Targeted Radiation and Immune Therapies—Advances and Opportunities for the Treatment of Prostate Cancer
Abstract
:1. Introduction to Prostate Cancer Radiotherapy
2. External Beam Radiation Therapy
3. Brachytherapy
4. Targeted Radionuclide Therapy
5. Immunotherapy in Prostate Cancer
6. Rationale for Combining Radiation Therapy and Immunotherapy
7. Preclinical Studies Combining Radiation Therapy and Immunotherapy
7.1. EBRT
7.2. Brachytherapy
7.3. TRT
8. Clinical Trials Combining Radiation Therapy and Immunotherapy
8.1. EBRT
8.2. TRT
9. Challenges and Opportunities
10. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Wallis, C.J.D.; Glaser, A.; Hu, J.C.; Huland, H.; Lawrentschuk, N.; Moon, D.; Murphy, D.G.; Nguyen, P.L.; Resnick, M.J.; Nam, R.K. Survival and Complications Following Surgery and Radiation for Localized Prostate Cancer: An International Collaborative Review. Eur. Urol. 2018, 73, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.A.; Rini, B.I. Castration-resistant prostate cancer: Many treatments, many options, many challenges ahead. Cancer 2012, 118, 2583–2593. [Google Scholar] [CrossRef] [PubMed]
- Thompson, I.M.; Tangen, C.M.; Paradelo, J.; Lucia, M.S.; Miller, G.; Troyer, D.; Messing, E.; Forman, J.; Chin, J.; Swanson, G.; et al. Adjuvant Radiotherapy for Pathologically Advanced Prostate CancerA Randomized Clinical Trial. JAMA 2006, 296, 2329–2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolla, M.; van Poppel, H.; Collette, L.; van Cangh, P.; Vekemans, K.; Da Pozzo, L.; de Reijke, T.M.; Verbaeys, A.; Bosset, J.-F.; van Velthoven, R.; et al. Postoperative radiotherapy after radical prostatectomy: A randomised controlled trial (EORTC trial 22911). Lancet 2005, 366, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Pollack, A.; Hanlon, A.L.; Horwitz, E.M.; Feigenberg, S.J.; Konski, A.A.; Movsas, B.; Greenberg, R.E.; Uzzo, R.G.; Ma, C.-M.C.; McNeeley, S.W.; et al. Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int. J. Radiat. Oncol.* Biol.* Phys. 2006, 64, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Kupelian, P.A.; Willoughby, T.R.; Reddy, C.A.; Klein, E.A.; Mahadevan, A. Hypofractionated Intensity-Modulated Radiotherapy (70 Gy at 2.5 Gy Per Fraction) for Localized Prostate Cancer: Cleveland Clinic Experience. Int. J. Radiat. Oncol.* Biol.* Phys. 2007, 68, 1424–1430. [Google Scholar] [CrossRef]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.-W. Cancer and Radiation Therapy: Current Advances and Future Directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Michalski, J.; Winter, K.; Roach, M.; Markoe, A.; Sandler, H.M.; Ryu, J.; Parliament, M.; Purdy, J.A.; Valicenti, R.K.; Cox, J.D. Clinical Outcome of Patients Treated with 3D Conformal Radiation Therapy 3D-CRT for Prostate Cancer on RTOG 9406. Int. J. Radiat. Oncol.* Biol.* Phys. 2012, 83, e363–e370. [Google Scholar] [CrossRef]
- Dang, A.; Kupelian, P.A.; Cao, M.; Agazaryan, N.; Kishan, A.U. Image-guided radiotherapy for prostate cancer. Transl. Androl. Urol. 2018, 7, 308–320. [Google Scholar] [CrossRef]
- Bakiu, E.; Telhaj, E.; Kozma, E.; Ruçi, F.; Malkaj, P. Comparison of 3D CRT and IMRT Tratment Plans. Acta Inf. Med. 2013, 21, 211–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dearnaley, D.; Syndikus, I.; Mossop, H.; Khoo, V.; Birtle, A.; Bloomfield, D.; Graham, J.; Kirkbride, P.; Logue, J.; Malik, Z.; et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016, 17, 1047–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brower, J.V.; Forman, J.D.; Kupelian, P.A.; Petereit, D.G.; Gondi, V.; Lawton, C.A.; Anger, N.; Saha, S.; Chappell, R.; Ritter, M.A. Quality of life outcomes from a dose-per-fraction escalation trial of hypofractionation in prostate cancer. Radiother. Oncol. 2016, 118, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Yeoh, E.E.; Botten, R.J.; Butters, J.; Di Matteo, A.C.; Holloway, R.H.; Fowler, J. Hypofractionated Versus Conventionally Fractionated Radiotherapy for Prostate Carcinoma: Final Results of Phase III Randomized Trial. Int. J. Radiat. Oncol.* Biol.* Phys. 2011, 81, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Kalbasi, A.; Li, J.; Berman, A.; Swisher-McClure, S.; Smaldone, M.; Uzzo, R.G.; Small, D.S.; Mitra, N.; Bekelman, J.E. Dose-Escalated Irradiation and Overall Survival in Men With Nonmetastatic Prostate Cancer. JAMA Oncol. 2015, 1, 897–906. [Google Scholar] [CrossRef]
- Anwar, M.; Weinberg, V.; Chang, A.J.; Hsu, I.-C.; Roach, M.; Gottschalk, A. Hypofractionated SBRT versus conventionally fractionated EBRT for prostate cancer: Comparison of PSA slope and nadir. Radiat. Oncol. 2014, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Boike, T.P.; Lotan, Y.; Cho, L.C.; Brindle, J.; DeRose, P.; Xie, X.-J.; Yan, J.; Foster, R.; Pistenmaa, D.; Perkins, A.; et al. Phase I dose-escalation study of stereotactic body radiation therapy for low- and intermediate-risk prostate cancer. J. Clin. Oncol. 2011, 29, 2020–2026. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Aparicio, M.A.; Valero, J.; Caballero, B.; García, R.; Hernando-Requejo, O.; Montero, Á.; Gómez-Iturriaga, A.; Zilli, T.; Ost, P.; López-Campos, F.; et al. Extreme Hypofractionation with SBRT in Localized Prostate Cancer. Curr. Oncol. 2021, 28, 2933–2949. [Google Scholar] [CrossRef]
- Liu, Y.; Patel, S.A.; Jani, A.B.; Gillespie, T.W.; Patel, P.R.; Godette, K.D.; Hershatter, B.W.; Shelton, J.W.; McDonald, M.W. Overall Survival After Treatment of Localized Prostate Cancer With Proton Beam Therapy, External-Beam Photon Therapy, or Brachytherapy. Clin. Genitourin. Cancer 2021, 19, 255–266.e7. [Google Scholar] [CrossRef]
- The Use of Radium in Cancer of the Prostate and Bladder: A Presentation of New Instruments and New Methods of Use | JAMA | JAMA Network. Available online: https://jamanetwork.com/journals/jama/fullarticle/442552 (accessed on 1 October 2022).
