Beyond the Interface: Improved Pulmonary Surfactant-Assisted Drug Delivery through Surface-Associated Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Lipids
2.2. Budesonide
2.3. Pulmonary Surfactant
2.4. Vehiculization Surface Balance
2.5. Fluorescence Spectroscopy
2.6. Statistics
3. Results
3.1. Contribution of Surface-Associated Structures to the Interfacial Delivery
3.2. Transport of Budesonide over the Air–Liquid Interface by Different Materials
3.3. Spreading of PS over an Interface with a Pre-Existing Surfactant Monolayer
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parra, E.; Pérez-Gil, J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem. Phys. Lipids 2015, 185, 153–175. [Google Scholar] [CrossRef]
- Schürch, S.; Qanbar, R.; Bachofen, H.; Possmayer, F. The surface-associated surfactant reservoir in the alveolar lining. Neonatology 1995, 67 (Suppl. S1), 61–76. [Google Scholar] [CrossRef]
- Xu, L.; Yang, Y.; Zuo, Y.Y. Atomic force microscopy imaging of adsorbed pulmonary surfactant films. Biophys. J. 2020, 119, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Schürch, D.; Ospina, O.L.; Cruz, A.; Pérez-Gil, J. Combined and independent action of proteins SP-B and SP-C in the surface behavior and mechanical stability of pulmonary surfactant films. Biophys. J. 2010, 99, 3290–3299. [Google Scholar] [CrossRef] [PubMed]
- Serrano, A.G.; Pérez-Gil, J. Protein–lipid interactions and surface activity in the pulmonary surfactant system. Chem. Phys. Lipids 2006, 141, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Goerke, J. Pulmonary surfactant: Functions and molecular composition. Biochim. Biophys. Acta Mol. Basis Dis. 1998, 1408, 79–89. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, E.; Pérez-Gil, J. Structure-function relationships in pulmonary surfactant membranes: From biophysics to therapy. Biochim. Biophys. Acta Biomembr. 2014, 1838, 1568–1585. [Google Scholar] [CrossRef]
- Zuo, Y.Y.; Veldhuizen, R.A.; Neumann, A.W.; Petersen, N.O.; Possmayer, F. Current perspectives in pulmonary surfactant—Inhibition, enhancement and evaluation. Biochim. Biophys. Acta Biomembr. 2008, 1778, 1947–1977. [Google Scholar] [CrossRef]
- Perez-Gil, J.; Weaver, T.E. Pulmonary surfactant pathophysiology: Current models and open questions. Physiology 2010, 25, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Baer, B.; McCaig, L.; Yamashita, C.; Veldhuizen, R. Exogenous surfactant as a pulmonary delivery vehicle for budesonide in vivo. Lung 2020, 198, 909–916. [Google Scholar] [CrossRef]
- Banaschewski, B.J.; Veldhuizen, E.J.; Keating, E.; Haagsman, H.P.; Zuo, Y.Y.; Yamashita, C.M.; Veldhuizen, R.A. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia. Antimicrob. Agents Chemother. 2015, 59, 3075–3083. [Google Scholar] [CrossRef]
- Hidalgo, A.; Garcia-Mouton, C.; Autilio, C.; Carravilla, P.; Orellana, G.; Islam, M.N.; Bhattacharya, J.; Bhattacharya, S.; Cruz, A.; Pérez-Gil, J. Pulmonary surfactant and drug delivery: Vehiculization, release and targeting of surfactant/tacrolimus formulations. J. Control. Release 2021, 329, 205–222. [Google Scholar] [CrossRef]
- Merckx, P.; Lammens, J.; Nuytten, G.; Bogaert, B.; Guagliardo, R.; Maes, T.; Vervaet, C.; De Beer, T.; De Smedt, S.C.; Raemdonck, K. Lyophilization and nebulization of pulmonary surfactant-coated nanogels for siRNA inhalation therapy. Eur. J. Pharm. Biopharm. 2020, 157, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Cruz, A.; Pérez-Gil, J. Barrier or carrier? Pulmonary surfactant and drug delivery. Eur. J. Pharm. Biopharm. 2015, 95, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Khanal, A.; Sharma, R.; Corcoran, T.E.; Garoff, S.; Przybycien, T.M.; Tilton, R.D. Surfactant driven post-deposition spreading of aerosols on complex aqueous subphases. 1: High deposition flux representative of aerosol delivery to large airways. J. Aerosol Med. Pulm. 2015, 28, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Halpern, D.; Jensen, O.; Grotberg, J. A theoretical study of surfactant and liquid delivery into the lung. J. Appl. Physiol. 1998, 85, 333–352. [Google Scholar] [CrossRef]
- Stetten, A.Z.; Iasella, S.V.; Corcoran, T.E.; Garoff, S.; Przybycien, T.M.; Tilton, R.D. Surfactant-induced Marangoni transport of lipids and therapeutics within the lung. Curr. Opin. Colloid Interface Sci. 2018, 36, 58–69. [Google Scholar] [CrossRef]
