Evolutionary Trend Analysis of Research on 5-ALA Delivery and Theranostic Applications Based on a Scientometrics Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Retrieval Strategy and Data Collection
2.2. Data Selection and Analysis
3. Results and Discussion
3.1. General Information of Publications
3.2. Knowledge Structure Features of 5-ALA Research
3.2.1. Analysis of the Contribution of Countries
3.2.2. Analysis of the Contribution of Organizations
3.2.3. Analysis of the Contribution of Journals
3.2.4. Analysis of the Contribution of Influential Authors
3.3. Overview of Hotspots and Beyond
3.3.1. Characteristic of Research Topics for 5-ALA
3.3.2. Research Hotspots and Frontiers of 5-ALA
3.3.3. Nanotechnology Is a Potential Rising Star
4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-ALA | 5-aminolevulinic acid |
ACI | Average Citations per Item |
PpIX | Protoporphyrin ix |
ROS | Reactive oxygen species |
WoS | Web of Science |
WoScc | Web of Science Core Collection |
References
- Su, A.; Yu, Q.; Luo, Y.; Yang, J.; Wang, E.; Yuan, H. Metabolic engineering of microorganisms for the production of multifunctional non-protein amino acids: Gamma-aminobutyric acid and delta-aminolevulinic acid. Microb. Biotechnol. 2021, 14, 2279–2290. [Google Scholar] [CrossRef] [PubMed]
- Bonkovsky, H.L.; Guo, J.T.; Hou, W.; Li, T.; Narang, T.; Thapar, M. Porphyrin and heme metabolism and the porphyrias. Compr. Physiol. 2013, 3, 365–401. [Google Scholar] [PubMed]
- Yamamoto, M.; Hayashi, N.; Kikuchi, G. Evidence for the transcriptional inhibition by heme of the synthesis of delta-aminolevulinate synthase in rat liver. Biochem. Biophys. Res. Commun. 1982, 105, 985–990. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kure, S.; Engel, J.D.; Hiraga, K. Structure, turnover, and heme-mediated suppression of the level of mRNA encoding rat liver delta-aminolevulinate synthase. J. Biol. Chem. 1988, 263, 15973–15979. [Google Scholar] [CrossRef]
- Casas, A. Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: A review. Cancer Lett. 2020, 490, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Hadjipanayis, C.G.; Stummer, W. 5-ALA and FDA approval for glioma surgery. J. Neurooncol. 2019, 141, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.C.; Marcus, S.L.; Pottier, R.H. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): Mechanisms and clinical results. J. Clin. Laser Med. Surg. 1996, 14, 289–304. [Google Scholar] [CrossRef]
- Kemmner, W.; Wan, K.; Rüttinger, S.; Ebert, B.; Macdonald, R.; Klamm, U.; Moesta, K.T. Silencing of human ferrochelatase causes abundant protoporphyrin-IX accumulation in colon cancer. FASEB J. 2008, 22, 500–509. [Google Scholar] [CrossRef]
- Eker, C.; Montán, S.; Jaramillo, E.; Koizumi, K.; Rubio, C.; Andersson-Engels, S.; Svanberg, K.; Svanberg, S.; Slezak, P. Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and delta aminolevulinic acid sensitisation. Gut 1999, 44, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Denzinger, S.; Burger, M.; Walter, B.; Knuechel, R.; Roessler, W.; Wieland, W.F.; Filbeck, T. Clinically relevant reduction in risk of recurrence of superficial bladder cancer using 5-aminolevulinic acid-induced fluorescence diagnosis: 8-year results of prospective randomized study. Urology 2007, 69, 675–679. [Google Scholar] [CrossRef]