- Bagshaw, M.A. Definitive Radiotherapy in Carcinoma of the Prostate. JAMA 1969, 210, 326–327. [Google Scholar] [CrossRef] [PubMed]
- Retropubic Implantation of Iodine 125 in the Treatment of Prostatic Cancer | Journal of Urology. Available online: https://www.auajournals.org/doi/abs/10.1016/S0022-5347%2817%2960906-6 (accessed on 1 October 2022).
- Holm, H.H.; Juul, N.; Pedersen, J.F.; Hansen, H.; Strøyer, I. Transperineal 125Iodine Seed Implantation in Prostatic Cancer Guided by Transrectal Ultrasonography. J. Urol. 1983, 130, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Brachytherapy in the Management of Prostate Cancer—ClinicalKey. Available online: https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S105532071730008X?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS105532071730008X%3Fshowall%3Dtrue&referrer=https:%2F%2Fpubmed.ncbi.nlm.nih.gov%2F (accessed on 29 September 2022).
- 125I Versus 103Pd for Low-Risk Prostate Cancer: Preliminary PSA Outcomes from a Prospective Randomized Multicenter Trial—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0360301603014482?via%3Dihub (accessed on 29 September 2022).
- Kent, A.R.; Matheson, B.; Millar, J.L. Improved survival for patients with prostate cancer receiving high-dose-rate brachytherapy boost to EBRT compared with EBRT alone. Brachytherapy 2019, 18, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, P.J.; Rojas, A.M.; Bownes, P.J.; Lowe, G.J.; Ostler, P.J.; Bryant, L. Randomised trial of external beam radiotherapy alone or combined with high-dose-rate brachytherapy boost for localised prostate cancer. Radiother. Oncol. 2012, 103, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grills, I.S.; Martinez, A.A.; Hollander, M.; Huang, R.; Goldman, K.; Chen, P.Y.; Gustafson, G.S. High dose rate brachytherapy as prostate cancer monotherapy reduces toxicity compared to low dose rate palladium seeds. J. Urol. 2004, 171, 1098–1104. [Google Scholar] [CrossRef]
- Stone, N.N.; Stock, R.G.; Unger, P. Intermediate term biochemical-free progression and local control following 125iodine brachytherapy for prostate cancer. J. Urol. 2005, 173, 803–807. [Google Scholar] [CrossRef]
- Zaorsky, N.G.; Doyle, L.A.; Yamoah, K.; Andrel, J.A.; Trabulsi, E.J.; Hurwitz, M.D.; Dicker, A.P.; Den, R.B. High dose rate brachytherapy boost for prostate cancer: A systematic review. Cancer Treat. Rev. 2014, 40, 414–425. [Google Scholar] [CrossRef]
- Kee, D.L.C.; Gal, J.; Falk, A.T.; Schiappa, R.; Chand, M.-E.; Gautier, M.; Doyen, J.; Hannoun-levi, J.-M. Brachytherapy versus external beam radiotherapy boost for prostate cancer: Systematic review with meta-analysis of randomized trials. Cancer Treat. Rev. 2018, 70, 265–271. [Google Scholar] [CrossRef]
- Weiner, A.B.; Matulewicz, R.S.; Eggener, S.E.; Schaeffer, E.M. Increasing incidence of metastatic prostate cancer in the United States (2004–2013). Prostate Cancer Prostatic Dis. 2016, 19, 395–397. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.P.; Mostaghel, E.A.; Nelson, P.S.; Montgomery, B. Androgen deprivation therapy: Progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 2009, 6, 76–85. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Sadetsky, N.; Konety, B.R.; Resnick, M.I.; Carroll, P.R. Cancer of the Prostate Strategic Urological Research Endeavor (CaPSURE) Treatment failure after primary and salvage therapy for prostate cancer: Likelihood, patterns of care, and outcomes. Cancer 2008, 112, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Ost, P.; Reynders, D.; Decaestecker, K.; Fonteyne, V.; Lumen, N.; De Bruycker, A.; Lambert, B.; Delrue, L.; Bultijnck, R.; Claeys, T.; et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. JCO 2018, 36, 446–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogowski, P.; Trapp, C.; von Bestenbostel, R.; Schmidt-Hegemann, N.-S.; Shi, R.; Ilhan, H.; Kretschmer, A.; Stief, C.; Ganswindt, U.; Belka, C.; et al. Outcomes of metastasis-directed therapy of bone oligometastatic prostate cancer. Radiat. Oncol. 2021, 16, 125. [Google Scholar] [CrossRef] [PubMed]
- Reddy, E.K.; Robinson, R.G.; Mansfield, C.M. Strontium 89 for Palliation of Bone Metastases. J. Natl. Med. Assoc. 1986, 78, 27–32. [Google Scholar]
- Sartor, O.; Reid, R.H.; Hoskin, P.J.; Quick, D.P.; Ell, P.J.; Coleman, R.E.; Kotler, J.A.; Freeman, L.M.; Olivier, P. Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology 2004, 63, 940–945. [Google Scholar] [CrossRef]
- Hoskin, P.; Sartor, O.; O’Sullivan, J.M.; Johannessen, D.C.; Helle, S.I.; Logue, J.; Bottomley, D.; Nilsson, S.; Vogelzang, N.J.; Fang, F.; et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: A prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol. 2014, 15, 1397–1406. [Google Scholar] [CrossRef]
- Sartor, O.; Coleman, R.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: Results from a phase 3, double-blind, randomised trial. Lancet Oncol. 2014, 15, 738–746. [Google Scholar] [CrossRef]
