Role of Hepatocyte Transporters in Drug-Induced Liver Injury (DILI)—In Vitro Testing
Abstract
:1. Introduction
2. Cholestasis—A Major Form of Drug-Induced Liver Injury
2.1. Bile Salt Transporters
2.1.1. NTCP
2.1.2. OATP1B1/OATP1B3
2.1.3. BSEP
2.1.4. MRP2/ABCC2
2.1.5. MRP3/ABCC3
2.1.6. MRP4/ABCC4
2.1.7. OSTα/β/SLC51A/B
2.2. Phospholipid Translocases
2.2.1. MDR3/ABCB4
2.2.2. ATP8B1
2.3. Regulation of Bile Salt Transport in Hepatocytes
2.4. Mechanism of Hepatotoxicity of Bile Acids and Bile Salts
3. In Vitro Test Systems for the Study of Bile Acid/Bile Salt Transport
Testing of Bile Salt Transport to Assess Cholestatic Liver Injury
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, S.P.H.; Kelly, E.; Mathie, A.; Peters, J.A.; Veale, E.L.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Sharman, J.L.; et al. The Concise Guide to Pharmacology 2019/20: Transporters. Br. J. Pharmacol. 2019, 176 (Suppl. 1), S397–S493. [Google Scholar] [CrossRef]
- International Transporter Consortium; Giacomini, K.M.; Huang, S.M.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010, 9, 215–236. [Google Scholar]
- Chu, X.; Liao, M.; Shen, H.; Yoshida, K.; Zur, A.A.; Arya, V.; Galetin, A.; Giacomini, K.M.; Hanna, I.; Kusuhara, H.; et al. Clinical Probes and Endogenous Bi-omarkers as Substrates for Transporter Drug-Drug Interaction Evaluation: Perspectives from the International Transporter Consortium. Clin. Pharmacol. Ther. 2018, 104, 836–864. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Marathe, P. Endogenous Biomarkers to Assess Drug-Drug Interactions by Drug Transporters and Enzymes. Curr. Drug Metab. 2017, 18, 757–768. [Google Scholar] [CrossRef]
- Rodrigues, D.; Rowland, A. From Endogenous Compounds as Biomarkers to Plasma-Derived Nanovesicles as Liquid Biopsy; Has the Golden Age of Translational Pharmacokinetics-Absorption, Distribution, Metabolism, Excretion-Drug-Drug Interaction Science Finally Arrived? Clin. Pharmacol. Ther. 2019, 105, 1407–1420. [Google Scholar] [CrossRef]
- Tátrai, P.; Krajcsi, P. Prediction of Drug-Induced Hyperbilirubinemia by In Vitro Testing. Pharmaceutics 2020, 12, 755. [Google Scholar] [CrossRef]
- Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation; U.S. Department of Health and Human Services; Food and Drug Administration Center for Drug Evaluation and Research (CDER); Center for Biologics Evaluation and Research (CBER). July 2009, Drug Safety, Docket Number: FDA-2008-D-0128. Available online: https://www.fda.gov/media/116737/download (accessed on 21 December 2022).
