Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = bio-hybrid hydrogels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3434 KiB  
Article
Dynamic Double-Networked Hydrogels by Hybridizing PVA and Herbal Polysaccharides: Improved Mechanical Properties and Selective Antibacterial Activity
by Weidong Liu, Chuying Yao, Daohang Wang, Guangyan Du, Yutian Ji and Quan Li
Gels 2024, 10(12), 821; https://doi.org/10.3390/gels10120821 - 13 Dec 2024
Viewed by 842
Abstract
Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine Dendrobium was employed as the secondary building block to fabricate a “hybrid” hydrogel with synthetic poly (vinyl alcohol) [...] Read more.
Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine Dendrobium was employed as the secondary building block to fabricate a “hybrid” hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the Dendrobium polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed. Eventually, highly dynamic and double-networked hydrogels were successfully prepared by the integration of Dendrobium polysaccharides and PVA. Interestingly, the introduction of polysaccharides has given rise to more robust and dynamic hydrogel networks, leading to enhanced thermal stability, mechanical strength, and tensile capacity (>1000%) as well as the rapid self-healing ability (<5 s) of the “hybrid” hydrogels compared with the PVA/borax single networked hydrogel. Moreover, the polysaccharides/PVA double network hydrogel showed selective antibacterial activity towards S. aureus. The reported polysaccharides/PVA double networked hydrogel would provide a scaffold to hybridize bioactive natural polysaccharides and synthetic polymers for developing robust but dynamic multiple networked hydrogels that are tailorable for biomedical applications. Full article
Show Figures

Graphical abstract

6 pages, 1497 KiB  
Proceeding Paper
Nanofiber-Filled Alginate–Gelatine Hybrid Hydrogel: Rheology and Shape Fidelity of 3D-Printed Scaffold
by Rokeya Sarah, Benjamin Szum and Ahasan Habib
Eng. Proc. 2024, 76(1), 53; https://doi.org/10.3390/engproc2024076053 - 29 Oct 2024
Viewed by 1673
Abstract
This study explored extrusion-based 3D bioprinting as a method for depositing cell-laden bio-ink to create well-defined scaffolds for tissue regeneration. Natural hydrogels, known for their biocompatibility and low cell toxicity, were favored for bio-ink formulation in this process. However, their limited mechanical strength [...] Read more.
This study explored extrusion-based 3D bioprinting as a method for depositing cell-laden bio-ink to create well-defined scaffolds for tissue regeneration. Natural hydrogels, known for their biocompatibility and low cell toxicity, were favored for bio-ink formulation in this process. However, their limited mechanical strength poses a challenge to maintaining structural integrity. To address this, the rheological properties of hybrid hydrogels containing cellulose-derived nanofiber (TONFC) at concentrations between 0.5% and 1.0%, along with alginate and gelatin at levels between 2% and 5%, were tested in this study. A total of eight formulations was created by adjusting the proportions of alginate, TO-NFC, and gelatin, resulting in a combined solid content of 8%. Various rheological properties, such as the flow behavior, recovery rate, and linear viscoelastic range, were analyzed. Bi-layer scaffolds were 3D printed with various compositions and the shape fidelity was investigated. Human mesenchymal stem cells (hMSCs) were mixed to prepare bio-ink and cell survivability was observed after 7 incubation days. The ability to control 3D printability and the favorable survival of cells make nanofiber-infused alginate–gelatin a promising option for creating precisely shaped scaffolds using the 3D bio-printing process. Full article
Show Figures