- Schülke, N.; Varlamova, O.A.; Donovan, G.P.; Ma, D.; Gardner, J.P.; Morrissey, D.M.; Arrigale, R.R.; Zhan, C.; Chodera, A.J.; Surowitz, K.G.; et al. The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. Proc. Natl. Acad. Sci. USA 2003, 100, 12590–12595. [Google Scholar] [CrossRef] [Green Version]
- Nagda, S.N.; Mohideen, N.; Lo, S.S.; Khan, U.; Dillehay, G.; Wagner, R.; Campbell, S.; Flanigan, R. Long-term follow-up of 111In-capromab pendetide (ProstaScint) scan as pretreatment assessment in patients who undergo salvage radiotherapy for rising prostate-specific antigen after radical prostatectomy for prostate cancer. Int. J. Radiat. Oncol.* Biol.* Phys. 2007, 67, 834–840. [Google Scholar] [CrossRef]
- Nakajima, T.; Mitsunaga, M.; Bander, N.H.; Heston, W.D.; Choyke, P.L.; Kobayashi, H. Targeted, Activatable, IN VIVO Fluorescence Imaging of Prostate-specific Membrane Antigen (PSMA)-positive Tumors Using the Quenched Humanized J591 Antibody-ICG Conjugate. Bioconjug. Chem. 2011, 22, 1700–1705. [Google Scholar] [CrossRef] [Green Version]
- Bander, N.H.; Trabulsi, E.J.; Kostakoglu, L.; Yao, D.; Vallabhajosula, S.; Smith-jones, P.; Joyce, M.A.; Milowsky, M.; Nanus, D.M.; Goldsmith, S.J. Targeting Metastatic Prostate Cancer With Radiolabeled Monoclonal Antibody J591 to the Extracellular Domain of Prostate Specific Membrane Antigen. J. Urol. 2003, 170, 1717–1721. [Google Scholar] [CrossRef]
- Bander, N.H.; Milowsky, M.I.; Nanus, D.M.; Kostakoglu, L.; Vallabhajosula, S.; Goldsmith, S.J. Phase I Trial of 177 Lutetium-Labeled J591, a Monoclonal Antibody to Prostate-Specific Membrane Antigen, in Patients With Androgen-Independent Prostate Cancer. JCO 2005, 23, 4591–4601. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, S.T.; Milowsky, M.I.; Morris, M.; Vallabhajosula, S.; Christos, P.; Akhtar, N.H.; Osborne, J.; Goldsmith, S.J.; Larson, S.; Taskar, N.P.; et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin. Cancer Res. 2013, 19, 5182–5191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- In Vitro and Preclinical Targeted Alpha Therapy of Human Prostate Cancer with Bi-213 Labeled J591 Antibody against the Prostate Specific Membrane Antigen | Prostate Cancer and Prostatic Diseases. Available online: https://www.nature.com/articles/4500543 (accessed on 19 November 2022).
- McDevitt, M.R.; Barendswaard, E.; Ma, D.; Lai, L.; Curcio, M.J.; Sgouros, G.; Ballangrud, Å.M.; Yang, W.-H.; Finn, R.D.; Pellegrini, V.; et al. An α-Particle Emitting Antibody ([213Bi]J591) for Radioimmunotherapy of Prostate Cancer1. Cancer Res. 2000, 60, 6095–6100. [Google Scholar] [PubMed]
- Sathekge, M.; Knoesen, O.; Meckel, M.; Modiselle, M.; Vorster, M.; Marx, S. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1099–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kratochwil, C.; Schmidt, K.; Afshar-Oromieh, A.; Bruchertseifer, F.; Rathke, H.; Morgenstern, A.; Haberkorn, U.; Giesel, F.L. Targeted alpha therapy of mCRPC: Dosimetry estimate of 213Bismuth-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Afshar-Oromieh, A.; Hetzheim, H.; Kratochwil, C.; Benesova, M.; Eder, M.; Neels, O.C.; Eisenhut, M.; Kübler, W.; Holland-Letz, T.; Giesel, F.L.; et al. The Theranostic PSMA Ligand PSMA-617 in the Diagnosis of Prostate Cancer by PET/CT: Biodistribution in Humans, Radiation Dosimetry, and First Evaluation of Tumor Lesions. J. Nucl. Med. 2015, 56, 1697–1705. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.A.; Schweizer, M.T.; Chi, K.N.; Aggarwal, R.R.; Agarwal, N.; Gulley, J.L.; Attiyeh, E.F.; Greger, J.; Wu, S.; Jaiprasart, P.; et al. Safety and preliminary clinical activity of JNJ-63898081 (JNJ-081), a PSMA and CD3 bispecific antibody, for the treatment of metastatic castrate-resistant prostate cancer (mCRPC). JCO 2022, 40, 279. [Google Scholar] [CrossRef]
- Liu, C.; Liu, T.; Zhang, N.; Liu, Y.; Li, N.; Du, P.; Yang, Y.; Liu, M.; Gong, K.; Yang, X.; et al. 68Ga-PSMA-617 PET/CT: A promising new technique for predicting risk stratification and metastatic risk of prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Ruigrok, E.A.M.; van Vliet, N.; Dalm, S.U.; de Blois, E.; van Gent, D.C.; Haeck, J.; de Ridder, C.; Stuurman, D.; Konijnenberg, M.W.; van Weerden, W.M.; et al. Extensive preclinical evaluation of lutetium-177-labeled PSMA-specific tracers for prostate cancer radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1339–1350. [Google Scholar] [CrossRef]
- Hofman, M.S.; Violet, J.; Hicks, R.J.; Ferdinandus, J.; Thang, S.P.; Akhurst, T.; Iravani, A.; Kong, G.; Ravi Kumar, A.; Murphy, D.G.; et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): A single-centre, single-arm, phase 2 study. Lancet Oncol. 2018, 19, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Dosimetry of 177Lu-PSMA-617 in Metastatic Castration-Resistant Prostate Cancer: Correlations Between Pretherapeutic Imaging and Whole-Body Tumor Dosimetry with Treatment Outcomes | Journal of Nuclear Medicine. Available online: https://jnm.snmjournals.org/content/60/4/517.short (accessed on 30 September 2022).