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Drug-induced liver injury. J. Hepatol. 2019, 70, 1222–1261. [Google Scholar] [CrossRef] [Green Version]
- Mosedale, M.; Watkins, P.B. Drug-induced liver injury: Advances in mechanistic understanding that will inform risk manage-ment. Clin. Pharmacol. Ther. 2017, 101, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Senior, J.R. What is idiosyncratic hepatotoxicity? What is it not? Hepatology 2008, 47, 1813–1815. [Google Scholar] [CrossRef]
- Bénichou, C. Criteria of drug-induced liver disorders: Report of an International Consensus Meeting. J. Hepatol. 1990, 11, 272–276. [Google Scholar] [CrossRef]
- Björnsson, E.; Nordlinder, H.; Olsson, R. Clinical characteristics and prognostic markers in disulfiram-induced liver injury. J. Hepatol. 2006, 44, 791–797. [Google Scholar] [CrossRef]
- Vinken, M.; Hengstler, J.G. Characterization of hepatocyte-based in vitro systems for reliable toxicity testing. Arch. Toxicol. 2018, 92, 2981–2986. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, P.; Wang, F.; Liu, L.; Zhang, Y.; Liu, Y.; Shi, R. Comparison of diagnostic accuracy of 3 diagnostic criteria combined with refined pathological scoring system for drug-induced liver injury. Medicine 2020, 99, e22259. [Google Scholar] [CrossRef]
- Poupon, R. Liver alkaline phosphatase: A missing link between choleresis and biliary inflammation. Hepatology 2015, 61, 2080–2090. [Google Scholar] [CrossRef]
- Hertel, P.M.; Bull, L.N.; Thompson, R.J.; Goodrich, N.P.; Ye, W.; Magee, J.C.; Squires, R.H.; Bass, L.M.; Heubi, J.E.; Kim, G.E.; et al. Mutation Analysis and Disease Features at Presentation in a Multi-Center Cohort of Children with Monogenic Cholestasis. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 169–177. [Google Scholar] [CrossRef]
- Yang, K.; Köck, K.; Sedykh, A.; Tropsha, A.; Brouwer, K.L. An updated review on drug-induced cholestasis: Mechanisms and in-vestigation of physicochemical properties and pharmacokinetic parameters. J. Pharm. Sci. 2013, 102, 3037–3057. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Prasad, B.; Salphati, L.; Chu, X.; Gupta, A.; Hop, C.E.; Evers, R.; Unadkat, J.D. Interspecies Variability in Expression of Hepatobiliary Transporters across Human, Dog, Monkey, and Rat as Determined by Quantitative Proteomics. Drug Metab. Dispos. 2014, 43, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Kullak-Ublick, G.A.; Beuers, U.; Paumgartner, G. Hepatobiliary transport. J. Hepatol. 2000, 32 (Suppl. 1), 3–18. [Google Scholar] [CrossRef]
- Kullak-Ublick, G.A.; Stieger, B.; Meier, P.J. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 2004, 126, 322–342. [Google Scholar] [CrossRef]
- Hagenbuch, B.; Meier, P.J. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J. Clin. Investig. 1994, 93, 1326–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Ekins, S.; Polli, J.E. A substrate pharmacophore for the human sodium taurocholate co-transporting polypeptide. Int. J. Pharm. 2015, 478, 88–95. [Google Scholar] [CrossRef]
- Dong, Z.; Ekins, S.; Polli, J.E. Quantitative NTCP pharmacophore and lack of association between DILI and NTCP Inhibition. Eur. J. Pharm. Sci. 2015, 66, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dawson, P.A.; Lan, T.; Rao, A. Bile acid transporters. J. Lipid Res. 2009, 50, 2340–2357. [Google Scholar] [CrossRef] [Green Version]