Figure 1

29 pages, 9207 KiB  
Article
Arginine-Biofunctionalized Ternary Hydrogel Scaffolds of Carboxymethyl Cellulose–Chitosan–Polyvinyl Alcohol to Deliver Cell Therapy for Wound Healing
by Alexandra A. P. Mansur, Sandhra M. Carvalho, Ramayana M. de M. Brito, Nádia S. V. Capanema, Isabela de B. Duval, Marcelo E. Cardozo, José B. R. Rihs, Gabriela G. M. Lemos, Letícia C. D. Lima, Marina P. dos Reys, Ana P. H. Rodrigues, Luiz C. A. Oliveira, Marcos Augusto de Sá, Geovanni D. Cassali, Lilian L. Bueno, Ricardo T. Fujiwara, Zelia I. P. Lobato and Herman S. Mansur
Gels 2024, 10(11), 679; https://doi.org/10.3390/gels10110679 - 23 Oct 2024
Viewed by 1522
Abstract
Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements [...] Read more.
Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements are still unmet. Hence, in this study, a novel type of biocompatible ternary polymer hybrid hydrogel scaffold was designed and produced through an entirely eco-friendly aqueous process composed of carboxymethyl cellulose, chitosan, and polyvinyl alcohol and chemically cross-linked by citric acid, forming three-dimensional (3D) matrices, which were biofunctionalized with L-arginine (L-Arg) to enhance cellular adhesion. They were applied as bilayer skin biomimetic substitutes based on human-derived cell cultures of fibroblasts and keratinocytes were seeded and grown into their 3D porous structures, producing cell-based bio-responsive hybrid hydrogel scaffolds to assist the wound healing process. The results demonstrated that hydrophilic hybrid cross-linked networks were formed via esterification reactions with the 3D porous microarchitecture promoted by foam templating and freeze-drying. These hybrids presented chemical stability, physicochemical properties, high moisture adsorption capacity, surface properties, and a highly interconnected 3D porous structure well suited for use as a skin substitute in wound healing. Additionally, the surface biofunctionalization of these 3D hydrogel scaffolds with L-arginine through amide bonds had significantly enhanced cellular attachment and proliferation of fibroblast and keratinocyte cultures. Hence, the in vivo results using Hairless mouse models (an immunocompromised strain) confirmed that these responsive bio-hybrid hydrogel scaffolds possess hemocompatibility, bioadhesion, biocompatibility, adhesiveness, biodegradability, and non-inflammatory behavior and are capable of assisting the skin wound healing process. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (3rd Edition))
Show Figures

Graphical abstract

15 pages, 2294 KiB  
Article
Biohybrids for Combined Therapies of Skin Wounds: Agglomerates of Mesenchymal Stem Cells with Gelatin Hydrogel Beads Delivering Phages and Basic Fibroblast Growth Factor
by Farzaneh Moghtader, Yasuhiko Tabata and Erdal Karaöz
Gels 2024, 10(8), 493; https://doi.org/10.3390/gels10080493 - 25 Jul 2024
Viewed by 1442
Abstract
There is great interest in developing effective therapies for the treatment of skin wounds accompanied by deep tissue losses and severe infections. We have attempted to prepare biohybrids formed of agglomerates of mesenchymal stem cells (MSCs) with gelatin hydrogel beads (GEL beads) delivering [...] Read more.
There is great interest in developing effective therapies for the treatment of skin wounds accompanied by deep tissue losses and severe infections. We have attempted to prepare biohybrids formed of agglomerates of mesenchymal stem cells (MSCs) with gelatin hydrogel beads (GEL beads) delivering bacteriophages (phages) as antibacterial agents and/or basic fibroblast growth factor (bFGF) for faster and better healing, providing combined therapies for these types of skin wounds. The gelatin beads were produced through a two-step process using basic and/or acidic gelatins with different isoelectric points. Escherichia coli (E. coli) and its specific T4 phages were propagated. Phages and/or bFGF were loaded within the GELs and their release rates and modes were obtained. The phage release from the basic GEL beads was quite fast; in contrast, the bFGF release from the acidic GEL beads was sustained, as anticipated. MSCs were isolated from mouse adipose tissues and 2D-cultured. Agglomerates of these MSCs with GEL beads were formed and maturated in 3D cultures, and their time-dependent changes were followed. In these 3D culture experiments, it was observed that the agglomerates with GEL beads were very healthy and the MSCs formed tissue-like structures in 7 days, while the MSC agglomerates were not healthy and shrunk considerably as a result of cell death. Full article
(This article belongs to the Special Issue Functional Gels Applied in Drug Delivery)
Show Figures