- Roberts, D.W.; Valdés, P.A.; Harris, B.T.; Fontaine, K.M.; Hartov, A.; Fan, X.; Ji, S.; Lollis, S.S.; Pogue, B.W.; Leblond, F.; et al. Coregistered fluorescence-enhanced tumor resection of malignant glioma: Relationships between delta-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. J. Neurosurg. 2011, 114, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Stummer, W.; Tonn, J.C.; Mehdorn, H.M.; Nestler, U.; Franz, K.; Goetz, C.; Bink, A.; Pichlmeier, U. ALA-Glioma Study Group. Counterbalancing risks and gains from extended resections in malignant glioma surgery: A supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. J. Neurosurg. 2011, 114, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, K.; Garvey, K.L.; Bouras, A.; Cramer, G.; Stepp, H.; Jesu Raj, J.G.; Bozec, D.; Busch, T.M.; Hadjipanayis, C.G. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J. Neurooncol. 2019, 141, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Bilmin, K.; Kujawska, T.; Grieb, P. Sonodynamic Therapy for Gliomas. Perspectives and Prospects of Selective Sonosensitization of Glioma Cells. Cells 2019, 8, 1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Q.; Berg, K.; Moan, J.; Kongshaug, M.; Nesland, J.M. 5-Aminolevulinic acid-based photodynamic therapy: Principles and experimental research. Photochem. Photobiol. 1997, 65, 235–251. [Google Scholar] [CrossRef]
- Ishizuka, M.; Abe, F.; Sano, Y.; Takahashi, K.; Inoue, K.; Nakajima, M.; Kohda, T.; Komatsu, N.; Ogura, S.; Tanaka, T. Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int. Immunopharmacol. 2011, 11, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Wiegell, S.R.; Wulf, H.C. Photodynamic therapy of acne vulgaris using 5-aminolevulinic acid versus methyl aminolevulinate. J. Am. Acad. Dermatol. 2006, 54, 647–651. [Google Scholar] [CrossRef]
- Harris, F.; Pierpoint, L. Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent. Med. Res. Rev. 2012, 32, 1292–1327. [Google Scholar] [CrossRef]
- Patel, G.; Armstrong, A.W.; Eisen, D.B. Efficacy of photodynamic therapy vs other interventions in randomized clinical trials for the treatment of actinic keratoses: A systematic review and meta-analysis. JAMA Dermatol. 2014, 150, 1281–1288. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Yasuzawa, T.; Uesaka, A.; Izumi, Y.; Kamiya, A.; Tsuchiya, K.; Kobayashi, Y.; Kuwahata, M.; Kido, Y. Type 2 diabetic conditions in Otsuka Long-Evans Tokushima Fatty rats are ameliorated by 5-aminolevulinic acid. Nutr. Res. 2014, 34, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Koda, A.; Nozawa, N.; Ota, U.; Kondo, H.; Nakagawa, H.; Kamiya, A.; Miyashita, K.; Itoh, H.; Nakajima, M.; et al. Combination of 5-aminolevulinic acid and ferrous ion reduces plasma glucose and hemoglobin A1c levels in Zucker diabetic fatty rats. FEBS Open Bio 2016, 6, 515–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitoh, S.; Okano, S.; Nohara, H.; Nakano, H.; Shirasawa, N.; Naito, A.; Yamamoto, M.; Kelly, V.P.; Takahashi, K.; Tanaka, T.; et al. 5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice. PLoS ONE 2018, 13, e189593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.P.; Lee, J.H.; Jang, H.D.; Yan, L.; Cho, J.H.; Kim, I.H. Effects of delta-aminolevulinic acid and vitamin C supplementation on iron status, production performance, blood characteristics and egg quality of laying hens. J. Anim. Physiol. Anim. Nutr. 2011, 95, 417–423. [Google Scholar] [CrossRef]