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef] [Green Version]
- Sathekge, M.; Bruchertseifer, F.; Lawal, I.; Vorster, M.; Knoesen, O.; Lengana, T.; Boshomane, T.; Mokoala, K.; Morgenstern, A. Treatment of brain metastases of castration-resistant prostate cancer with 225Ac-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1756–1757. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Bronzel, M.; Apostolidis, C.; Weichert, W.; Haberkorn, U.; Giesel, F.L.; Morgenstern, A. Targeted Alpha Therapy of mCRPC with 225Actinium-PSMA-617: Dosimetry estimate and empirical dose finding. J. Nucl. Med. 2017, 58, 1624–1631. Available online: https://jnm.snmjournals.org/content/early/2017/04/12/jnumed.117.191395 (accessed on 19 November 2022). [CrossRef] [Green Version]
- Feuerecker, B.; Tauber, R.; Knorr, K.; Heck, M.; Beheshti, A.; Seidl, C.; Bruchertseifer, F.; Pickhard, A.; Gafita, A.; Kratochwil, C.; et al. Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. Eur. Urol. 2021, 79, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, L.; Liao, T.; Gong, W.; Zhang, C. Efficacy and Safety of 225Ac-PSMA-617-Targeted Alpha Therapy in Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 796657. Available online: https://www.frontiersin.org/articles/10.3389/fonc.2022.796657 (accessed on 14 December 2022). [CrossRef] [PubMed]
- Soanes, W.A.; Ablin, R.J.; Gonder, M.J. Remission of metastatic lesions following cryosurgery in prostatic cancer: Immunologic considerations. J. Urol. 1970, 104, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Ablin, R.J.; Soanes, W.A.; Gonder, M.J. Elution of in vivo bound antiprostatic epithelial antibodies following multiple cryotherapy of carcinoma of prostate. Urology 1973, 2, 276–279. [Google Scholar] [CrossRef]
- McNeel, D.G. Prostate cancer immunotherapy. Curr. Opin. Urol. 2007, 17, 175–181. [Google Scholar] [CrossRef]
- Cell Genesys. A Phase III Randomized, Open-Label Study of Docetaxel in Combination with CG1940 and CG8711 Versus Docetaxel and Prednisone in Taxane-Naïve Patients with Metastatic Hormone-Refractory Prostate Cancer with Pain; clinicaltrials.gov, Report No.: NCT00133224. 2008. Available online: https://clinicaltrials.gov/ct2/show/NCT00133224 (accessed on 21 November 2022).
- Vuky, J.; Corman, J.M.; Porter, C.; Olgac, S.; Auerbach, E.; Dahl, K. Phase II trial of neoadjuvant docetaxel and CG1940/CG8711 followed by radical prostatectomy in patients with high-risk clinically localized prostate cancer. Oncologist 2013, 18, 687–688. [Google Scholar] [CrossRef] [PubMed]
- Gulley, J.L.; Borre, M.; Vogelzang, N.J.; Ng, S.; Agarwal, N.; Parker, C.C.; Pook, D.W.; Rathenborg, P.; Flaig, T.W.; Carles, J.; et al. Phase III Trial of PROSTVAC in Asymptomatic or Minimally Symptomatic Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2019, 37, 1051–1061. [Google Scholar] [CrossRef]
- Noguchi, M.; Fujimoto, K.; Arai, G.; Uemura, H.; Hashine, K.; Matsumoto, H.; Fukasawa, S.; Kohjimoto, Y.; Nakatsu, H.; Takenaka, A.; et al. A randomized phase III trial of personalized peptide vaccination for castration-resistant prostate cancer progressing after docetaxel. Oncol. Rep. 2021, 45, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; van den Eertwegh, A.J.M.; Krainer, M.; Houede, N.; Santos, R.; Mahammedi, H.; et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014, 15, 700–712. [Google Scholar] [CrossRef] [Green Version]
- Beer, T.M.; Kwon, E.D.; Drake, C.G.; Fizazi, K.; Logothetis, C.; Gravis, G.; Ganju, V.; Polikoff, J.; Saad, F.; Humanski, P.; et al. Randomized, Double-Blind, Phase III Trial of Ipilimumab Versus Placebo in Asymptomatic or Minimally Symptomatic Patients With Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2017, 35, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrylak, D.P.; Loriot, Y.; Shaffer, D.R.; Braiteh, F.; Powderly, J.; Harshman, L.C.; Conkling, P.; Delord, J.-P.; Gordon, M.; Kim, J.W.; et al. Safety and Clinical Activity of Atezolizumab in Patients with Metastatic Castration-Resistant Prostate Cancer: A Phase I Study. Clin. Cancer Res. 2021, 27, 3360–3369. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M.; Goh, J.; Ojamaa, K.; Hoimes, C.J.; Vaishampayan, U.; Berger, R.; Sezer, A.; Alanko, T.; et al. Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. J. Clin. Oncol. 2020, 38, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Pachynski, R.K.; Narayan, V.; Fléchon, A.; Gravis, G.; Galsky, M.D.; Mahammedi, H.; Patnaik, A.; Subudhi, S.K.; Ciprotti, M.; et al. Nivolumab Plus Ipilimumab for Metastatic Castration-Resistant Prostate Cancer: Preliminary Analysis of Patients in the CheckMate 650 Trial. Cancer Cell 2020, 38, 489–499.e3. [Google Scholar] [CrossRef]
- Powles, T.; Yuen, K.C.; Gillessen, S.; Kadel, E.E.; Rathkopf, D.; Matsubara, N.; Drake, C.G.; Fizazi, K.; Piulats, J.M.; Wysocki, P.J.; et al. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: A randomized phase 3 trial. Nat. Med. 2022, 28, 144–153. [Google Scholar] [CrossRef]
- McNeel, D.G.; Eickhoff, J.C.; Wargowski, E.; Johnson, L.E.; Kyriakopoulos, C.E.; Emamekhoo, H.; Lang, J.M.; Brennan, M.J.; Liu, G. Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer (mCRPC). J. Immunother. Cancer 2022, 10, e004198. [Google Scholar] [CrossRef] [PubMed]
- van den Eertwegh, A.J.M.; Versluis, J.; van den Berg, H.P.; Santegoets, S.J.A.M.; van Moorselaar, R.J.A.; van der Sluis, T.M.; Gall, H.E.; Harding, T.C.; Jooss, K.; Lowy, I.; et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: A phase 1 dose-escalation trial. Lancet Oncol. 2012, 13, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Deegen, P.; Thomas, O.; Nolan-Stevaux, O.; Li, S.; Wahl, J.; Bogner, P.; Aeffner, F.; Friedrich, M.; Liao, M.Z.; Matthes, K.; et al. The PSMA-targeting Half-life Extended BiTE Therapy AMG 160 has Potent Antitumor Activity in Preclinical Models of Metastatic Castration-resistant Prostate Cancer. Clin. Cancer Res. 2021, 27, 2928–2937. [Google Scholar] [CrossRef] [PubMed]
- Hummel, H.-D.; Kufer, P.; Grüllich, C.; Seggewiss-Bernhardt, R.; Deschler-Baier, B.; Chatterjee, M.; Goebeler, M.-E.; Miller, K.; de Santis, M.; Loidl, W.; et al. Pasotuxizumab, a BiTE® immune therapy for castration-resistant prostate cancer: Phase I, dose-escalation study findings. Immunotherapy 2021, 13, 125–141. [Google Scholar] [CrossRef]
- Brusa, D.; Simone, M.; Gontero, P.; Spadi, R.; Racca, P.; Micari, J.; Degiuli, M.; Carletto, S.; Tizzani, A.; Matera, L. Circulating immunosuppressive cells of prostate cancer patients before and after radical prostatectomy: Profile comparison. Int. J. Urol. 2013, 20, 971–978. [Google Scholar] [CrossRef]
- Tuomela, K.; Ambrose, A.R.; Davis, D.M. Escaping Death: How Cancer Cells and Infected Cells Resist Cell-Mediated Cytotoxicity. Front. Immunol. 2022, 13, 867098. [Google Scholar] [CrossRef] [PubMed]
- Koinis, F.; Xagara, A.; Chantzara, E.; Leontopoulou, V.; Aidarinis, C.; Kotsakis, A. Myeloid-Derived Suppressor Cells in Prostate Cancer: Present Knowledge and Future Perspectives. Cells 2021, 11, 20. [Google Scholar] [CrossRef]
- Increased Tumor Necrosis Factor Alpha mRNA after Cellular Exposure to Ionizing Radiation. | PNAS. Available online: https://www.pnas.org/doi/abs/10.1073/pnas.86.24.10104 (accessed on 1 October 2022).
