Bio-Hybrid Hydrogels Incorporated into a System of Salicylic Acid-pH/Thermosensitive Nanocarriers Intended for Cutaneous Wound-Healing Processes
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials and Methods
2.2. Synthesis of Empty Thermosensitive Nanocarrier (T)
2.3. Synthesis of Empty pH-Sensitive Nanocarrier (pH)
2.4. Encapsulation of Salicylic Acid into Thermo- or pH-Sensitive Nanocarrier (T-SA; pH-SA)
2.5. Preparation of the Bio-Hybrid Hydrogels Incorporated into the System of Salicylic Acid-pH/Thermosensitive Nanocarriers
2.6. Characteristic of Empty Thermo/pH-Sensitive Nanocarrier and the System with SA
2.6.1. Dynamic Light Scattering (DLS)
2.6.2. Encapsulation Efficiency
2.7. Characteristic of the Bio-Hybrid Hydrogels Incorporated into the System of Salicylic Acid-pH/Thermosensitive Nanocarriers (M-pH-SA, M-T-SA)
2.7.1. Determination of Swelling Degree
2.7.2. Degradation Test
2.7.3. Attenuated Total Reflection Fourier-Transform Infrared Spectrophotometry (ATR-FTIR)
2.7.4. Scanning Electron Microscopy (SEM)
2.7.5. Thermal Test (Thermogravimetric Analysis/Differential Thermogravimetric Analysis (TGA/DTG), Differential Scanning Calorimetry (DSC))
2.7.6. Static Tensile Test
2.7.7. Hardness
2.7.8. The Release Profiles of Salicylic Acid from Thermosensitive Nanocarrier and Bio-Hybrid Hydrogels
2.7.9. Microbiology Tests
3. Results
3.1. Characteristic of the Empty Thermo/pH-Sensitive Nanocarrier and Their Systems with SA
3.1.1. DLS Analysis
3.1.2. Encapsulation Efficiency
3.2. Characteristic of the Bio-Hybrid Hydrogels Incorporated into the System of Salicylic Acid-pH/Thermosensitive Nanocarriers
3.2.1. Swelling Degree
3.2.2. Degradation Tests
3.2.3. FT-IR Analysis
3.2.4. SEM Analysis
3.2.5. TG/DTG, DSC Analysis
3.2.6. Static Tensile Analysis
3.2.7. Hardness Analysis
3.2.8. The Release Profiles of Salicylic Acid from Thermosensitive Nanocarrier and Biohybrid Hydrogels
3.2.9. Microbiology Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghavaminejad, A.; Park, C.H.; Kim, C.S. In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules 2016, 17, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Urello, M.A.; Kiick, K.L.; Sullivan, M.O. Integration of growth factor gene delivery with collagen-triggered wound repair cascades using collagen-mimetic peptides. Bioeng. Transl. Med. 2016, 1, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Heo, D.N.; Ko, W.-K.; Bae, M.S.; Lee, J.B.; Lee, D.-W.; Byun, W.; Lee, C.H.; Kim, E.-C.; Jung, B.-Y.; Kwon, I.K. Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J. Mater. Chem. B 2015, 2, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Anjum, F.; Lienemann, P.S.; Metzger, S.; Biernaskie, J.; Kallos, M.S.; Ehrbar, M. Enzyme responsive GAG-based natural-synthetic hybrid hydrogel for tunable growth factor delivery and stem cell differentiation. Biomaterials 2016, 87, 104–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Su, X. Multifunctional smart hydrogels: Potential in tissue engineering and cancer therapy. J. Mater. Chem. B 2018, 6, 4714–4730. [Google Scholar] [CrossRef]