- Sato, K.; Matsushita, K.; Takahashi, K.; Aoki, M.; Fuziwara, J.; Miyanari, S.; Kamada, T. Dietary supplementation with 5-aminolevulinic acid modulates growth performance and inflammatory responses in broiler chickens. Poult. Sci. 2012, 91, 1582–1589. [Google Scholar] [CrossRef]
- Zhang, W.F.; Zhang, F.; Raziuddin, R.; Gong, H.J.; Yang, Z.M.; Lu, L.; Ye, Q.F.; Zhou, W.J. Effects of 5-Aminolevulinic Acid on Oilseed Rape Seedling Growth under Herbicide Toxicity Stress. J. Plant Growth Regul. 2008, 27, 159–169. [Google Scholar] [CrossRef]
- Tan, S.; Cao, J.; Xia, X.; Li, Z. Advances in 5-Aminolevulinic Acid Priming to Enhance Plant Tolerance to Abiotic Stress. Int. J. Mol. Sci. 2022, 23, 702. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, Z.; Zhu, Y.; Zhu, Z.; Qi, Q.; Wang, Q. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnol. Adv. 2022, 55, 107904. [Google Scholar] [CrossRef]
- Fotinos, N.; Campo, M.A.; Popowycz, F.; Gurny, R.; Lange, N. 5-Aminolevulinic acid derivatives in photomedicine: Characteristics, application and perspectives. Photochem. Photobiol. 2006, 82, 994–1015. [Google Scholar] [CrossRef]
- Collier, N.J.; Rhodes, L.E. Photodynamic Therapy for Basal Cell Carcinoma: The Clinical Context for Future Research Priorities. Molecules 2020, 25, 5398. [Google Scholar] [CrossRef]
- Shinoda, Y.; Kato, D.; Ando, R.; Endo, H.; Takahashi, T.; Tsuneoka, Y.; Fujiwara, Y. Systematic Review and Meta-Analysis of In Vitro Anti-Human Cancer Experiments Investigating the Use of 5-Aminolevulinic Acid (5-ALA) for Photodynamic Therapy. Pharmaceuticals 2021, 14, 229. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, N.J.; Michael, A.P. 5-Aminolevulinic acid radiodynamic therapy for treatment of high-grade gliomas: A systematic review. Clin. Neurol. Neurosurg. 2021, 201, 106430. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, K.; Guo, Q.; Yang, W.W.; Tong, L.; Wang, Y.; Sun, Z. Mapping Knowledge Structure and Themes Trends of Osteoporosis in Rheumatoid Arthritis: A Bibliometric Analysis. Front. Med. 2021, 8, 787228. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Disney, A. Social Network Analysis 101: Centrality Measures Explained; Cambridge Intelligence: Cambridge, UK, 2020; Available online: https://cambridge-intelligence.com/keylines-faqs-social-network-analysis (accessed on 28 April 2022).
- Developed Countries List 2022. World Population Review 2022. Available online: https://worldpopulationreview.com/country-rankings/developed-countries (accessed on 28 April 2022).