- Ishihara, H.; Tsuneoka, K.; Dimchev, A.B.; Shikita, M. Induction of the Expression of the Interleukin-1β Gene in Mouse Spleen by Ionizing Radiation. Radiat. Res. 1993, 133, 321–326. [Google Scholar] [CrossRef]
- Chakraborty, M.; Abrams, S.I.; Camphausen, K.; Liu, K.; Scott, T.; Coleman, C.N.; Hodge, J.W. Irradiation of Tumor Cells Up-Regulates Fas and Enhances CTL Lytic Activity and CTL Adoptive Immunotherapy. J. Immunol. 2003, 170, 6338–6347. [Google Scholar] [CrossRef] [Green Version]
- Klein, B.; Loven, D.; Lurie, H.; Rakowsky, E.; Nyska, A.; Levin, I.; Klein, T. The effect of irradiation on expression of HLA class I antigens in human brain tumors in culture. J. Neurosurg. 1994, 80, 1074–1077. Available online: https://thejns.org/view/journals/j-neurosurg/80/6/article-p1074.xml (accessed on 1 October 2022). [CrossRef] [Green Version]
- Lee, Y.; Auh, S.L.; Wang, Y.; Burnette, B.; Wang, Y.; Meng, Y.; Beckett, M.; Sharma, R.; Chin, R.; Tu, T.; et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: Changing strategies for cancer treatment. Blood 2009, 114, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Probst, H.C.; Vuong, V.; Landshammer, A.; Muth, S.; Yagita, H.; Schwendener, R.; Pruschy, M.; Knuth, A.; van den Broek, M. Radiotherapy Promotes Tumor-Specific Effector CD8 + T Cells via Dendritic Cell Activation. J. Immunol. 2012, 189, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Lomax, M.E.; Folkes, L.K.; O’Neill, P. Biological Consequences of Radiation-induced DNA Damage: Relevance to Radiotherapy. Clin. Oncol. 2013, 25, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Golden, E.B.; Frances, D.; Pellicciotta, I.; Demaria, S.; Helen Barcellos-Hoff, M.; Formenti, S.C. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. OncoImmunology 2014, 3, e28518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikitina, E.Y.; Gabrilovich, D.I. Combination of γ-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: Approach to treatment of advanced stage cancer. Int. J. Cancer 2001, 94, 825–833. [Google Scholar] [CrossRef]
- Slone, H.B.; Peters, L.J.; Milas, L. Effect of Host Immune Capability on Radiocurability and Subsequent Transplantability of a Murine Fibrosarcoma2. JNCI J. Natl. Cancer Inst. 1979, 63, 1229–1235. [Google Scholar] [CrossRef]
- Ganss, R.; Ryschich, E.; Klar, E.; Arnold, B.; Hammerling, G.J. Combination of T-Cell Therapy and Trigger of Inflammation Induces Remodeling of the Vasculature and Tumor Eradication. Cancer Res. 2002, 62, 1462–1470. [Google Scholar] [PubMed]
- Zhang, T.; Yu, H.; Ni, C.; Zhang, T.; Liu, L.; Lv, Q.; Zhang, Z.; Wang, Z.; Wu, D.; Wu, P.; et al. Hypofractionated stereotactic radiation therapy activates the peripheral immune response in operable stage I non-small-cell lung cancer. Sci. Rep. 2017, 7, 4866. [Google Scholar] [CrossRef]
- Nakamura, N.; Kusunoki, Y.; Akiyama, M. Radiosensitivity of CD4 or CD8 Positive Human T-Lymphocytes by an in Vitro Colony Formation Assay. Radiat. Res. 1990, 123, 224–227. [Google Scholar] [CrossRef]
- Arina, A.; Beckett, M.; Fernandez, C.; Zheng, W.; Pitroda, S.; Chmura, S.J.; Luke, J.J.; Forde, M.; Hou, Y.; Burnette, B.; et al. Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat. Commun. 2019, 10, 3959. [Google Scholar] [CrossRef] [Green Version]
- Dovedi, S.J.; Cheadle, E.J.; Popple, A.L.; Poon, E.; Morrow, M.; Stewart, R.; Yusko, E.C.; Sanders, C.M.; Vignali, M.; Emerson, R.O.; et al. Fractionated Radiation Therapy Stimulates Antitumor Immunity Mediated by Both Resident and Infiltrating Polyclonal T-cell Populations when Combined with PD-1 Blockade. Clin. Cancer Res. 2017, 23, 5514–5526. [Google Scholar] [CrossRef]
- Finkel, P.; Frey, B.; Mayer, F.; Bösl, K.; Werthmöller, N.; Mackensen, A.; Gaipl, U.S.; Ullrich, E. The dual role of NK cells in antitumor reactions triggered by ionizing radiation in combination with hyperthermia. Oncoimmunology 2016, 5, e1101206. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-R.; Son, C.-H.; Koh, E.-K.; Bae, J.-H.; Kang, C.-D.; Yang, K.; Park, Y.-S. Expansion of cytotoxic natural killer cells using irradiated autologous peripheral blood mononuclear cells and anti-CD16 antibody. Sci. Rep. 2017, 7, 11075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demaria, S.; Ng, B.; Devitt, M.L.; Babb, J.; Kawashima, N.; Liebes, L.; Formenti, S.C. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol.* Biol.* Phys. 2004, 58, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Janopaul-Naylor, J.R.; Shen, Y.; Qian, D.C.; Buchwald, Z.S. The Abscopal Effect: A Review of Pre-Clinical and Clinical Advances. Int. J. Mol. Sci. 2021, 22, 11061. [Google Scholar] [CrossRef]
- Xu, J.; Escamilla, J.; Mok, S.; David, J.; Priceman, S.; West, B.; Bollag, G.; McBride, W.; Wu, L. CSF1R Signaling Blockade Stanches Tumor-Infiltrating Myeloid Cells and Improves the Efficacy of Radiotherapy in Prostate Cancer. Cancer Res. 2013, 73, 2782–2794. [Google Scholar] [CrossRef] [Green Version]