- Stieger, B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb. Exp. Pharmacol. 2011, 201, 205–259. [Google Scholar]
- Geyer, J.; Wilke, T.; Petzinger, E. The solute carrier family SLC10: More than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2006, 372, 413–431. [Google Scholar] [CrossRef] [Green Version]
- Greupink, R.; Dillen, L.; Monshouwer, M.; Huisman, M.T.; Russel, F.G. Interaction of fluvastatin with the liver-specific Na+-dependent taurocholate cotransporting polypeptide (NTCP). Eur. J. Pharm. Sci. 2011, 44, 487–496. [Google Scholar] [CrossRef]
- Russell, L.E.; Zhou, Y.; Lauschke, V.M.; Kim, R.B. In Vitro Functional Characterization and in Silico Prediction of Rare Genetic Variation in the Bile Acid and Drug Transporter, Na+-Taurocholate Cotransporting Polypeptide (NTCP, SLC10A1). Mol. Pharm. 2020, 17, 1170–1181. [Google Scholar] [CrossRef]
- Pan, W.; Song, I.-S.; Shin, H.-J.; Kim, M.-H.; Choi, Y.-L.; Lim, S.-J.; Kim, W.-Y.; Lee, S.-S.; Shin, J.-G. Genetic polymorphisms in Na+-taurocholate co-transporting polypeptide (NTCP) and ileal apical sodium-dependent bile acid transporter (ASBT) and ethnic comparisons of functional variants of NTCP among Asian populations. Xenobiotica 2011, 41, 501–510. [Google Scholar] [CrossRef]
- Deng, M.; Mao, M.; Guo, L.; Chen, F.P.; Wen, W.R.; Song, Y.Z. Clinical and molecular study of a pediatric patient with sodium tau-rocholate cotransporting polypeptide deficiency. Exp. Ther. Med. 2016, 12, 3294–3300. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Deng, M.; Guo, L.; Qiu, J.; Lin, G.; Long, X.; Xiao, X.; Song, Y. Clinical and molecular characterization of four patients with NTCP deficiency from two unrelated families harboring the novel SLC10A1 variant c.595A>C (p.Ser199Arg). Mol. Med. Rep. 2019, 20, 4915–4924. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Fok, B.S.; Wo, S.-K.; Lee, V.H.; Zuo, Z.; Tomlinson, B. Effect of common polymorphisms of the farnesoid X receptor and bile acid transporters on the pharmacokinetics of ursodeoxycholic acid. Clin. Exp. Pharmacol. Physiol. 2015, 43, 34–40. [Google Scholar] [CrossRef]
- Lin, H.; Qiu, J.-W.; Rauf, Y.-M.; Lin, G.-Z.; Liu, R.; Deng, L.-J.; Deng, M.; Song, Y.-Z. Sodium Taurocholate Cotransporting Polypeptide (NTCP) Deficiency Hidden Behind Citrin Deficiency in Early Infancy: A Report of Three Cases. Front. Genet. 2019, 10, 1108. [Google Scholar] [CrossRef]
- Vaz, F.M.; Huidekoper, H.H.; Paulusma, C.C. Extended Abstract: Deficiency of Sodium Taurocholate Cotransporting Polypeptide (SLC10A1): A New Inborn Error of Metabolism with an Attenuated Phenotype. Dig. Dis. 2017, 35, 259–260. [Google Scholar] [CrossRef]
- Vaz, F.M.; Paulusma, C.; Huidekoper, H.; De Ru, M.; Lim, C.; Koster, J.; Ho-Mok, K.; Bootsma, A.H.; Groen, A.K.; Schaap, F.; et al. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: Conjugated hypercholanemia without a clear clinical phenotype. Hepatology 2014, 61, 260–267. [Google Scholar] [CrossRef]
- Mao, F.; Liu, T.; Hou, X.; Zhao, H.; He, W.; Li, C.; Jing, Z.; Sui, J.; Wang, F.; Liu, X.; et al. Increased sulfation of bile acids in mice and human subjects with sodium taurocholate cotransporting polypeptide deficiency. J. Biol. Chem. 2019, 294, 11853–11862. [Google Scholar] [CrossRef]