- Qu, Y.; Chu, B.Y.; Peng, J.R.; Liao, J.F.; Qi, T.T.; Shi, K.; Zhang, X.N.; Wei, Y.Q.; Qian, Z.Y. A biodegradable thermo-responsive hybrid hydrogel: Therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Mater. 2015, 7, e207. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Cha, M.-J.; Lim, K.S.; Kim, J.-K.; Lee, S.-K.; Kim, Y.-H.; Hwang, K.-C.; Lee, K.Y. Injectable microsphere/hydrogel hybrid system containing heat shock protein as therapy in a murine myocardial infarction model. J. Drug Target. 2013, 21, 822–829. [Google Scholar] [CrossRef]
- Kang, K.S.; Lee, S.-I.; Hong, J.M.; Lee, J.W.; Cho, H.Y.; Son, J.H.; Paek, S.H.; Cho, D.-W. Hybrid scaffold composed of hydrogel/3D-framework and its application as a dopamine delivery system. J. Control. Release 2014, 175, 10–16. [Google Scholar] [CrossRef]
- Huang, J.-F.; Zhong, J.; Chen, G.-P.; Lin, Z.-T.; Deng, Y.; Liu, Y.-L.; Cao, P.-Y.; Wang, B.; Wei, Y.; Wu, T.; et al. A hydrogel-based hybrid theranostic contact lens for fungal keratitis. ACS Nano 2016, 10, 6464–6473. [Google Scholar] [CrossRef]
- Palmese, L.L.; Thapa, R.K.; OSullivan, M.; Kiick, K.L. Hybrid hydrogels for biomedical applications. Curr. Opin. Chem. Eng. 2019, 24, 143–157. [Google Scholar] [CrossRef]
- Singh, R.; Singh, D. Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. J. Mater. Sci. Mater. Med. 2012, 23, 2649–2658. [Google Scholar] [CrossRef] [PubMed]
- Oh, G.-W.; Kim, S.C.; Kim, T.-H.; Jung, W.Q. Characterization of an oxidized alginate-gelatin hydrogel incorporating a COS-salicylic acid conjugate for wound healing. Carbohydr. Polym. 2021, 252, 117145. [Google Scholar] [CrossRef] [PubMed]
- Djekic, L.; Martinović, M.; Dobričić, V.; Čalija, B.; Medarević, D.; Primorac, M. Comparison of the effect of bioadhesive polymers on stability and drug release kinetics of biocompatible hydrogels for topical application of ibuprofen. J. Pharm. Sci. 2019, 108, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Song, X.; Wen, Y.; Zhu, J.-L.; Li, J. Injectable thermoresponsive hydrogel formed by alginate-g-poly(N-isopropylacrylamide) that releases doxorubicin-encapsulated micelles as a smart drug delivery system. ACS Appl. Mater. Interfaces 2017, 9, 35673–35682. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wei, H.; Kou, L.; Ren, L.; Zhou, J. Antibiotic drug release behavior of poly (vinyl alcohol)/sodium alginate hydrogels. Materialwiss. Werkstofftech. 2020, 51, 850–855. [Google Scholar] [CrossRef]
- Kim, J.O.; Choi, J.Y.; Park, J.K.; Kim, J.H.; Jin, S.G.; Chang, S.W.; Li, D.X.; Hwang, M.R.; Woo, J.S.; Kim, J.A.; et al. Development of clindamycin-loaded wound dressing with polyvinyl alcohol and sodium alginate. Biol. Pharm. Bull. 2008, 31, 2277–2282. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug. Deliv. Rev. 2001, 53, 321–339. [Google Scholar] [CrossRef]
- Nisar, S.; Pandit, A.H.; Wang, L.-F.; Rattan, S. Strategy to design a smart photocleavable and pH sensitive chitosan based hydrogel through a novel crosslinker: A potential vehicle for controlled drug. RSC Adv. 2020, 10, 14694. [Google Scholar] [CrossRef] [Green Version]
- Elkhoury, K.; Koçak, P.; Kang, A.; Arab-Tehrany, E.; Ellis Ward, J.; Shin, S.R. Engineering smart targeting nanovesicles and their combination with hydrogels for controlled drug delivery. Pharmaceutics 2020, 12, 849. [Google Scholar] [CrossRef]
- Sponchioni, M.; Capasso Palmiero, U.; Moscatelli, D. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C 2019, 102, 589–605. [Google Scholar] [CrossRef]