Figure 1

25 pages, 3496 KiB  
Review
Agriculture 4.0: Polymer Hydrogels as Delivery Agents of Active Ingredients
by Aleksandra Mikhailidi, Elena Ungureanu, Bogdan-Marian Tofanica, Ovidiu C. Ungureanu, Maria E. Fortună, Dan Belosinschi and Irina Volf
Gels 2024, 10(6), 368; https://doi.org/10.3390/gels10060368 - 26 May 2024
Cited by 6 | Viewed by 2655
Abstract
The evolution from conventional to modern agricultural practices, characterized by Agriculture 4.0 principles such as the application of innovative materials, smart water, and nutrition management, addresses the present-day challenges of food supply. In this context, polymer hydrogels have become a promising material for [...] Read more.
The evolution from conventional to modern agricultural practices, characterized by Agriculture 4.0 principles such as the application of innovative materials, smart water, and nutrition management, addresses the present-day challenges of food supply. In this context, polymer hydrogels have become a promising material for enhancing agricultural productivity due to their ability to retain and then release water, which can help alleviate the need for frequent irrigation in dryland environments. Furthermore, the controlled release of fertilizers by the hydrogels decreases chemical overdosing risks and the environmental impact associated with the use of agrochemicals. The potential of polymer hydrogels in sustainable agriculture and farming and their impact on soil quality is revealed by their ability to deliver nutritional and protective active ingredients. Thus, the impact of hydrogels on plant growth, development, and yield was discussed. The question of which hydrogels are more suitable for agriculture—natural or synthetic—is debatable, as both have their merits and drawbacks. An analysis of polymer hydrogel life cycles in terms of their initial material has shown the advantage of bio-based hydrogels, such as cellulose, lignin, starch, alginate, chitosan, and their derivatives and hybrids, aligning with sustainable practices and reducing dependence on non-renewable resources. Full article
(This article belongs to the Special Issue Hydrogels, Oleogels and Bigels Used for Drug Delivery)
Show Figures

Figure 1

23 pages, 7835 KiB  
Review
Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review
by Sankar Prasad Bag, Suyoung Lee, Jaeyoon Song and Jinsink Kim
Biosensors 2024, 14(3), 150; https://doi.org/10.3390/bios14030150 - 19 Mar 2024
Cited by 2 | Viewed by 2927
Abstract
Hydrogel-gated synaptic transistors offer unique advantages, including biocompatibility, tunable electrical properties, being biodegradable, and having an ability to mimic biological synaptic plasticity. For processing massive data with ultralow power consumption due to high parallelism and human brain-like processing abilities, synaptic transistors have been [...] Read more.
Hydrogel-gated synaptic transistors offer unique advantages, including biocompatibility, tunable electrical properties, being biodegradable, and having an ability to mimic biological synaptic plasticity. For processing massive data with ultralow power consumption due to high parallelism and human brain-like processing abilities, synaptic transistors have been widely considered for replacing von Neumann architecture-based traditional computers due to the parting of memory and control units. The crucial components mimic the complex biological signal, synaptic, and sensing systems. Hydrogel, as a gate dielectric, is the key factor for ionotropic devices owing to the excellent stability, ultra-high linearity, and extremely low operating voltage of the biodegradable and biocompatible polymers. Moreover, hydrogel exhibits ionotronic functions through a hybrid circuit of mobile ions and mobile electrons that can easily interface between machines and humans. To determine the high-efficiency neuromorphic chips, the development of synaptic devices based on organic field effect transistors (OFETs) with ultra-low power dissipation and very large-scale integration, including bio-friendly devices, is needed. This review highlights the latest advancements in neuromorphic computing by exploring synaptic transistor developments. Here, we focus on hydrogel-based ionic-gated three-terminal (3T) synaptic devices, their essential components, and their working principle, and summarize the essential neurodegenerative applications published recently. In addition, because hydrogel-gated FETs are the crucial members of neuromorphic devices in terms of cutting-edge synaptic progress and performances, the review will also summarize the biodegradable and biocompatible polymers with which such devices can be implemented. It is expected that neuromorphic devices might provide potential solutions for the future generation of interactive sensation, memory, and computation to facilitate the development of multimodal, large-scale, ultralow-power intelligent systems. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