- Humbert, L.; Maubert, M.A.; Wolf, C.; Duboc, H.; Mahé, M.; Farabos, D.; Seksik, P.; Mallet, J.M.; Trugnan, G.; Masliah, J.; et al. Bile acid profiling in human biological samples: Comparison of extraction procedures and application to normal and cholestatic patients. J. Chromatogr. B 2012, 899, 135–145. [Google Scholar] [CrossRef]
- Jani, M.; Beéry, E.; Heslop, T.; Tóth, B.; Jagota, B.; Kis, E.; Park, B.K.; Krajcsi, P.; Weaver, R.J. Kinetic characterization of bile salt transport by human NTCP (SLC10A1). Toxicol. Vitr. 2018, 46, 189–193. [Google Scholar] [CrossRef]
- Leslie, E.M.; Watkins, P.B.; Kim, R.B.; Brouwer, K.L. Differential inhibition of rat and human Na+-dependent taurocholate co-transporting polypeptide (NTCP/SLC10A1)by bosentan: A mechanism for species differences in hepatotoxicity. J. Pharmacol. Exp. Ther. 2007, 321, 1170–1178. [Google Scholar] [CrossRef] [Green Version]
- Sommer, J.; Dorn, C.; Gäbele, E.; Bataille, F.; Freese, K.; Seitz, T.; Thasler, W.E.; Büttner, R.; Weiskirchen, R.; Bosserhoff, A.; et al. Four-And-A-Half LIM-Domain Protein 2 (FHL2) Deficiency Aggravates Cholestatic Liver Injury. Cells 2020, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Stieger, B.; Hagenbuch, B. Organic anion-transporting polypeptides. Curr. Top. Membr. 2014, 73, 205–232. [Google Scholar]
- Mahagita, C.; Grassl, S.M.; Piyachaturawat, P.; Ballatori, N. Human organic anion transporter 1B1 and 1B3 function as bidirectional carriers and do not mediate GSH-bile acid cotransport. Am. J. Physiol. Liver Physiol. 2007, 293, G271–G278. [Google Scholar] [CrossRef] [Green Version]
- Toth, B.; Jani, M.; Beéry, E.; Heslop, T.; Bayliss, M.; Kitteringham, N.R.; Park, B.K.; Weaver, R.J.; Krajcsi, P. Human OATP1B1 (SLCO1B1) transports sulfated bile acids and bile salts with particular efficiency. Toxicol. Vitr. 2018, 52, 189–194. [Google Scholar] [CrossRef]
- Malagnino, V.; Hussner, J.; Issa, A.; Midzic, A.; zu Schwabedissen, H.M.; Zu Schwabedissen, H.E.M. OATP1B3-1B7, a novel organic anion transporting polypeptide, is modulated by FXR ligands and transports bile acids. Am. J. Physiol. Liver Physiol. 2019, 317, G751–G762. [Google Scholar] [CrossRef]
- Takehara, I.; Terashima, H.; Nakayama, T.; Yoshikado, T.; Yoshida, M.; Furihata, K.; Watanabe, N.; Maeda, K.; Ando, O.; Sugiyama, Y.; et al. Investigation of Glycochenodeoxycholate Sulfate and Chenodeoxycholate Glucuronide as Surrogate Endogenous Probes for Drug Interaction Studies of OATP1B1 and OATP1B3 in Healthy Japanese Volunteers. Pharm. Res. 2017, 34, 1601–1614. [Google Scholar] [CrossRef]
- Suga, T.; Yamaguchi, H.; Sato, T.; Maekawa, M.; Goto, J.; Mano, N. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. PLoS ONE 2017, 12, e0169719. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Kong, L.; Jiang, Y.; Wang, C.; Ni, Y.; Wang, Y.; Zhang, H.; Ruan, J. UGT-dependent regioselective glucuronidation of ur-sodeoxycholic acid and obeticholic acid and selective transport of the consequent acyl glucuronides by OATP1B1 and 1B3. Chem. Biol. Interact. 2019, 310, 108745. [Google Scholar] [CrossRef]
- Yee, S.; Giacomini, M.; Hsueh, C.-H.; Weitz, D.; Liang, X.; Goswami, S.; Kinchen, J.; Coelho, A.; Zur, A.; Mertsch, K.; et al. Metabolomic and Genome-wide Association Studies Reveal Potential Endogenous Biomarkers for OATP1B1. Clin. Pharmacol. Ther. 2016, 100, 524–536. [Google Scholar] [CrossRef]
- Rago, B.; Tierney, B.; Rodrigues, A.D.; Holliman, C.L.; Ramanathan, R. A multiplex HRMS assay for quantifying selected human plasma bile acids as candidate OATP biomarkers. Bioanalysis 2018, 10, 645–657. [Google Scholar] [CrossRef]
