; et al. Influence of drug/lipid interaction on the entrapment efficiency of isoniazid in liposomes for antitubercular therapy: A multi-faced investigation. Colloids Surf. B Biointerfaces 2021, 208, 112054. [Google Scholar] [CrossRef] [PubMed]
Z-Average (nm) | PDI | ||
---|---|---|---|
Liposomes in ultrapure water | DMPC | 75.60 ± 3.06 | 0.224 ± 0.038 |
DMPC + 10% Chol | 89.55 ± 2.84 | 0.290 ± 0.046 | |
DMPC + 20% Chol | 96.16 ± 2.08 | 0.309 ± 0.012 | |
DPPC | 81.13 ± 1.21 | 0.244 ± 0.009 | |
DPPC + 10% Chol | 101.17 ± 2.19 | 0.273 ± 0.050 | |
DPPC + 20% Chol | 94.41 ± 4.26 | 0.328 ± 0.047 | |
DSPC | 101.65 ± 8.31 | 0.299 ± 0.021 | |
DSPC + 10% Chol | 101.03 ± 3.49 | 0.304 ± 0.010 | |
DSPC + 20% Chol | 137.87 ± 1.72 | 0.298 ± 0.029 | |
DMPC + DPPC | 90.29 ± 4.73 | 0.291 ± 0.060 | |
DMPC +DSPC | 89.71 ± 5.87 | 0.275 ± 0.008 | |
DPPC + DSPC | 81.76 ± 4.16 | 0.325 ± 0.052 | |
Liposomes in buffer | DPPC | 85.89 ± 6.33 | 0.264 ± 0.044 |
DPPC + Caffeine | 103.77 ± 5.13 | 0.280 ± 0.022 | |
DPPC + Tramadol HCl | 93.23 ± 5.33 | 0.305 ± 0.055 | |
DPPC + Miconazole nitrate | 82.64 ± 6.38 | 0.293 ± 0.080 |
Microcalorimetry | HR-US | DLS | ||||
---|---|---|---|---|---|---|
Attenuation (1/m) | Sound Speed (m/s) | |||||
Peak (°C) | Onset (°C) | Enthalpy (J/g of Solution) | Temperature (°C) | Temperature (°C) | ||
DMPC | 24.63 ± 0.04 | 23.45 ± 0.04 | 0.268 ± 0.010 | 24.27 ± 0.08 | 24.70 ± 0.53 | 25.54 ± 0.18 |
DMPC + 10% Chol | 24.71 ± 0.13 | 23.47 ± 0.01 | 0.187 ± 0.083 | 24.60 ± 0.45 | 23.91 ± 0.23 | 24.36 ± 0.21 |
DMPC + 20% Chol | 25.28 ± 2.62 | 18.97 ± 1.07 | 0.129 ± 0.035 | 26.47 ± 1.35 | 24.15 ± 0.32 | − 1 |
DPPC | 41.60 ± 0.04 | 40.58 ± 0.04 | 0.391 ± 0.038 | 40.42 ± 0.07 | 40.75 ± 0.06 | 40.56 ± 0.15 |
DPPC + 10% Chol | 41.13 ± 0.01 | 39.42 ± 0.17 | 0.254 ± 0.006 | 40.97 ± 0.74 | 39.56 ± 0.08 | 41.24 ± 0.13 |
DPPC + 20% Chol | 41.23 ± 1.07 | 37.51 ± 1.33 | 0.197 ± 0.066 | 40.61 ± 0.47 | 40.21 ± 0.10 | 42.32 ± 1.36 |
DSPC | 54.78 ± 0.15 | 53.70 ± 0.07 | 0.631 ± 0.035 | 52.20 ± 0.08 | 54.17 ± 0.06 | 53.85 ± 0.25 |
DSPC + 10% Chol | 54.17 ± 0.98 | 52.80 ± 0.07 | 0.484 ± 0.005 | 52.57 ± 0.14 | 53.58 ± 0.14 | 53.69 ± 0.26 |
DSPC + 20% Chol | 53.05 ± 0.08 | 48.23 ± 1.63 | 0.433 ± 0.044 | 51.72 ± 0.38 | 52.95 ± 0.16 | 53.68 ± 0.44 |