16 pages, 4654 KiB  
Article
Fibrin-Based Hydrogels with Reactive Amphiphilic Copolymers for Mechanical Adjustments Allow for Capillary Formation in 2D and 3D Environments
by Svenja Wein, Carina Schemmer, Miriam Aischa Al Enezy-Ulbrich, Shannon Anna Jung, Stephan Rütten, Mark Kühnel, Danny Jonigk, Wilhelm Jahnen-Dechent, Andrij Pich and Sabine Neuss
Gels 2024, 10(3), 182; https://doi.org/10.3390/gels10030182 - 6 Mar 2024
Cited by 2 | Viewed by 3442
Abstract
This study focuses on enhancing controllable fibrin-based hydrogels for tissue engineering, addressing existing weaknesses. By integrating a novel copolymer, we improved the foundation for cell-based angiogenesis with adaptable structural features. Tissue engineering often faces challenges like waste disposal and nutrient supply beyond the [...] Read more.
This study focuses on enhancing controllable fibrin-based hydrogels for tissue engineering, addressing existing weaknesses. By integrating a novel copolymer, we improved the foundation for cell-based angiogenesis with adaptable structural features. Tissue engineering often faces challenges like waste disposal and nutrient supply beyond the 200 µm diffusion limit. Angiogenesis breaks through this limitation, allowing the construction of larger constructs. Our innovative scaffold combination significantly boosts angiogenesis, resulting in longer branches and more capillary network junctions. The copolymer attached to fibrin fibers enables precise adjustment of hydrogel mechanical dynamic properties for specific applications. Our material proves effective for angiogenesis, even under suppression factors like suramin. In our study, we prepared fibrin-based hydrogels with and without the copolymer PVP12400-co-GMA10mol%. Using a co-culture system of human umbilical vein endothelial cells (HUVEC) and mesenchymal stem cells (MSC), we analyzed angiogenetic behavior on and within the modified hydrogels. Capillary-like structures were reproducibly formed on different surfaces, demonstrating the general feasibility of three-dimensional endothelial cell networks in fibrin-based hydrogels. This highlights the biomaterial’s suitability for in vitro pre-vascularization of biohybrid implants. Full article
(This article belongs to the Special Issue Biopolymer-Based Gels for Drug Delivery and Tissue Engineering)
Show Figures

Graphical abstract

16 pages, 5252 KiB  
Article
In Vitro and In Vivo Evaluation of Chitosan/HPMC/Insulin Hydrogel for Wound Healing Applications
by Flávia Cristina Zanchetta, Pieter De Wever, Joseane Morari, Rita Caiado Gaspar, Thaís Paulino do Prado, Tess De Maeseneer, Ruth Cardinaels, Eliana Pereira Araújo, Maria Helena Melo Lima and Pedro Fardim
Bioengineering 2024, 11(2), 168; https://doi.org/10.3390/bioengineering11020168 - 9 Feb 2024
Cited by 7 | Viewed by 3275
Abstract
Treatment of chronic wounds is challenging, and the development of different formulations based on insulin has shown efficacy due to their ability to regulate oxidative stress and inflammatory reactions. The formulation of insulin with polysaccharides in biohybrid hydrogel systems has the advantage of [...] Read more.
Treatment of chronic wounds is challenging, and the development of different formulations based on insulin has shown efficacy due to their ability to regulate oxidative stress and inflammatory reactions. The formulation of insulin with polysaccharides in biohybrid hydrogel systems has the advantage of synergistically combining the bioactivity of the protein with the biocompatibility and hydrogel properties of polysaccharides. In this study, a hydrogel formulation containing insulin, chitosan, and hydroxypropyl methyl cellulose (Chi/HPMC/Ins) was prepared and characterized by FTIR, thermogravimetric, and gel point analyses. The in vitro cell viability and cell migration potential of the Chi/HPMC/Ins hydrogel were evaluated in human keratinocyte cells (HaCat) by MTT and wound scratch assay. The hydrogel was applied to excisional full-thickness wounds in diabetic mice for twenty days for in vivo studies. Cell viability studies indicated no cytotoxicity of the Chi/HPMC/Ins hydrogel. Moreover, the Chi/HPMC/Ins hydrogel promoted faster gap closure in the scratch assay. In vivo, the wounds treated with the Chi/HPMC/Ins hydrogel resulted in faster wound closure, formation of a more organized granulation tissue, and hair follicle regeneration. These results suggest that Chi/HPMC/Ins hydrogels might promote wound healing in vitro and in vivo and could be a new potential dressing for wound healing. Full article
(This article belongs to the Special Issue Biopolymers and Nano-Objects Applications in Bioengineering)
Show Figures