- Rodrigues, A.D.; Lai, Y.; Cvijic, M.E.; Elkin, L.L.; Zvyaga, T.; Soars, M.G. Drug-Induced Perturbations of the Bile Acid Pool, Cholestasis, and Hepatotoxicity: Mechanistic Considerations beyond the Direct Inhibition of the Bile Salt Export Pump. Drug Metab. Dispos. 2013, 42, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.; Han, Y.; Neuvonen, M.; Pasanen, M.K.; Kalliokoski, A.; Backman, J.T.; Laitila, J.; Neuvonen, P.J.; Niemi, M. Effect of SLCO1B1 polymorphism on the plasma concentrations of bile acids and bile acid synthesis marker in humans. Pharmacogenetics Genom. 2009, 19, 447–457. [Google Scholar] [CrossRef]
- Xiang, X.; Backman, J.T.; Neuvonen, P.J.; Niemi, M. Gender, but not CYP7A1 or SLCO1B1 Polymorphism, Affects the Fasting Plasma Concentrations of Bile Acids in Human Beings. Basic Clin. Pharmacol. Toxicol. 2011, 110, 245–252. [Google Scholar] [CrossRef]
- van de Steeg, E.; Wagenaar, E.; van der Kruijssen, C.M.; Burggraaff, J.E.; de Waart, D.R.; Elferink, R.P.; Kenworthy, K.E.; Schinkel, A.H. Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J. Clin. Investig. 2010, 120, 2942–2952. [Google Scholar] [CrossRef]
- Slijepcevic, D.; Kaufman, C.; Wichers, C.G.; Gilglioni, E.H.; Lempp, F.A.; Duijst, S.; de Waart, D.R.; Elferink, R.P.O.; Mier, W.; Stieger, B.; et al. Impaired uptake of conjugated bile acids and hepatitis b virus pres1-binding in Na+-taurocholate cotransporting polypeptide knockout mice. Hepatology 2015, 62, 207–219. [Google Scholar] [CrossRef]
- Wang, L.; Soroka, C.J.; Boyer, J.L. The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. J. Clin. Investig. 2002, 110, 965–972. [Google Scholar] [CrossRef]
- Wang, R.; Lam, P.; Liu, L.; Forrest, D.; Yousef, I.M.; Mignault, D.; Phillips, M.J.; Ling, V. Severe cholestasis induced by cholic acid feeding in knockout mice of sister of P-glycoprotein. Hepatology 2003, 38, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, H.-L.; Liu, L.; Sheps, J.A.; Phillips, M.J.; Ling, V. Compensatory role of P-glycoproteins in knockout mice lacking the bile salt export pump. Hepatology 2009, 50, 948–956. [Google Scholar] [CrossRef]
- Jemnitz, K.; Veres, Z.; Vereczkey, L. Contribution of High Basolateral Bile Salt Efflux to the Lack of Hepatotoxicity in Rat in Response to Drugs Inducing Cholestasis in Human. Toxicol. Sci. 2010, 115, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Schulz, S.; Schmitt, S.; Wimmer, R.; Aichler, M.; Eisenhofer, S.; Lichtmannegger, J.; Eberhagen, C.; Artmann, R.; Tookos, F.; Walch, A.; et al. Progressive stages of mitochondrial destruction caused by cell toxic bile salts. Biochim. Biophys. Acta (BBA)—Biomembr. 2013, 1828, 2121–2133. [Google Scholar] [CrossRef] [Green Version]
- Penman, S.L.; Sharma, P.; Aerts, H.; Park, B.K.; Weaver, R.J.; Chadwick, A.E. Differential toxic effects of bile acid mixtures in isolated mitochondria and physiologically relevant HepaRG cells. Toxicol. Vitr. 2019, 61, 104595. [Google Scholar] [CrossRef]
- Jansen, P.L.M.; Peters, W.H.; Lamers, W.H. Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport. Hepatology 1985, 5, 573–579. [Google Scholar] [CrossRef]