DMPC + DPPC | 31.59 ± 0.02 | 27.99 ± 0.16 | 0.346 ± 0.050 | 32.94 ± 0.37 | 32.30 ± 1.48 | 30.48 ± 0.12 |
DMPC + DSPC | 31.69 ± 0.08 43.32 ± 0.14 | 28.81 ± 2.47 | 0.341 ± 0.045 | 34.72 ± 0.43 2 43.28 ± 0.37 2 | 32.50 ± 1.23 43.19 ± 0.65 | 39.84 ± 3.20 |
DPPC + DSPC | 47.85 ± 0.00 | 44.79 ± 0.16 | 0.395 ± 0.018 | 47.02 ± 0.95 | 44.45 ± 0.22 | 45.37 ± 0.19 |
Microcalorimetry | HR-US | |||||
---|---|---|---|---|---|---|
Attenuation (1/m) | Sound Speed (m/s) | |||||
Peak (°C) | Onset (°C) | Enthalpy (J/ g of Solution) | Temperature (°C) | |||
Before Elution | DPPC | 39.91 ± 0.41 | 38.04 ± 0.52 | 0.401 ± 0.005 | 39.22 ± 1.04 | 39.03 ± 0.87 |
DPPC + Caffeine 5:1 | 39.81 ± 0.62 | 38.39 ± 0.80 | 0.360 ± 0.063 | 38.84 ± 0.01 | 38.94 ± 0.74 | |
DPPC + Tramadol HCl 5:1 | 33.75 ± 0.16 | 32.51 ± 0.01 | 0.358 ± 0.014 | 33.20 ± 1.33 | 34.06 ± 0.25 | |
DPPC + Miconazole nitrate 5:1 | 29.86 ± 0.23 36.41 ± 0.96 | 28.74 ± 1.50 | 0.212 ± 0.003 | 35.03 ± 1.20 | 32.78 ± 0.35 | |
After Elution | DPPC | 40.09 ± 0.13 | 39.07 ± 0.10 | 0.249 ± 0.007 | 40.28 ± 1.62 | 41.27 ± 0.54 |
DPPC + Caffeine 5:1 | 40.18 ± 0.16 | 39.15 ± 0.06 | 0.195 ± 0.037 | 40.41 ± 0.17 | 42.36 ± 0.32 | |
DPPC + Tramadol HCl 5:1 | 40.36 ± 0.03 | 39.72 ± 0.01 | 0.156 ± 0.002 | 40.53 ± 0.04 | 41.96 ± 0.45 | |
DPPC + Miconazole nitrate 5:1 | 30.57 ± 0.24 38.40 ± 0.60 | 29.41 ± 1.91 | 0.127 ± 0.016 | 38.37 ± 0.08 | 39.10 ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perinelli, D.R.; Cespi, M.; Palmieri, G.F.; Aluigi, A.; Bonacucina, G. High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions. Pharmaceutics 2022, 14, 668. https://doi.org/10.3390/pharmaceutics14030668
Perinelli DR, Cespi M, Palmieri GF, Aluigi A, Bonacucina G. High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions. Pharmaceutics. 2022; 14(3):668. https://doi.org/10.3390/pharmaceutics14030668
Chicago/Turabian StylePerinelli, Diego Romano, Marco Cespi, Giovanni Filippo Palmieri, Annalisa Aluigi, and Giulia Bonacucina. 2022. "High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions" Pharmaceutics 14, no. 3: 668. https://doi.org/10.3390/pharmaceutics14030668
APA StylePerinelli, D. R., Cespi, M., Palmieri, G. F., Aluigi, A., & Bonacucina, G. (2022). High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions. Pharmaceutics, 14(3), 668. https://doi.org/10.3390/pharmaceutics14030668