Figure 1

34 pages, 8740 KiB  
Article
Formulation and Comprehensive Evaluation of Biohybrid Hydrogel Membranes Containing Doxycycline or Silver Nanoparticles
by Diana Stan, Lavinia Liliana Ruta, Lorena-Andreea Bocancia-Mateescu, Andreea-Cristina Mirica, Dana Stan, Marin Micutz, Oana Brincoveanu, Ana-Maria Enciu, Elena Codrici, Ionela Daniela Popescu, Maria Linda Popa, Flaviana Rotaru and Cristiana Tanase
Pharmaceutics 2023, 15(12), 2696; https://doi.org/10.3390/pharmaceutics15122696 - 28 Nov 2023
Cited by 4 | Viewed by 2715
Abstract
Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a [...] Read more.
Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a new optimized formula for biohybrid hydrogel membranes, which combine natural and synthetic polymers, bioactive natural compounds, like collagen and hyaluronic acid, and pharmacologically active substances (doxycycline or npAg). Dynamic (oscillatory) rheometry confirmed the strong gel-like properties of the obtained hydrogel membranes. Samples containing low-dose DOXY showed a swelling index of 285.68 ± 6.99%, a degradation rate of 71.6 ± 0.91% at 20 h, and achieved a cumulative drug release of approximately 90% at pH 7.4 and 80% at pH 8.3 within 12 h. The addition of npAg influenced the physical properties of the hydrogel membranes. Furthermore, the samples containing DOXY demonstrated exceptional antimicrobial efficacy against seven selected bacterial strains commonly associated with wound infections and complications. Biocompatibility assessments revealed that the samples exhibited over 80% cell viability. However, the addition of smaller-sized nanoparticles led to decreased cellular viability. The obtained biohybrid hydrogel membranes show favorable properties that render them suitable for application as wound dressings. Full article
Show Figures

Figure 1

27 pages, 3213 KiB  
Article
Exploring the Impact of Alginate—PVA Ratio and the Addition of Bioactive Substances on the Performance of Hybrid Hydrogel Membranes as Potential Wound Dressings
by Diana Stan, Elena Codrici, Ana-Maria Enciu, Ewa Olewnik-Kruszkowska, Georgiana Gavril, Lavinia Liliana Ruta, Carmen Moldovan, Oana Brincoveanu, Lorena-Andreea Bocancia-Mateescu, Andreea-Cristina Mirica, Dana Stan and Cristiana Tanase
Gels 2023, 9(6), 476; https://doi.org/10.3390/gels9060476 - 9 Jun 2023
Cited by 10 | Viewed by 3404
Abstract
Healthcare professionals face an ongoing challenge in managing both acute and chronic wounds, given the potential impact on patients’ quality of life and the limited availability of expensive treatment options. Hydrogel wound dressings offer a promising solution for effective wound care due to [...] Read more.
Healthcare professionals face an ongoing challenge in managing both acute and chronic wounds, given the potential impact on patients’ quality of life and the limited availability of expensive treatment options. Hydrogel wound dressings offer a promising solution for effective wound care due to their affordability, ease of use, and ability to incorporate bioactive substances that enhance the wound healing process. Our study aimed to develop and evaluate hybrid hydrogel membranes enriched with bioactive components such as collagen and hyaluronic acid. We utilized both natural and synthetic polymers and employed a scalable, non-toxic, and environmentally friendly production process. We conducted extensive testing, including an in vitro assessment of moisture content, moisture uptake, swelling rate, gel fraction, biodegradation, water vapor transmission rate, protein denaturation, and protein adsorption. We evaluated the biocompatibility of the hydrogel membranes through cellular assays and performed instrumental tests using scanning electron microscopy and rheological analysis. Our findings demonstrate that the biohybrid hydrogel membranes exhibit cumulative properties with a favorable swelling ratio, optimal permeation properties, and good biocompatibility, all achieved with minimal concentrations of bioactive agents. Full article
(This article belongs to the Special Issue Engineering Hydrogel for Biomedical Applications)
Show Figures