- Muroyama, Y.; Nirschl, T.R.; Kochel, C.M.; Lopez-Bujanda, Z.; Theodros, D.; Mao, W.; Carrera-Haro, M.A.; Ghasemzadeh, A.; Marciscano, A.E.; Velarde, E.; et al. Stereotactic Radiotherapy Increases Functionally Suppressive Regulatory T Cells in the Tumor Microenvironment. Cancer Immunol. Res. 2017, 5, 992–1004. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Shiao, S.L. The Role of Macrophage Phenotype in Regulating the Response to Radiation Therapy. Transl. Res. 2018, 191, 64–80. [Google Scholar] [CrossRef]
- Jones, E.; Pu, H.; Kyprianou, N. Targeting TGF-beta in prostate cancer: Therapeutic possibilities during tumor progression. Expert Opin. Ther. Targets 2009, 13, 227–234. [Google Scholar] [CrossRef]
- Jiao, S.; Subudhi, S.K.; Aparicio, A.; Ge, Z.; Guan, B.; Miura, Y.; Sharma, P. Differences in Tumor Microenvironment Dictate T Helper Lineage Polarization and Response to Immune Checkpoint Therapy. Cell 2019, 179, 1177–1190.e13. [Google Scholar] [CrossRef]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.-X. Irradiation and Anti–PD-L1 Treatment Synergistically Promote Antitumor Immunity in Mice. Available online: https://www.jci.org/articles/view/67313/pdf (accessed on 1 October 2022).
- Chhikara, M.; Huang, H.; Vlachaki, M.T.; Zhu, X.; Teh, B.; Chiu, K.J.; Woo, S.; Berner, B.; Smith, E.O.; Oberg, K.C.; et al. Enhanced therapeutic effect of HSV-tk+GCV gene therapy and ionizing radiation for prostate cancer. Mol. Ther. 2001, 3, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Satoh, T.; Timme, T.L.; Hirayama, T.; Zhu, J.X.; Kusaka, N.; Naruishi, K.; Yang, G.; Goltsov, A.; Wang, J.; et al. Combined therapeutic effects of adenoviral vector-mediated GLIPR1 gene therapy and radiotherapy in prostate and bladder cancer models. Urol. Oncol. 2014, 32, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Harris, T.J.; Hipkiss, E.L.; Borzillary, S.; Wada, S.; Grosso, J.F.; Yen, H.-R.; Getnet, D.; Bruno, T.C.; Goldberg, M.V.; Pardoll, D.M.; et al. Radiotherapy augments the immune response to prostate cancer in a time-dependent manner. Prostate 2008, 68, 1319–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, S.; Harris, T.J.; Tryggestad, E.; Yoshimura, K.; Zeng, J.; Yen, H.-R.; Getnet, D.; Grosso, J.F.; Bruno, T.C.; De Marzo, A.M.; et al. Combined treatment effects of radiation and immunotherapy: Studies in an autochthonous prostate cancer model. Int. J. Radiat. Oncol.* Biol.* Phys. 2013, 87, 769–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udayakumar, T.S.; Betancourt, D.M.; Ahmad, A.; Tao, W.; Totiger, T.M.; Patel, M.; Marples, B.; Barber, G.; Pollack, A. Radiation Attenuates Prostate Tumor Antiviral Responses to Vesicular Stomatitis Virus Containing IFNβ, Resulting in Pronounced Antitumor Systemic Immune Responses. Mol. Cancer Res. 2020, 18, 1232–1243. [Google Scholar] [CrossRef]
- Dudzinski, S.O.; Cameron, B.D.; Wang, J.; Rathmell, J.C.; Giorgio, T.D.; Kirschner, A.N. Combination immunotherapy and radiotherapy causes an abscopal treatment response in a mouse model of castration resistant prostate cancer. J. Immunother. Cancer 2019, 7, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keam, S.P.; Halse, H.; Nguyen, T.; Wang, M.; Van Kooten Losio, N.; Mitchell, C.; Caramia, F.; Byrne, D.J.; Haupt, S.; Ryland, G.; et al. High dose-rate brachytherapy of localized prostate cancer converts tumors from cold to hot. J. Immunother. Cancer 2020, 8, e000792. [Google Scholar] [CrossRef]
- Czernin, J.; Current, K.; Mona, C.E.; Nyiranshuti, L.; Hikmat, F.; Radu, C.G.; Lückerath, K. Immune-Checkpoint Blockade Enhances 225Ac-PSMA617 Efficacy in a Mouse Model of Prostate Cancer. J. Nucl. Med. 2021, 62, 228–231. [Google Scholar] [CrossRef]
- Snyder, F.; Blank, M.L.; Morris, H.P. Occurrence and nature of O-alkyl and O-alk-1-enyl moieties of glycerol in lipids of morris transplanted hepatomas and normal rat liver. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1969, 176, 502–510. [Google Scholar] [CrossRef]
- Rampy, M.A.; Pinchuk, A.N.; Weichert, J.P.; Skinner, R.W.; Fisher, S.J.; Wahl, R.L.; Gross, M.D.; Counsell, R.E. Synthesis and biological evaluation of radioiodinated phospholipid ether stereoisomers. J. Med. Chem. 1995, 38, 3156–3162. [Google Scholar] [CrossRef]
- Potluri, H.K.; Ferreira, C.A.; Grudzinski, J.; Massey, C.; Aluicio-Sarduy, E.; Engle, J.W.; Kwon, O.; Marsh, I.R.; Bednarz, B.P.; Hernandez, R.; et al. Antitumor efficacy of 90Y-NM600 targeted radionuclide therapy and PD-1 blockade is limited by regulatory T cells in murine prostate tumors. J. Immunother. Cancer 2022, 10, e005060. [Google Scholar] [CrossRef] [PubMed]
- Twardowski, P.; Wong, J.Y.C.; Pal, S.K.; Maughan, B.L.; Frankel, P.H.; Franklin, K.; Junqueira, M.; Prajapati, M.R.; Nachaegari, G.; Harwood, D.; et al. Randomized phase II trial of sipuleucel-T immunotherapy preceded by sensitizing radiation therapy and sipuleucel-T alone in patients with metastatic castrate resistant prostate cancer. Cancer Treat. Res. Commun. 2019, 19, 100116. [Google Scholar] [CrossRef] [PubMed]