- Stummer, W.; Tonn, J.C.; Goetz, C.; Ullrich, W.; Stepp, H.; Bink, A.; Pietsch, T.; Pichlmeier, U. 5-Aminolevulinic acid-derived tumor fluorescence: The diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 2014, 74, 310–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stummer, W.; Stepp, H.; Wiestler, O.D.; Pichlmeier, U. Randomized, Prospective Double-Blinded Study Comparing 3 Different Doses of 5-Aminolevulinic Acid for Fluorescence-Guided Resections of Malignant Gliomas. Neurosurgery 2017, 81, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.W.; Guan, W.; Tong, J.; Wang, Z.W.; Yang, J.Z. Study on physicochemical properties of ionic liquids based on alanine [Cnmim][Ala] (N=2,3,4,5,6). J. Phys. Chem. B. 2008, 25, 7499–7505. [Google Scholar] [CrossRef]
- Widhalm, G.; Wolfsberger, S.; Minchev, G.; Woehrer, A.; Krssak, M.; Czech, T.; Prayer, D.; Asenbaum, S.; Hainfellner, J.A.; Knosp, E. 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement.t. Cancer-Am. Cancer Soc. 2010, 116, 1545–1552. [Google Scholar]
- Tewari, K.M.; Eggleston, I.M. Chemical approaches for the enhancement of 5-aminolevulinic acid-based photodynamic therapy and photodiagnosis. Photochem. Photobiol. Sci. 2018, 17, 1553–1572. [Google Scholar] [CrossRef] [Green Version]
- Champeau, M.; Vignoud, S.; Mortier, L.; Mordon, S. Photodynamic therapy for skin cancer: How to enhance drug penetration? J. Photochem. Photobiol. B 2019, 197, 111544. [Google Scholar] [CrossRef]
- Qidwai, A.; Annu Nabi, B.; Kotta, S.; Narang, J.K.; Baboota, S.; Ali, J. Role of nanocarriers in photodynamic therapy. Photodiagn. Photodyn. Ther. 2020, 30, 101782. [Google Scholar] [CrossRef] [PubMed]
- Hagiya, Y.; Fukuhara, H.; Matsumoto, K.; Endo, Y.; Nakajima, M.; Tanaka, T.; Okura, I.; Kurabayashi, A.; Furihata, M.; Inoue, K.; et al. Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer. Photodiagn. Photodyn. Ther. 2013, 10, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Nishio, Y.; Fujino, M.; Zhao, M.; Ishii, T.; Ishizuka, M.; Ito, H.; Takahashi, K.; Abe, F.; Nakajima, M.; Tanaka, T.; et al. 5-Aminolevulinic acid combined with ferrous iron enhances the expression of heme oxygenase-1. Int. Immunopharmacol. 2014, 19, 300–307. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, P.; Fujino, M.; Isaka, Y.; Ito, H.; Takahashi, K.; Nakajima, M.; Tanaka, T.; Zhuang, J.; Li, X.K. 5-aminolaevulinic acid (ALA), enhances heme oxygenase (HO)-1 expression and attenuates tubulointerstitial fibrosis and renal apoptosis in chronic cyclosporine nephropathy. Biochem. Biophys. Res. Commun. 2019, 508, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Goryaynov, S.A.; Widhalm, G.; Goldberg, M.F.; Chelushkin, D.; Spallone, A.; Chernyshov, K.A.; Ryzhova, M.; Pavlova, G.; Revischin, A.; Shishkina, L.; et al. The Role of 5-ALA in Low-Grade Gliomas and the Influence of Antiepileptic Drugs on Intraoperative Fluorescence. Front. Oncol. 2019, 9, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercea, P.A.; Mischkulnig, M.; Kiesel, B.; Wadiura, L.I.; Roetzer, T.; Prihoda, R.; Heicappell, P.; Kreminger, J.; Furtner, J.; Woehrer, A.; et al. Prognostic Value of 5-ALA Fluorescence, Tumor Cell Infiltration and Angiogenesis in the Peritumoral Brain Tissue of Brain Metastases. Cancers 2021, 13, 603. [Google Scholar] [CrossRef]
- Hu, Z.; Li, J.; Liu, H.; Liu, L.; Jiang, L.; Zeng, K. Treatment of latent or subclinical Genital HPV Infection with 5-aminolevulinic acid-based photodynamic therapy. Photodiagn. Photodyn. Ther. 2018, 23, 362–364. [Google Scholar] [CrossRef]