- Hogan, K.J.; Mikos, A.G. Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. Polymer 2020, 211, 123063. [Google Scholar] [CrossRef]
- Honey Priya, J.; Rijo, J.; Anju, A.; Anoop, K.R. Smart polymers for the controlled delivery of drugs–a concise overview. Acta Pharm. Sin. B 2014, 4, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers 2017, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, N. pH Sensitive Carrier and Preparation Method Thereof, and pH Sensitive Drug and pH Sensitive Drug Composition Each Containing the Carrier, and Method for Treating or Preventing Diseases Using the Same. U.S. Patent 9.248,192 B2, 2 February 2016. [Google Scholar]
- Qi, X.; Wei, W.; Li, J.; Zuo, G.; Pan, X.; Su, T.; Zhang, J.; Dong, W. Salecan-Based pH-Sensitive Hydrogels for Insulin Delivery. Mol. Pharm. 2017, 14, 431–440. [Google Scholar] [CrossRef]
- Stathopoulou, M.E.K.; Banti, C.N.; Kourkoumelis, N.; Hatzidimitriou, A.G.; Kalampounias, A.G.; Hadjikakou, S.K. Silver complex of salicylic acid and its hydrogel-cream in wound healing chemotherapy. J. Inorg. Biochem. 2018, 181, 41–55. [Google Scholar] [CrossRef]
- Demirdirek, B.; Uhrich, E. Novel salicylic acid-based chemically crosslinked pH-sensitive hydrogels as potential drug delivery systems. Int. J. Pharm. 2017, 528, 406–415. [Google Scholar] [CrossRef]
- Pradhan, M.; Yadav, K.; Singh, D.; Singh, M.R. Topical delivery of fluocinolone acetonide integrated NLCs and salicylic acid enriched gel: A potential and synergistic approach in the management of psoriasis. J. Drug Deliv. Sci. Technol. 2021, 61, 102282. [Google Scholar] [CrossRef]
- Saoji, V.; Madke, B. Efficacy of salicylic acid peel in dermatophytosis. Indian J. Dermatol. Venereol. Leprol. 2022, 87, 671–675. [Google Scholar] [CrossRef]
- Lloyd, D.A.; Mickel, R.E.; Kritzinger, N.A. Topical treatment of burns using aserbine. Burns 1989, 15, 125–128. [Google Scholar] [CrossRef]
- Dong, Y.; Zhou, Z.; Ding, H.; Zhang, S. Preparation and properties of a pH sensitive carrier based on three kinds of polymer blend to control the release of 5-amino salicylic acid. Pharm. Dev. Technol. 2014, 19, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Escolano, V.S.; Romero, D.M.; Giménez, M.J.; Jayakrishnan, A. Enhancing antioxidant systems by preharvest treatments with methyl jasmonate and salicylic acid leads to maintain lemon quality during cold storage. Food Chem. 2021, 338, 128044. [Google Scholar] [CrossRef]
- Popova, I.; Kamusheva, M.; Miteva, I.; Petrova, G.; Miteva, L. Psoriasis as a multisystem disease-cost of illness analysis. Glob. Dermatol. 2017, 4, 2–6. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Sadeghizadeh, A.; Neysan, F.; Heydari, M. Fabrication of nanofibers using sodium alginate and Poly (Vinyl alcohol) for the removal of Cd2+ ions from aqueous solutions: Adsorption mechanism, kinetics and thermodynamics. Heliyon 2019, 5, e02941. [Google Scholar] [CrossRef] [Green Version]
- Bialik-Wąs, K.; Pluta, K.; Malina, D.; Majka, T.M. Alginate/PVA-based hydrogel matrices with Echinacea purpurea extract as a new approach to dermal wound healing. Int. J. Polym. Mater. Polym. Biomater. 2019, 70, 195–206. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; He, W.; Wang, C.; Sun, Y.; Qiao, K.; Wang, X.; Gao, L. Preparation of a novel sodium alginate/polyvinyl formal composite with a double cross-linking interpenetrating network for multifunctional biomedical application. Compos. B. Eng. 2017, 121, 9–22. [Google Scholar] [CrossRef]