Graphical abstract

49 pages, 11759 KiB  
Review
Role of Nanocellulose in Light Harvesting and Artificial Photosynthesis
by Pieter Samyn, Vibhore Kumar Rastogi, Neelisetty Sesha Sai Baba and Jürgen Van Erps
Catalysts 2023, 13(6), 986; https://doi.org/10.3390/catal13060986 - 8 Jun 2023
Cited by 4 | Viewed by 4160
Abstract
Artificial photosynthesis has rapidly developed as an actual field of research, mimicking natural photosynthesis processes in plants or bacteria to produce energy or high-value chemicals. The nanocelluloses are a family of biorenewable materials that can be engineered into nanostructures with favorable properties to [...] Read more.
Artificial photosynthesis has rapidly developed as an actual field of research, mimicking natural photosynthesis processes in plants or bacteria to produce energy or high-value chemicals. The nanocelluloses are a family of biorenewable materials that can be engineered into nanostructures with favorable properties to serve as a host matrix for encapsulation of photoreactive moieties or cells. In this review, the production of different nanocellulose structures such as films, hydrogels, membranes, and foams together with their specific properties to function as photosynthetic devices are described. In particular, the nanocellulose’s water affinity, high surface area and porosity, mechanical stability in aqueous environment, and barrier properties can be tuned by appropriate processing. From a more fundamental viewpoint, the optical properties (transparency and haze) and interaction of light with nanofibrous structures can be further optimized to enhance light harvesting, e.g., by functionalization or appropriate surface texturing. After reviewing the basic principles of natural photosynthesis and photon interactions, it is described how they can be transferred into nanocellulose structures serving as a platform for immobilization of photoreactive moieties. Using photoreactive centers, the isolated reactive protein complexes can be applied in artificial bio-hybrid nanocellulose systems through self-assembly, or metal nanoparticles, metal-organic frameworks, and quantum dots can be integrated in nanocellulose composites. Alternatively, the immobilization of algae or cyanobacteria in nanopaper coatings or a porous nanocellulose matrix allows to design photosynthetic cell factories and advanced artificial leaves. The remaining challenges in upscaling and improving photosynthesis efficiency are finally addressed in order to establish a breakthrough in utilization of nanocellulose for artificial photosynthesis. Full article
Show Figures