- Xie, J.; Wang, S.; Li, Z.; Ao, C.; Wang, J.; Wang, L.; Peng, X.; Zeng, K. 5-aminolevulinic acid photodynamic therapy reduces HPV viral load via autophagy and apoptosis by modulating Ras/Raf/MEK/ERK and PI3K/AKT pathways in HeLa cells. J. Photochem. Photobiol. B. 2019, 194, 46–55. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Chen, P.; Li, Q.; Li, Z.; Xu, M.; Zeng, K.; Li, C. Podophyllotoxin-combined 5-aminolevulinic acid photodynamic therapy significantly promotes HR-HPV-infected cell death. Photodermatol. Photoimmunol. Photomed. 2021, 15, 12754. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Y.; Choi, W.; Jangili, P.; Ge, Y.; Xu, Y.; Kang, J.; Liu, L.; Zhang, B.; Xie, Z.; et al. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem. Soc. Rev. 2021, 50, 9152–9201. [Google Scholar] [CrossRef]
- Shi, L.; Wang, X.; Zhao, F.; Luan, H.; Tu, Q.; Huang, Z.; Wang, H.; Wang, H. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. Int. J. Nanomed. 2013, 8, 2669–2676. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shi, L.; Tu, Q.; Wang, H.; Zhang, H.; Wang, P.; Zhang, L.; Huang, Z.; Zhao, F.; Luan, H.; et al. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model. Int. J. Nanomed. 2015, 10, 347–355. [Google Scholar]
- de Oliveira, G.K.; Vieira, D.P.; Levy, D.; Bydlowski, S.P.; Courrol, L.C. Uptake of silver, gold, and hybrids silver-iron, gold-iron and silver-gold aminolevulinic acid nanoparticles by MCF-7 breast cancer cells. Photodiagn. Photodyn. Ther. 2020, 32, 102080. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.F.; Qin, J.J.; Li, Z.; Ge, Q.; Zeng, W.H. Enhanced anti-tumor efficacy of 5-aminolevulinic acid-gold nanoparticles-mediated photodynamic therapy in cutaneous squamous cell carcinoma cells. BRAZ J. Med. Biol. Res. 2020, 53, e8457. [Google Scholar] [CrossRef]
- Ulrich, M.; Reinhold, U.; Dominicus, R.; Aschoff, R.; Szeimies, R.M.; Dirschka, T. Red light photodynamic therapy with BF-200 ALA showed superior efficacy in the treatment of actinic keratosis on the extremities, trunk, and neck in a vehicle-controlled phase III study. J. Am. Acad. Dermatol. 2021, 85, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yue, L.; Yu, G.; Rao, L.; Tian, R.; Wei, J.; Yang, Z.; Sun, C.; Zhang, X.; Xu, M.; et al. A hypoxia responsive nanoassembly for tumor specific oxygenation and enhanced sonodynamic therapy. Biomaterials 2021, 275, 120822. [Google Scholar] [CrossRef]
- Ma, X.; Qu, Q.; Zhao, Y. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy. ACS Appl. Mater. Interfaces 2015, 7, 10671–10676. [Google Scholar] [CrossRef]
- Wang, Y.; Zu, M.; Ma, X.; Jia, D.; Lu, Y.; Zhang, T.; Xue, P.; Kang, Y.; Xu, Z. Glutathione-Responsive Multifunctional “Trojan Horse” Nanogel as a Nanotheranostic for Combined Chemotherapy and Photodynamic Anticancer Therapy. ACS Appl. Mater. Interfaces 2020, 12, 50896–50908. [Google Scholar] [CrossRef]
Rank | Country | Between Centrality | Publications | % of 1595 | h-Index | Times Cited | ACI |
---|---|---|---|---|---|---|---|
1 | China | 0.14 | 445 | 27.88 | 39 | 6763 | 15.05 |
2 | Japan | 0.19 | 325 | 20.36 | 35 | 4986 | 15.17 |