- Yang, M.; Li, L.; Yu, S.; Liu, J.; Shi, J. High performance of alginate/polyvinyl alcohol composite film based on natural original melanin nanoparticles used as food thermal insulating and UV–vis block. Carbohydr. Polym. 2020, 233, 115884. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Pluta, K.; Malina, D.; Barczewski, M.; Malarz, K.; Mrozek-Wilczkiewicz, A. Advanced SA/PVA-based hydrogel matrices with prolonged release of Aloe vera as promising wound dressings. Mater. Sci. Eng. C 2020, 120, 111667. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Pielichowski, K. Bio-hybrid acrylic hydrogels containing metronidazole-loaded poly (acrylic acid-co-methyl methacrylate) nanoparticles and Aloe vera as natural healing agent. Int. J. Polym. Mater. 2019, 68, 915–923. [Google Scholar] [CrossRef]
- Isfahani, F.R.; Tavanai, H.; Morshed, M. Release of aloe vera from electrospun aloe vera-PVA nanofibrous pad. Fibers Polym. 2017, 18, 264–271. [Google Scholar] [CrossRef]
- Rahman, S.; Carter, P.; Bhattarai, N. Aloe Vera for Tissue Engineering Applications. J. Funct. Biomater. 2017, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bialik-Wąs, K.; Pluta, K.; Malina, D.; Barczewski, M.; Malarz, K.; Mrozek-Wilczkiewicz, A. The Effect of Glycerin Content in Sodium Alginate/Poly (vinyl alcohol)-Based Hydrogels for Wound Dressing Application. Int. J. Mol. Sci. 2021, 22, 12022. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, X.; Sun, L. Reaction Mechanisms of N-isopropylacrylamide soap-free emulsion polymerization based on two different initiators. J. Macromol. Sci. A 2014, 51, 447–455. [Google Scholar] [CrossRef]
- Yan, X.; Gemeinhart, R.A. Cisplatin delivery from poly (acrylic acid-co-methyl methacrylate) microparticles. J. Control. Release 2005, 106, 198–208. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Pielichowski, K. Poly(acrylic acid-co-methyl methacrylate)/metronidazole systems: Synthesis and complexation. Acta Biochim. Pol. 2013, 60, 835–838. [Google Scholar] [CrossRef] [Green Version]
- Bialik-Wąs, K.; Malina, D.; Pluta, K.; Miastkowska, M. Sposób Wprowadzania Hydrofobowych Leczniczych Substancji Czynnych, Tworzących Układ z Termoczułym Nanonośnikiem, do Hydrofilowej Matrycy Opatrunku Hydrożelowego. Patent Application No. P.439845, 15 December 2021. [Google Scholar]
- Bialik-Wąs, K.; Malina, D.; Pluta, K.; Miastkowska, M. Sposób Wprowadzania Hydrofobowych Leczniczych Substancji Czynnych, Tworzących Układ z pH-Czułym Nanonośnikiem, do Hydrofilowej Matrycy Opatrunku Hydrożelowego. Patent Application No. P.439847, 15 December 2021. [Google Scholar]
- Bialik-Wąs, K.; Malina, D.; Pluta, K. Sposób Otrzymywania Hydrożelowych Materiałów Opatrunkowych 1AD. Patent Application No. P.432720, 28 January 2020. [Google Scholar]
- Sairam, M.; Babu, V.R.; Naidu, B.V.K.; Aminabhavi, T.M. Encapsulation efficiency and controlled release characteristics of crosslinked polyacrylamide particles. Int. J. Pharm. 2006, 320, 131–136. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Farmakopea Polska X; Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów Biobójczych, PTF: Warszawa, Poland, 2014.