- Böhme, M.; Müller, M.; Leier, I.; Jedlitschky, G.; Keppler, D. Cholestasis caused by inhibition of the adenosine triphos-phate-dependent bile salt transport in rat liver. Gastroenterology 1994, 107, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Kartenbeck, J.; Leuschner, U.; Mayer, R.; Keppler, D. Absence of the canalicular isoform of theMRP gene-encoded conjugate export pump from the hepatocytes in Dubin-Johnson syndrome. Hepatology 1996, 23, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Iyanagi, T.; Emi, Y.; Ikushiro, S.-I. Biochemical and molecular aspects of genetic disorders of bilirubin metabolism. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 1998, 1407, 173–184. [Google Scholar] [CrossRef]
- Rost, D.; Kloeters-Plachky, P.; Stiehl, A. Retrieval of the rat canalicular conjugate export pump Mrp2 is associated with a rear-rangement of actin filaments and radixin in bile salt-induced cholestasis. Eur. J. Med. Res. 2008, 13, 314–318. [Google Scholar]
- Keppler, D. Cholestasis and the Role of Basolateral Efflux Pumps. Z. Gastroenterol. 2011, 49, 1553–1557. [Google Scholar] [CrossRef] [PubMed]
- Geier, A.; Dietrich, C.G.; Grote, T.; Beuers, U.; Prüfer, T.; Fraunberger, P.; Matern, S.; Gartung, C.; Gerbes, A.L.; Bilzer, M. Characterization of organic anion transporter regulation, glutathione metabolism and bile formation in the obese Zucker rat. J. Hepatol. 2005, 43, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Bodó, A.; Bakos, E.; Szeri, F.; Váradi, A.; Sarkadi, B. Differential Modulation of the Human Liver Conjugate Transporters MRP2 and MRP3 by Bile Acids and Organic Anions. J. Biol. Chem. 2003, 278, 23529–23537. [Google Scholar] [CrossRef] [Green Version]
- Gerk, P.M.; Li, W.; Megaraj, V.; Vore, M. Human multidrug resistance protein 2 transports the therapeutic bile salt tauroursode-oxycholate. J. Pharmacol. Exp. Ther. 2007, 320, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Stieger, B.; Fattinger, K.; Madon, J.; Kullak-Ublick, G.A.; Meier, P.J. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 2000, 118, 422–430. [Google Scholar] [CrossRef]
- König, J.; Rost, D.; Cui, Y.; Keppler, D. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology 1999, 29, 1156–1163. [Google Scholar] [CrossRef]
- Soroka, C.J.; Lee, J.M.; Azzaroli, F.; Boyer, J.L. Cellular localization and up-regulation of multidrug resistance–associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 2001, 33, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Akita, H.; Suzuki, H.; Sugiyama, Y. Sinusoidal efflux of taurocholate correlates with the hepatic expression level of Mrp3. Biochem. Biophys. Res. Commun. 2002, 299, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Zelcer, N.; van de Wetering, K.; de Waart, R.; Scheffer, G.L.; Marschall, H.-U.; Wielinga, P.R.; Kuil, A.; Kunne, C.; Smith, A.; van der Valk, M.; et al. Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. J. Hepatol. 2006, 44, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Belinsky, M.G.; Dawson, P.A.; Shchaveleva, I.; Bain, L.J.; Wang, R.; Ling, V.; Chen, Z.-S.; Grinberg, A.; Westphal, H.; Klein-Szanto, A.; et al. Analysis of the In Vivo Functions of Mrp3. Mol. Pharmacol. 2005, 68, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; He, Y.; Cai, S.Y.; Jiang, Z.; Wang, H.; Li, Q.; Chen, L.; Peng, Z.; He, X.; Wu, X. Elevated hepatic multidrug resistance-associated protein 3/ATP-binding cassette subfamily C3 expression in human obstructive cholestasis is mediated through tumor necrosis factor alpha and c-Jun NH2-terminal kinase/stress-activated protein kinase-signaling pathway. Hepatology 2012, 55, 1485–1494. [Google Scholar]