Figure 1

30 pages, 6335 KiB  
Review
Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review
by Sara Vach Agocsova, Martina Culenova, Ivana Birova, Leona Omanikova, Barbora Moncmanova, Lubos Danisovic, Stanislav Ziaran, Dusan Bakos and Pavol Alexy
Materials 2023, 16(12), 4267; https://doi.org/10.3390/ma16124267 - 8 Jun 2023
Cited by 36 | Viewed by 3309
Abstract
This article provides a thorough overview of the available resorbable biomaterials appropriate for producing replacements for damaged tissues. In addition, their various properties and application possibilities are discussed as well. Biomaterials are fundamental components in tissue engineering (TE) of scaffolds and play a [...] Read more.
This article provides a thorough overview of the available resorbable biomaterials appropriate for producing replacements for damaged tissues. In addition, their various properties and application possibilities are discussed as well. Biomaterials are fundamental components in tissue engineering (TE) of scaffolds and play a critical role. They need to exhibit biocompatibility, bioactivity, biodegradability, and non-toxicity, to ensure their ability to function effectively with an appropriate host response. With ongoing research and advancements in biomaterials for medical implants, the objective of this review is to explore recently developed implantable scaffold materials for various tissues. The categorization of biomaterials in this paper includes fossil-based materials (e.g., PCL, PVA, PU, PEG, and PPF), natural or bio-based materials (e.g., HA, PLA, PHB, PHBV, chitosan, fibrin, collagen, starch, and hydrogels), and hybrid biomaterials (e.g., PCL/PLA, PCL/PEG, PLA/PEG, PLA/PHB PCL/collagen, PCL/chitosan, PCL/starch, and PLA/bioceramics). The application of these biomaterials in both hard and soft TE is considered, with a particular focus on their physicochemical, mechanical, and biological properties. Furthermore, the interactions between scaffolds and the host immune system in the context of scaffold-driven tissue regeneration are discussed. Additionally, the article briefly mentions the concept of in situ TE, which leverages the self-renewal capacities of affected tissues and highlights the crucial role played by biopolymer-based scaffolds in this strategy. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Medical Applications)
Show Figures

Figure 1

17 pages, 4817 KiB  
Article
Polyurethane Shape Memory Polymer/pH-Responsive Hydrogel Hybrid for Bi-Function Synergistic Actuations
by Shuyi Peng, Xingyu Cao, Ye Sun, Lin Chen, Chao Ma, Lang Yang, Hongliang Zhao, Qijie Liu, Zhenzhong Liu and Chunxin Ma
Gels 2023, 9(5), 428; https://doi.org/10.3390/gels9050428 - 21 May 2023
Cited by 8 | Viewed by 2832
Abstract
Stimuli-responsive actuating hydrogels response to the external stimulus with complex deformation behaviors based on the programmable anisotropic structure design are one of the most important smart soft materials, which have great potential applications in artificial muscles, smart values, and mini-robots. However, the anisotropic [...] Read more.
Stimuli-responsive actuating hydrogels response to the external stimulus with complex deformation behaviors based on the programmable anisotropic structure design are one of the most important smart soft materials, which have great potential applications in artificial muscles, smart values, and mini-robots. However, the anisotropic structure of one actuating hydrogel can only be programmed one time, which can only provide single actuating performance, and subsequently, has severely limited their further applications. Herein, we have explored a novel SMP/hydrogel hybrid actuator through combining polyurethane shape memory polymer (PU SMP) layer and pH-responsive polyacrylic-acid (PAA) hydrogel layer by a napkin with UV-adhesive. Owing to both the super-hydrophilicity and super-lipophilicity of the cellulose-fiber based napkin, the SMP and the hydrogel can be bonded firmly by the UV-adhesive in the napkin. More importantly, this bilayer hybrid 2D sheet can be programmed by designing a different temporary shape in heat water which can be fixed easily in cool water to achieve various fixed shapes. This hybrid with a fixed temporary shape can achieve complex actuating performance based on the bi-functional synergy of temperature-triggered SMP and pH-responsive hydrogel. The relatively high modulus PU SMP achieved high to 87.19% and 88.92% shape-fixing ratio, respectively, correspond to bending and folding shapes. The hybrid actuator can actuate with the 25.71 °/min actuating speed. Most importantly, one SMP/hydrogel bi-layer hybrid sheet was repeatedly programmed at least nine times in our research to fix various temporary 1D, 2D and 3D shapes, including bending, folding and spiraling shapes. As a result, only one SMP/hydrogel hybrid can provide various complex stimuli-responsive actuations, including the reversable bending-straightening, spiraling-unspiraling. A few of the intelligent devices have been designed to simulate the movement of the natural organisms, such as bio-mimetic “paw”, “pangolin” and “octopus”. This work has developed a new SMP/hydrogel hybrid with excellent multi-repeatable (≥9 times) programmability for high-level complex actuations, including the 1D to 2D bending and the 2D to 3D spiraling actuations, which also provides a new strategy to design other new soft intelligent materials and systems. Full article
(This article belongs to the Special Issue Functional Gel Materials and Applications)
Show Figures