- Uddin, R.; Saffoon, N.; Bishwajit-Sutradhar, K. Dissolution and Dissolution Apparatus: A Review. Int. J. Curr. Biomed. Pharm. Res. 2011, 1, 201–207. [Google Scholar]
- Ahmad, N.; Umar, S.; Ashafaq, M.; Akhtar, M.; Iqbal, Z.; Samim, M.; Ahmad, F.J. A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma 2013, 250, 1327–1338. [Google Scholar] [CrossRef]
- Pereira, R.; Mendes, A.; Bártolo, P. Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP 2013, 5, 210–215. [Google Scholar] [CrossRef]
- Boonkaew, B.; Barber, P.M.; Rengpipat, S.; Supaphol, P.; Kempf, M.; He, J.; John, V.T.; Cuttle, L. Development and characterization of a novel, antimicrobial, sterile hydrogel dressing for burn wounds: Single-step production with gamma irradiation creates silver nanoparticles and radical polymerization. J. Pharm. Sci. 2014, 103, 3244–3253. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, L.; Shankar, S.; Rhim, J.W. Carrageenan-based functional hydrogel film reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application. Carbohydr. Polym. 2019, 224, 115191. [Google Scholar] [CrossRef]
- Bashir, S.J.; Dreher, F.; Chew, A.L.; Zhai, H.; Levin, C.; Stern, R.; Maibach, H.I. Cutaneous bioassay of salicylic acid as a keratolytic. Int. J. Pharm. 2005, 292, 187–194. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds; Jonh Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Kim, S.J.; Park, S.; Kim, I.Y. Thermal characteristics of poly (vinyl alcohol) and poly(vinylpyrrolidone) IPNs. J. Appl. Polym. Sci. 2002, 86, 1844–1847. [Google Scholar]
- Sousa, R.G.; Magalhaes, W.F.; Freitas, R.F.S. Glass transition and thermal stability of poly(N-isopropylacrylamide) gels and some of their copolymers with acrylamide. Polym. Degrad. Stab. 1998, 61, 275–281. [Google Scholar] [CrossRef]
- Maurer, J.J.; Eustace, D.J.; Ratcliffe, C.T. Thermal characterization of poly (acrylic acid). Macromolecules 1987, 20, 196–202. [Google Scholar] [CrossRef]
- Czernicka-Kubicka, A.; Zarzycka, I.; Pyda, M. Advanced thermal analysis of poly(N-isopropylacrylamide). Przetw. Tworz. 2015, 3, 220–223. [Google Scholar]
- Saavedra-Leos, M.Z.; Leyva-Porras, C.; Martinez-Guerra, E. Physical properties of inulin and inulin-orange juice: Physical characterization and technological application. Carbohydr. Polym. 2014, 105, 10–19. [Google Scholar] [CrossRef]
- Georgescu, M.; Meltzer, V.; Stanculescu, I.; Pincu, E. Thermal Behavior of the Nimesulide-Salicylic Acid Eutectic Mixtures Prepared by Mechanosynthesis and Recrystallization. Materials 2021, 14, 7715. [Google Scholar] [CrossRef]
- Johnson, M.L.; Uhrich, K.E. Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters). J. Biomed. Mater. Res. A 2008, 91A, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Yoshii, F.; Zhanshan, Y.; Isobe, K.; Shiozaki, K.; Makunchi, K. Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing. Radiat. Phys. Chem. 1999, 55, 133–138. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, J.; Won, Y.Y. Phenomenology of the Initial Burst Release of Drugs from PLGA Micro-particles. ACS Biomater. Sci. Eng. 2020, 6, 6053–6062. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Hao, S.; Wu, D.; Huang, R.; Xu, Y. Preparation, characterization and in vitro release of chitosan nanoparticles loaded with gentamicin and salicylic acid. Carbohyd. Polym. 2011, 85, 803–808. [Google Scholar] [CrossRef]
- Lu, X.Y.; Wu, D.C.; Li, Z.J.; Chen, G.Q. Chapter 7-Polymer Nanoparticles. Prog. Mol. Biol. Transl. Sci. 2011, 104, 299–323. [Google Scholar]