- Gulley, J.L.; Arlen, P.M.; Bastian, A.; Morin, S.; Marte, J.; Beetham, P.; Tsang, K.-Y.; Yokokawa, J.; Hodge, J.W.; Ménard, C.; et al. Combining a Recombinant Cancer Vaccine with Standard Definitive Radiotherapy in Patients with Localized Prostate Cancer. Clin. Cancer Res. 2005, 11, 3353–3362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkelstein, S.E.; Rodriguez, F.; Dunn, M.; Farmello, M.-J.; Smilee, R.; Janssen, W.; Kang, L.; Chuang, T.; Seigne, J.; Pow-Sang, J.; et al. Serial assessment of lymphocytes and apoptosis in the prostate during coordinated intraprostatic dendritic cell injection and radiotherapy. Immunotherapy 2012, 4, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Fong, L.; Morris, M.J.; Sartor, O.; Higano, C.S.; Pagliaro, L.; Alva, A.; Appleman, L.J.; Tan, W.; Vaishampayan, U.; Porcu, R.; et al. A Phase Ib Study of Atezolizumab with Radium-223 Dichloride in Men with Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2021, 27, 4746–4756. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.H.; Fu, W.; Wang, H.; Park, J.C.; DeWeese, T.L.; Tran, P.T.; Song, D.Y.; King, S.; Afful, M.; Hurrelbrink, J.; et al. Randomized Phase II Trial of Sipuleucel-T with or without Radium-223 in Men with Bone-metastatic Castration-resistant Prostate Cancer. Clin. Cancer Res. 2021, 27, 1623–1630. [Google Scholar] [CrossRef]
- Heery, C.R.; Madan, R.A.; Stein, M.N.; Stadler, W.M.; Di Paola, R.S.; Rauckhorst, M.; Steinberg, S.M.; Marté, J.L.; Chen, C.C.; Grenga, I.; et al. Samarium-153-EDTMP (Quadramet®) with or without vaccine in metastatic castration-resistant prostate cancer: A randomized Phase 2 trial. Oncotarget 2016, 7, 69014–69023. [Google Scholar] [CrossRef] [Green Version]
- Candel Therapeutics, Inc. A Randomized Controlled Trial of ProstAtak® as Adjuvant to Up-Front Radiation Therapy For Localized Prostate Cancer. clinicaltrials.gov; Report No.: NCT01436968. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT01436968 (accessed on 8 December 2022).
- Current, K.; Meyer, C.; Magyar, C.E.; Mona, C.E.; Almajano, J.; Slavik, R.; Stuparu, A.D.; Cheng, C.; Dawson, D.W.; Radu, C.G.; et al. Investigating PSMA-Targeted Radioligand Therapy Efficacy as a Function of Cellular PSMA Levels and Intratumoral PSMA Heterogeneity. Clin. Cancer Res. 2020, 26, 2946–2955. [Google Scholar] [CrossRef]
- Mannweiler, S.; Amersdorfer, P.; Trajanoski, S.; Terrett, J.A.; King, D.; Mehes, G. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol. Oncol. Res. 2009, 15, 167–172. [Google Scholar] [CrossRef]
- Rosar, F.; Krause, J.; Bartholomä, M.; Maus, S.; Stemler, T.; Hierlmeier, I.; Linxweiler, J.; Ezziddin, S.; Khreish, F. Efficacy and Safety of [225Ac]Ac-PSMA-617 Augmented [177Lu]Lu-PSMA-617 Radioligand Therapy in Patients with Highly Advanced mCRPC with Poor Prognosis. Pharmaceutics 2021, 13, 722. [Google Scholar] [CrossRef]
- Philippou, Y.; Sjoberg, H.T.; Murphy, E.; Alyacoubi, S.; Jones, K.I.; Gordon-Weeks, A.N.; Phyu, S.; Parkes, E.E.; Gillies McKenna, W.; Lamb, A.D.; et al. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a murine prostate cancer model. Br. J. Cancer 2020, 123, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
Brachytherapy | |||
---|---|---|---|
Radionuclide | Emission | Half-Life | Mean Energy (MeV) |
Palladium-103 | beta | 17 days | 0.021 |
Iodine-125 | gamma | 60 days | 0.035 |
Iridium-192 | gamma | 74 days | 0.355 |
Cesium-131 | X-ray | 9.7 days | 0.029 |
Targeted radionuclide therapy | |||
Bismuth-213 | alpha | 0.03 days | 8.37 |
Actinium-225 | alpha | 10 days | 6 |
Radium-223 | alpha | 11.43 days | 5.64 |
Strontium-89 | beta | 50.5 days | 1.46 |
Samarium-153 | beta | 1.95 days | 0.80 |
Gallium-68 | beta | 68 min | 1.83 |
Lutetium-177 | beta | 6.7 days | 0.497 |
Yttrium-90 | beta | 64.1 h | 2.3 |
Combination Immunotherapy | Phase | Number Enrolled | Study Title | NCT Trial No. | Results/Comments | Reference | |
---|---|---|---|---|---|---|---|
External Beam Radiation Therapy | |||||||
Aglatimagene besadenovec + valacyclovir | III | 711 | Phase III study of Prostatak® immunotherapy with standard radiation therapy for localized prostate cancer | NCT01436968 | |||
Dendritic cells | I | 5 | Serial assessment of lymphocytes and apoptosis in the prostate during coordinated intraprostatic dendritic cell injection and radiotherapy | N/A | [123] | ||
Dendritic cell-loaded vaccine (DCVAC) | II | 62 | Phase II study of DCVAC/PCA after primary radiotherapy for patients with high- risk localized prostate cancer | NCT02107430 | |||
PSA-based vaccine + cryotherapy | I | 45 | A phase I feasibility study of an intraprostatic PSA- based vaccine in men with prostate cancer with local failure following radiotherapy or cryotherapy or clinical progression on androgen deprivation therapy in the absence of local definitive therapy | NCT00096551 | |||
rvPSA vaccine | II | 48 | PSA-based vaccine and radiotherapy to treat localized prostate cancer | NCT00005916 | [122] | ||
Pembrolizumab and SD-101 (TLR9 antagonist), and androgen deprivation | II | 42 | Pembrolizumab +/− SD-101 in hormone-naïve oligometastatic prostate cancer with rt and iADT | NCT03007732 | |||