3 | United States | 0.05 | 246 | 15.41 | 36 | 4858 | 19.52 |
4 | Germany | 0.14 | 147 | 9.21 | 37 | 6314 | 42.50 |
5 | South Korea | 0.00 | 69 | 4.32 | 18 | 907 | 12.00 |
6 | United Kingdom | 0.65 | 64 | 4.14 | 22 | 1252 | 19.56 |
7 | Brazil | 0.19 | 51 | 3.19 | 18 | 833 | 16.33 |
8 | Italy | 0.05 | 44 | 2.76 | 14 | 611 | 13.89 |
9 | Switzerland | 0.37 | 40 | 2.51 | 18 | 1158 | 28.95 |
10 | Pakistan | 0.31 | 38 | 2.38 | 20 | 1299 | 34.18 |
11 | Austria | 0.01 | 36 | 2.26 | 14 | 859 | 23.86 |
12 | Spain | 0.08 | 35 | 2.19 | 14 | 641 | 18.31 |
13 | Norway | 0.14 | 28 | 1.75 | 12 | 526 | 18.79 |
14 | Netherlands | 0.23 | 26 | 1.63 | 16 | 630 | 24.23 |
15 | Canada | 0.14 | 24 | 1.51 | 14 | 819 | 34.13 |
16 | France | 0.54 | 24 | 1.51 | 10 | 253 | 10.54 |
17 | Poland | 0.05 | 24 | 1.51 | 8 | 168 | 7.00 |
18 | Turkey | 0.00 | 22 | 1.38 | 8 | 214 | 9.73 |
19 | Iran | 0.00 | 21 | 1.32 | 8 | 204 | 9.71 |
20 | Russia | 0.22 | 21 | 1.32 | 8 | 175 | 8.33 |
Journal | Publisher’s Country | Publication Counts | ACI | Categories | Quartile in Category | 5-Year Impact Factor | h-Index |
---|---|---|---|---|---|---|---|
Photodiagnosis and Photodynamic Therapy | Netherlands | 165 | 8.73 | Oncology | 3 | 3.60 | 19 |
Journal of Photochemistry and Photobiology B: Biology | Switzerland | 38 | 16.08 | Biophysics; Biochemistry & Molecular Biology | 1 | 5.38 | 16 |
Journal of Neurosurgery | United States | 31 | 41.97 | Clinical Neurology; Surgery | 1 | 5.15 | 18 |
Lasers in Surgery and Medicine | United States | 28 | 22.25 | Dermatology; Surgery | 1 | 3.38 | 14 |
PLos One | United States | 25 | 28.76 | Multidisciplinary Sciences | 2 | 3.79 | 15 |
Photochemistry and Photobiology | United States | 23 | 23.00 | Biophysics; Biochemistry & Molecular Biology | 2; 3 | 3.06 | 15 |
Photodermatology Photoimmunology & Photomedicine | Denmark | 23 | 13.96 | Dermatology | 2 | 3.16 | 12 |
Scientific Reports | England | 22 | 15.00 | Multidisciplinary Sciences | 1 | 5.13 | 10 |
World Neurosurgery | United States | 21 | 10.38 | Surgery; Clinical Neurology | 3; 4 | 2.32 | 7 |
Acta Neurochirurgica | Austria | 20 | 28.30 | Surgery; Clinical Neurology; | 3; 4 | 2.47 | 11 |
Journal of Neuro-Oncology | United States | 20 | 19.25 | Clinical Neurology; Oncology | 2; 3 | 4.23 | 11 |
Title | First Author | Journal | Publication Year | Total Citations |
---|---|---|---|---|
Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial [12] | Stummer, Walter | Lancet Oncology | 2006 | 2032 |
Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study Clinical article [13] | Stummer, Walter | Journal of Neurosurgery | 2011 | 198 |
Clinically relevant reduction in risk of recurrence of superficial bladder cancer using 5-aminolevulinic acid-induced fluorescence diagnosis: 8-year results of prospective randomized study [10] | Denzinger, Stefan | Urology | 2007 | 198 |
Co-registered fluorescence-enhanced tumor resection of malignant glioma: relationships between delta-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters Clinical article [11] | Roberts, David W | Journal of Neurosurgery | 2011 | 190 |