- Yang, X.; Trinh, H.M.; Agrahari, V.; Sheng, Y.; Pal, D.; Mitra, A.K. Nanoparticle-Based Topical Ophthalmic Gel Formulation for Sustained Release of Hydrocortisone Butyrate. AAPS PharmSciTech 2016, 17, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Salama, A.H.; Mahmoud, A.A.; Kamel, R. A Novel Method for Preparing Surface-Modified Fluocinolone Acetonide Loaded PLGA Nanoparticles for Ocular Use: In Vitro and In Vivo Evaluations. AAPS PharmSciTech 2016, 17, 1159–1172. [Google Scholar] [CrossRef]
- Prabhu, N.B.; Marathe, A.S.; Jain, S.; Singh, P.P.; Sawant, K.; Rao, L.; Amin, P.D. Comparison of dissolution profiles for sustained release resinates of BCS class I drugs using USP apparatus 2 and 4: A technical note. AAPS PharmSciTech 2008, 9, 769–773. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.E.; Missel, P.J.; Weiner, A.L. Controlled flow-through dissolution methodology: A high-performance system. Pharm. Dev. Technol. 2008, 13, 135–153. [Google Scholar] [CrossRef]
- Guan, H.; Dong, W.; Lu, Y.; Jiang, M.; Zhang, D.; Aobuliaximu, Y.; Dong, J.; Niu, Y.; Liu, Y.; Guan, B.; et al. Distribution and Antibiotic Resistance Patterns of Pathogenic Bacteria in Patients with Chronic Cutaneous Wounds in China. Front. Med. 2021, 8, 609584. [Google Scholar] [CrossRef]
- Ananda, A.P.; Manukumar, H.M.; Krishnamurthy, N.B.; Nagendra, B.S.; Savitha, K.R. Assessment of antibacterial efficacy of a biocompatible nanoparticle PC@AgNPs against Staphylococcus aureus. Microb. Pathog. 2019, 126, 27–39. [Google Scholar] [CrossRef] [PubMed]
Sample | Average Particle Size (nm) |
---|---|
T | 118 |
T-SA | 356 |
pH | 479 |
pH-SA | 709 |
Sample | Encapsulation Efficiency (%) |
---|---|
T-SA | 80.64 |
pH-SA | 78.48 |
Sample Symbols | T5 | T10 | T50 | Residual Mass at 800 °C |
---|---|---|---|---|
(°C) | (%) | |||
T | 53.3 | 143.5 | 318.6 | 11.66 |
pH | 76.8 | 213.4 | 367.5 | 12.56 |
SA | 141.6 | 151.5 | 177.5 | 0.00 |
T-SA | 119.9 | 131.3 | 166.3 | 4.10 |
pH-SA | 150.0 | 183.8 | 387.4 | 7.67 |
M | 134.1 | 179.5 | 378.8 | 9.39 |
M-T-SA | 146.5 | 186.8 | 386.9 | 10.04 |
M-pH-SA | 144.3 | 183.3 | 388.1 | 9.2 |
Sample | Staphylococcus aureus | Aspergillus niger | Candida albicans | Esherichia coli |
---|---|---|---|---|
T | + | − | − | + |
pH | + | − | − | + |
SA | + | − | − | + |
T-SA | + | − | − | + |
pH-SA | + | − | − | + |
M | − | − | − | − |
M-T-SA | + | − | − | + |
M-pH-SA | + | − | − | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bialik-Wąs, K.; Miastkowska, M.; Sapuła, P.; Pluta, K.; Malina, D.; Chwastowski, J.; Barczewski, M. Bio-Hybrid Hydrogels Incorporated into a System of Salicylic Acid-pH/Thermosensitive Nanocarriers Intended for Cutaneous Wound-Healing Processes. Pharmaceutics 2022, 14, 773. https://doi.org/10.3390/pharmaceutics14040773
Bialik-Wąs K, Miastkowska M, Sapuła P, Pluta K, Malina D, Chwastowski J, Barczewski M. Bio-Hybrid Hydrogels Incorporated into a System of Salicylic Acid-pH/Thermosensitive Nanocarriers Intended for Cutaneous Wound-Healing Processes. Pharmaceutics. 2022; 14(4):773. https://doi.org/10.3390/pharmaceutics14040773
Chicago/Turabian StyleBialik-Wąs, Katarzyna, Małgorzata Miastkowska, Paulina Sapuła, Klaudia Pluta, Dagmara Malina, Jarosław Chwastowski, and Mateusz Barczewski. 2022. "Bio-Hybrid Hydrogels Incorporated into a System of Salicylic Acid-pH/Thermosensitive Nanocarriers Intended for Cutaneous Wound-Healing Processes" Pharmaceutics 14, no. 4: 773. https://doi.org/10.3390/pharmaceutics14040773
APA StyleBialik-Wąs, K., Miastkowska, M., Sapuła, P., Pluta, K., Malina, D., Chwastowski, J., & Barczewski, M. (2022). Bio-Hybrid Hydrogels Incorporated into a System of Salicylic Acid-pH/Thermosensitive Nanocarriers Intended for Cutaneous Wound-Healing Processes. Pharmaceutics, 14(4), 773. https://doi.org/10.3390/pharmaceutics14040773