Sipuleucel-T | II | 51 | Sipuleucel-t with or without radiation therapy in treating patients with hormone-resistant metastatic prostate cancer | NCT01807065 | RT did not enhance the humoral and cellular responses associated with sipuleucel-T therapy | [121] | |
Avelumab, utomilumab, and anti-OX40 antibody PF-04518600 | I/II | 173 | Avelumab, utomilumab, anti-ox40 antibody PF-04518600, and radiation therapy in treating patients with advanced malignancies | NCT03217747 | |||
Sipuleucel-T | Observational | 20 | A multicenter trial enrolling men with advanced prostate cancer who are to receive combination radiation and sipuleucel-T | NCT02232230 | |||
Stereotactic radiation therapy | |||||||
NKTR-214 (CD122- based immuunocytokine) and nivolumab | I | 21 | Platform study for prostate researching translational endpoints correlated to response to inform use of novel combinations | NCT03835533 | |||
Durvalumab | II | 96 | Prostate cancer with oligometastatic relapse: combining stereotactic ablative radiotherapy and durvalumab (MEDI4736) | NCT03795207 | |||
M9241 (IL-12-based immunocytokine) | II | 65 | T-cell clonality after stereotactic body radiation therapy alone and in combination with the immunocytokine m9241 in localized high- and intermediate-risk prostate cancer treated with androgen deprivation therapy | NCT05361798 | |||
Sipuleucel-T | II | 20 | Sipuleucel-T and stereotactic ablative body radiation (SABR) for metastatic castrate-resistant prostate cancer (mCRPC) | NCT01818986 | |||
Brachytherapy | |||||||
Nivolumab | I/II | 44 | Combination of nivolumab immunotherapy with radiation therapy and androgen deprivation therapy | NCT03543189 | |||
Targeted radionuclide therapy | |||||||
Combination Immunothe-rapy | Targeted radio-therapy | Phase | Number enrolled | Study title | NCT trial no. | Results/Comments | Reference |
Avelumab | Ra-223 | I/II | 24 | Radiation medication (radium-223 dichloride) versus radium-223 dichloride plus radiation enhancing medication (M3814) versus radium-223 dichloride plus M3814 plus avelumab (a type of immunotherapy) for advanced prostate cancer not responsive to hormonal therapy | NCT04071236 | ||
Atezolizumab | Ra-223 | Ib | 45 | Safety and tolerability of atezolizumab (ATZ) in combination with radium-223 dichloride (Ra-223) in metastatic castrate-resistant prostate cancer (CRPC) progressed following treatment with an androgen pathway inhibitor | NCT02814669 | [124] | |
Pembrolizu-mab | Ra-223 | II | 45 | A randomized, phase II study evaluating the addition of pembrolizumab (MK-3475) to radium-223 in metastatic castration-resistant prostate cancer (mCRPC) | NCT03093428 | ||
Nivolumab | Ra-223 | I/II | 36 | Study of nivolumab in combination with radium-223 in men with metastatic castration-resistant prostate cancer | NCT04109729 | ||
Sipuleucel-T | Ra-223 | II | 36 | Study of sipuleucel-T with or without radium-223 in men with asymptomatic or minimally symptomatic bone-mCRPC | NCT02463799 | Possibility of greater clinical activity with the combination of sipuleucel-T and radium-223; warranted further larger trial to confirm | [125] |
PSA/TRICOM vaccine | 153-Sm | II | 44 | 153Sm-EDTMP with or without a PSA/TRICOM vaccine to treat men with androgen-insensitive prostate cancer | NCT00450619 | 153Sm-EDTMP in combination with PSA-TRICOM appears to lead to clinically meaningful improvement in PFS and is associated with trends to improved PSA declines and PSA-specific T-cell responses compared with 153Sm-EDTMP alone | [126] |
Pembrolizumab | 225Ac-J591 | I/II | 76 | Maximizing responses to anti-PD1 immunotherapy with PSMA-targeted alpha therapy in mCRPC | NCT04946370 | ||
Pembrolizumab | 177Lu-PSMA | I/II | 37 | PRINCE (PSMA-lutetium radionuclide therapy and immunotherapy in prostate cancer) | NCT03658447 | ||
Pembrolizumab | 177Lu-PSMA-617 | I | 43 | 177Lu-PSMA-617 and pembrolizumab in treating patients with metastatic castration-resistant prostate cancer | NCT03805594 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muralidhar, A.; Potluri, H.K.; Jaiswal, T.; McNeel, D.G. Targeted Radiation and Immune Therapies—Advances and Opportunities for the Treatment of Prostate Cancer. Pharmaceutics 2023, 15, 252. https://doi.org/10.3390/pharmaceutics15010252
Muralidhar A, Potluri HK, Jaiswal T, McNeel DG. Targeted Radiation and Immune Therapies—Advances and Opportunities for the Treatment of Prostate Cancer. Pharmaceutics. 2023; 15(1):252. https://doi.org/10.3390/pharmaceutics15010252
Chicago/Turabian StyleMuralidhar, Anusha, Hemanth K. Potluri, Tanya Jaiswal, and Douglas G. McNeel. 2023. "Targeted Radiation and Immune Therapies—Advances and Opportunities for the Treatment of Prostate Cancer" Pharmaceutics 15, no. 1: 252. https://doi.org/10.3390/pharmaceutics15010252
APA StyleMuralidhar, A., Potluri, H. K., Jaiswal, T., & McNeel, D. G. (2023). Targeted Radiation and Immune Therapies—Advances and Opportunities for the Treatment of Prostate Cancer. Pharmaceutics, 15(1), 252. https://doi.org/10.3390/pharmaceutics15010252