5-Aminolevulinic Acid-derived Tumor Fluorescence: The Diagnostic Accuracy of Visible Fluorescence Qualities as Corroborated by Spectrometry and Histology and Postoperative Imaging [37] | Stummer, Walter | Neurosurgery | 2014 | 171 |
Photodynamic therapy of acne vulgaris using 5-aminolevulinic acid versus methyl aminolevulinate [18] | Wiegell, Stine Regin | Journal of the American Academy of Dermatology | 2006 | 151 |
Study on physicochemical properties of ionic liquids based on alanine [C(n)mim] [Ala] (n = 2, 3, 4, 5, 6) [39] | Fang, Da-Wei | Journal of Physical Chemistry B | 2008 | 149 |
Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy [17] | Ishizuka, Masahiro | International Immunopharmacology | 2011 | 145 |
Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress [26] | Zhang, Wufeng | Journal of Plant Growth Regulation | 2008 | 141 |
5-Aminolevulinic Acid Is a Promising Marker for Detection of Anaplastic Foci in Diffusely Infiltrating Gliomas with Nonsignificant Contrast Enhancement [40] | Widhalm, Georg | Cancer | 2010 | 134 |
Rank | Keywords | Counts | Centrality | Rank | Keywords | Counts | Centrality |
---|---|---|---|---|---|---|---|
1 | 5 Aminolevulinic acid | 388 | 0.00 | 16 | Cell | 77 | 0.09 |
2 | Photodynamic therapy | 230 | 0.00 | 17 | Therapy | 74 | 0.03 |
3 | Cancer | 143 | 0.01 | 18 | Surgery | 72 | 0.03 |
4 | Protoporphyrin ix | 124 | 0.06 | 19 | Survival | 68 | 0.02 |
5 | Expression | 123 | 0.05 | 20 | Growth | 67 | 0.01 |
6 | In vitro | 118 | 0.05 | 21 | Extent | 60 | 0.03 |
7 | Fluorescence | 111 | 0.02 | 22 | Induced protoporphyrin ix | 59 | 0.12 |
8 | Delta aminolevulinic acid | 108 | 0.02 | 23 | Biosynthesis | 59 | 0.11 |
9 | Malignant glioma | 107 | 0.23 | 24 | Carcinoma | 56 | 0.13 |
10 | Resection | 105 | 0.04 | 25 | Skin | 50 | 0.02 |
11 | Tumor | 93 | 0.03 | 26 | Light | 47 | 0.04 |
12 | Accumulation | 89 | 0.11 | 27 | Heme | 43 | 0.03 |
13 | Mechanism | 85 | 0.07 | 28 | Oxidative stress | 43 | 0.25 |
14 | Glioblastoma Multiforme | 80 | 0.00 | 29 | Delivery | 38 | 0.08 |
15 | Apoptosis | 78 | 0.05 | 30 | Diagnosis | 38 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Mo, M.; Luo, D.; Yang, Y.; Hu, J.; Ye, C.; Lin, L.; Xu, C.; Chen, W. Evolutionary Trend Analysis of Research on 5-ALA Delivery and Theranostic Applications Based on a Scientometrics Study. Pharmaceutics 2022, 14, 1477. https://doi.org/10.3390/pharmaceutics14071477
Zhou Y, Mo M, Luo D, Yang Y, Hu J, Ye C, Lin L, Xu C, Chen W. Evolutionary Trend Analysis of Research on 5-ALA Delivery and Theranostic Applications Based on a Scientometrics Study. Pharmaceutics. 2022; 14(7):1477. https://doi.org/10.3390/pharmaceutics14071477
Chicago/Turabian StyleZhou, You, Mulan Mo, Dexu Luo, Yi Yang, Jialin Hu, Chenqing Ye, Longxiang Lin, Chuanshan Xu, and Wenjie Chen. 2022. "Evolutionary Trend Analysis of Research on 5-ALA Delivery and Theranostic Applications Based on a Scientometrics Study" Pharmaceutics 14, no. 7: 1477. https://doi.org/10.3390/pharmaceutics14071477
APA StyleZhou, Y., Mo, M., Luo, D., Yang, Y., Hu, J., Ye, C., Lin, L., Xu, C., & Chen, W. (2022). Evolutionary Trend Analysis of Research on 5-ALA Delivery and Theranostic Applications Based on a Scientometrics Study. Pharmaceutics, 14(7), 1477. https://doi.org/10.3390/pharmaceutics14071477