- Espinosa, F.; Shapiro, A.; Fredberg, J.; Kamm, R. Spreading of exogenous surfactant in an airway. J. Appl. Physiol. 1993, 75, 2028–2039. [Google Scholar] [CrossRef] [PubMed]
- García-Mouton, C.; Hidalgo, A.; Arroyo, R.; Echaide, M.; Cruz, A.; Pérez-Gil, J. Pulmonary surfactant and drug delivery: An interface-assisted carrier to deliver surfactant protein SP-D into the airways. Front. Bioeng. Biotechnol. 2020, 8, 613276. [Google Scholar] [CrossRef]
- Hidalgo, A.; Salomone, F.; Fresno, N.; Orellana, G.; Cruz, A.; Perez-Gil, J. Efficient interfacially driven vehiculization of corticosteroids by pulmonary surfactant. Langmuir 2017, 33, 7929–7939. [Google Scholar] [CrossRef]
- Baer, B.; Veldhuizen, E.J.; Molchanova, N.; Jekhmane, S.; Weingarth, M.; Jenssen, H.; Lin, J.S.; Barron, A.E.; Yamashita, C.; Veldhuizen, R. Optimizing exogenous Surfactant as a pulmonary Delivery Vehicle for Chicken Cathelicidin-2. Sci. Rep. 2020, 10, 9392. [Google Scholar] [CrossRef]
- Baer, B.; Veldhuizen, E.J.; Possmayer, F.; Yamashita, C.; Veldhuizen, R. The wet bridge transfer system: A novel tool to assess exogenous surfactant as a vehicle for intrapulmonary drug delivery. Discov. Med. 2018, 26, 207–218. [Google Scholar] [PubMed]
- Yu, S.-H.; Possmayer, F. Lipid compositional analysis of pulmonary surfactant monolayers and monolayer-associated reservoirs. J. Lipid Res. 2003, 44, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-H.; Possmayer, F. Dipalmitoylphosphatidylcholine and cholesterol in monolayers spread from adsorbed films of pulmonary surfactant. J. Lipid Res. 2001, 42, 1421–1429. [Google Scholar] [CrossRef]
- Venkataraman, R.; Kamaluddeen, M.; Hasan, S.U.; Robertson, H.L.; Lodha, A. Intratracheal administration of budesonide-surfactant in prevention of bronchopulmonary dysplasia in very low birth weight infants: A systematic review and meta-analysis. Pediatr. Pulmonol. 2017, 52, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Halliday, H.L. Update on postnatal steroids. Neonatology 2017, 111, 415–422. [Google Scholar] [CrossRef]
- Taeusch, H.W.; De La Serna, J.B.; Perez-Gil, J.; Alonso, C.; Zasadzinski, J.A. Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: Experimental. Biophys. J. 2005, 89, 1769–1779. [Google Scholar] [CrossRef]
- Bligh, E.; Dyer, W. A rapid method of lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Rouser, G.; Siakotos, A.; Fleischer, S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1966, 1, 85–86. [Google Scholar] [CrossRef]
- Pérez-Gil, J.; Cruz, A.; Casals, C. Solubility of hydrophobic surfactant proteins in organic solvent/water mixtures. Structural studies on SP-B and SP-C in aqueous organic solvents and lipids. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1993, 1168, 261–270. [Google Scholar] [CrossRef]
- Bernhard, W.; Mottaghian, J.; Gebert, A.; Rau, G.A.; Von der Hardt, H.; Poets, C.F. Commercial versus native surfactants: Surface activity, molecular components, and the effect of calcium. Am. J. Respir. Crit. 2000, 162, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-M.; Chang, C.-H.; Chao, C.-H.; Wang, M.-H.; Yeh, T.-F. Biophysical and chemical stability of surfactant/budesonide and the pulmonary distribution following intra-tracheal administration. Drug Deliv. 2019, 26, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Y.E.; Neal, C.R.; Zuo, Y.Y. Differential effects of cholesterol and budesonide on biophysical properties of clinical surfactant. Pediatr. Res. 2012, 71, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.E.; Zhang, H.; Fan, Q.; Neal, C.R.; Zuo, Y.Y. Biophysical interaction between corticosteroids and natural surfactant preparation: Implications for pulmonary drug delivery using surfactant as a carrier. Soft Matter 2012, 8, 504–511. [Google Scholar] [CrossRef]
- Hidalgo, A.; Cruz, A.; Pérez-Gil, J. Pulmonary surfactant and nanocarriers: Toxicity versus combined nanomedical applications. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1740–1748. [Google Scholar] [CrossRef]
- Haitsma, J.J.; Lachmann, U.; Lachmann, B. Exogenous surfactant as a drug delivery agent. Adv. Drug Deliv. Rev. 2001, 47, 197–207. [Google Scholar] [CrossRef]