Graphical abstract

16 pages, 3395 KiB  
Article
One-Pot Synthesis of Double-Network PEG/Collagen Hydrogel for Enhanced Adipogenic Differentiation and Retrieval of Adipose-Derived Stem Cells
by Hwajung Lee, Hye Jin Hong, Sujeong Ahn, Dohyun Kim, Shin Hyuk Kang, Kanghee Cho and Won-Gun Koh
Polymers 2023, 15(7), 1777; https://doi.org/10.3390/polym15071777 - 3 Apr 2023
Cited by 7 | Viewed by 3472
Abstract
Hydrogels are widely used in stem cell therapy due to their extensive tunability and resemblance to the extracellular matrix (ECM), which has a three-dimensional (3D) structure. These features enable various applications that enhance stem cell maintenance and function. However, fast and simple hydrogel [...] Read more.
Hydrogels are widely used in stem cell therapy due to their extensive tunability and resemblance to the extracellular matrix (ECM), which has a three-dimensional (3D) structure. These features enable various applications that enhance stem cell maintenance and function. However, fast and simple hydrogel fabrication methods are desirable for stem cells for efficient encapsulation and to reduce adverse effects on the cells. In this study, we present a one-pot double-crosslinked hydrogel consisting of polyethylene glycol (PEG) and collagen, which can be prepared without the multi-step sequential synthesis of each network, by using bio-orthogonal chemistry. To enhance the adipogenic differentiation efficiency of adipose-derived stem cells (ADSCs), we added degradable components within the hydrogel to regulate matrix stiffness through cell-mediated degradation. Bio-orthogonal reactions used for hydrogel gelation allow rapid gel formation for efficient cell encapsulation without toxic by-products. Furthermore, the hybrid network of synthetic (PEG) and natural (collagen) components demonstrated adequate mechanical strength and higher cell adhesiveness. Therefore, ADSCs grown within this hybrid hydrogel proliferated and functioned better than those grown in the single-crosslinked hydrogel. The degradable elements further improved adipogenesis in ADSCs with dynamic changes in modulus during culture and enabled the retrieval of differentiated cells for potential future applications. Full article
(This article belongs to the Special Issue Advances in Bio-Based Polymeric Materials II)
Show Figures

Graphical abstract

20 pages, 25193 KiB  
Review
A Brief Review on Selected Applications of Hybrid Materials Based on Functionalized Cage-like Silsesquioxanes
by Łukasz John and Jolanta Ejfler
Polymers 2023, 15(6), 1452; https://doi.org/10.3390/polym15061452 - 14 Mar 2023
Cited by 21 | Viewed by 3418
Abstract
Rapid developments in materials engineering are accompanied by the equally rapid development of new technologies, which are now increasingly used in various branches of our life. The current research trend concerns the development of methods for obtaining new materials engineering systems and searching [...] Read more.
Rapid developments in materials engineering are accompanied by the equally rapid development of new technologies, which are now increasingly used in various branches of our life. The current research trend concerns the development of methods for obtaining new materials engineering systems and searching for relationships between the structure and physicochemical properties. A recent increase in the demand for well-defined and thermally stable systems has highlighted the importance of polyhedral oligomeric silsesquioxane (POSS) and double-decker silsesquioxane (DDSQ) architectures. This short review focuses on these two groups of silsesquioxane-based materials and their selected applications. This fascinating field of hybrid species has attracted considerable attention due to their daily applications with unique capabilities and their great potential, among others, in biomaterials as components of hydrogel networks, components in biofabrication techniques, and promising building blocks of DDSQ-based biohybrids. Moreover, they constitute attractive systems applied in materials engineering, including flame retardant nanocomposites and components of the heterogeneous Ziegler-Natta-type catalytic system. Full article
Show Figures

Graphical abstract

Back to TopTop