- Dani, C.; Corsini, I.; Burchielli, S.; Cangiamila, V.; Romagnoli, R.; Jayonta, B.; Longini, M.; Paternostro, F.; Buonocore, G. Natural surfactant combined with beclomethasone decreases lung inflammation in the preterm lamb. Respiration 2011, 82, 369–376. [Google Scholar] [CrossRef]
- Van’t Veen, A.; Mouton, J.W.; Gommers, D.; Lachmann, B. Pulmonary surfactant as vehicle for intratracheally instilled tobramycin in mice infected with Klebsiella pneumoniae. Br. J. Pharmacol. 1996, 119, 1145. [Google Scholar] [CrossRef]
- Kharasch, V.S.; Sweeney, T.D.; Fredberg, J.; Lehr, J.; Damokosh, A.I.; Avery, M.E.; Brain, J.D. Pulmonary surfactant as a vehicle for intratracheal delivery of technetium sulfur colloid and pentamidine in hamster lungs. Am. Rev. Respir. Dis. 1991, 144, 909–913. [Google Scholar] [CrossRef]
- Guagliardo, R.; Merckx, P.; Zamborlin, A.; De Backer, L.; Echaide, M.; Pérez-Gil, J.; De Smedt, S.C.; Raemdonck, K. Nanocarrier lipid composition modulates the impact of pulmonary surfactant protein B (SP-B) on cellular delivery of siRNA. Pharmaceutics 2019, 11, 431. [Google Scholar] [CrossRef]
- Grotberg, J.B.; Gaver, D.P., III. A synopsis of surfactant spreading research. J. Colloid Interface Sci. 1996, 178, 377–378. [Google Scholar] [CrossRef]
- Bachofen, H.; Gerber, U.; Gehr, P.; Amrein, M.; Schürch, S. Structures of pulmonary surfactant films adsorbed to an air–liquid interface in vitro. Biochim. Biophys. Acta Biomembr. 2005, 1720, 59–72. [Google Scholar] [CrossRef]
- Schenck, D.; Goettler, S.; Fiegel, J. Surfactant-induced spreading of nanoparticles is inhibited on mucus mimetic surfaces that model native lung conditions. Phys. Biol. 2019, 16, 065001. [Google Scholar] [CrossRef] [PubMed]
- Grotberg, J.; Halpern, D.; Jensen, O. Interaction of exogenous and endogenous surfactant: Spreading-rate effects. J. Appl. Physiol. 1995, 78, 750–756. [Google Scholar] [CrossRef]
- Bull, J.; Nelson, L.; Walsh, J., Jr.; Glucksberg, M.; Schürch, S.; Grotberg, J. Surfactant-spreading and surface-compression disturbance on a thin viscous film. J. Biomech. Eng. 1999, 121, 89–98. [Google Scholar] [CrossRef]
- Krüger, P.; Schalke, M.; Wang, Z.; Notter, R.H.; Dluhy, R.A.; Lösche, M. Effect of hydrophobic surfactant peptides SP-B and SP-C on binary phospholipid monolayers. I. Fluorescence and dark-field microscopy. Biophys. J. 1999, 77, 903–914. [Google Scholar] [CrossRef]
- Guagliardo, R.; Perez-Gil, J.; De Smedt, S.; Raemdonck, K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J. Control. Release 2018, 291, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.C.; Dooney, D.; Zhang, R.; Liang, L.; Brandish, P.E.; Cheng, M.; Feng, G.; Beck, A.; Bresson, D.; Firdos, J. Novel phosphate modified cathepsin B linkers: Improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug. Chem. 2016, 27, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Mouton, C.; Echaide, M.; Serrano, L.A.; Orellana, G.; Salomone, F.; Ricci, F.; Pioselli, B.; Amidani, D.; Cruz, A.; Pérez-Gil, J. Beyond the Interface: Improved Pulmonary Surfactant-Assisted Drug Delivery through Surface-Associated Structures. Pharmaceutics 2023, 15, 256. https://doi.org/10.3390/pharmaceutics15010256
García-Mouton C, Echaide M, Serrano LA, Orellana G, Salomone F, Ricci F, Pioselli B, Amidani D, Cruz A, Pérez-Gil J. Beyond the Interface: Improved Pulmonary Surfactant-Assisted Drug Delivery through Surface-Associated Structures. Pharmaceutics. 2023; 15(1):256. https://doi.org/10.3390/pharmaceutics15010256
Chicago/Turabian StyleGarcía-Mouton, Cristina, Mercedes Echaide, Luis A. Serrano, Guillermo Orellana, Fabrizio Salomone, Francesca Ricci, Barbara Pioselli, Davide Amidani, Antonio Cruz, and Jesús Pérez-Gil. 2023. "Beyond the Interface: Improved Pulmonary Surfactant-Assisted Drug Delivery through Surface-Associated Structures" Pharmaceutics 15, no. 1: 256. https://doi.org/10.3390/pharmaceutics15010256
APA StyleGarcía-Mouton, C., Echaide, M., Serrano, L. A., Orellana, G., Salomone, F., Ricci, F., Pioselli, B., Amidani, D., Cruz, A., & Pérez-Gil, J. (2023). Beyond the Interface: Improved Pulmonary Surfactant-Assisted Drug Delivery through Surface-Associated Structures. Pharmaceutics, 15(1), 256. https://doi.org/10.3390/pharmaceutics15010256