- Akita, H.; Suzuki, H.; Hirohashi, T.; Takikawa, H.; Sugiyama, Y. Transport activity of human MRP3 expressed in Sf9 cells: Com-parative studies with rat MRP3. Pharm. Res. 2002, 19, 34–41. [Google Scholar] [CrossRef]
- Hirohashi, T.; Suzuki, H.; Takikawa, H.; Sugiyama, Y. ATP-dependent Transport of Bile Salts by Rat Multidrug Resistance-associated Protein 3 (Mrp3). J. Biol. Chem. 2000, 275, 2905–2910. [Google Scholar] [CrossRef] [Green Version]
- Chothe, P.P.; Pemberton, R.; Hariparsad, N. Function and Expression of Bile Salt Export Pump in Suspension Human Hepatocytes. Drug Metab. Dispos. 2021, 49, 314–321. [Google Scholar] [CrossRef]
- Rius, M.; Nies, A.T.; Hummel-Eisenbeiss, J.; Jedlitschky, G.; Keppler, D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 2003, 38, 374–384. [Google Scholar] [CrossRef]
- Mennone, A.; Soroka, C.J.; Cai, S.Y.; Harry, K.; Adachi, M.; Hagey, L.; Schuetz, J.D.; Boyer, J.L. Mrp4-/- mice have an impaired cyto-protective response in obstructive cholestasis. Hepatology 2006, 43, 1013–1021. [Google Scholar] [CrossRef]
- Wang, R.; Liu, L.; Sheps, J.A.; Forrest, D.; Hofmann, A.F.; Hagey, L.R.; Ling, V. Defective canalicular transport and toxicity of dietary ursodeoxycholic acid in the abcb11-/- mouse: Transport and gene expression studies. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 305, G286–G294. [Google Scholar] [CrossRef] [Green Version]
- Keitel, V.; Burdelski, M.; Warskulat, U.; Kühlkamp, T.; Keppler, D.; Häussinger, D.; Kubitz, R. Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 2005, 41, 1160–1172. [Google Scholar] [CrossRef]
- Chai, J.; Luo, D.; Wu, X.; Wang, H.; He, Y.; Li, Q.; Zhang, Y.; Chen, L.; Peng, Z.-H.; Xiao, T.; et al. Changes of Organic Anion Transporter MRP4 and Related Nuclear Receptors in Human Obstructive Cholestasis. J. Gastrointest. Surg. 2011, 15, 996–1004. [Google Scholar] [CrossRef]
- Rius, M.; Hummel-Eisenbeiss, J.; Hofmann, A.F.; Keppler, D. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am. J. Physiol. Liver Physiol. 2006, 290, G640–G649. [Google Scholar] [CrossRef]
- Beaudoin, J.J.; Brouwer, K.L.R.; Malinen, M.M. Novel insights into the organic solute transporter alpha/beta, OSTα/β: From the bench to the bedside. Pharmacol. Ther. 2020, 211, 107542. [Google Scholar] [CrossRef]
- Ballatori, N.; Fang, F.; Christian, W.V.; Li, N.; Hammond, C.L. Ostalpha-Ostbeta is required for bile acid and conjugated steroid disposition in the intestine, kidney, and liver. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G179–G186. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, J.J.; Bezençon, J.; Sjöstedt, N.; Fallon, J.K.; Brouwer, K.L.R. Role of Organic Solute Transporter Alpha/Beta in Hepatotoxic Bile Acid Transport and Drug Interactions. Toxicol. Sci. 2020, 176, 34–45. [Google Scholar] [CrossRef]
- Suga, T.; Yamaguchi, H.; Ogura, J.; Mano, N. Characterization of conjugated and unconjugated bile acid transport via human organic solute transporter α/β. Biochim. Biophys. Acta (BBA)—Biomembr. 2019, 1861, 1023–1029. [Google Scholar] [CrossRef]
- Jackson, J.P.; Freeman, K.M.; Friley, W.W.; St Claire, I.I.I.R.L.; Black, C.; Brouwer, K.R. Basolateral Efflux Transporters: A Potentially Important Pathway for the Prevention of Cholestatic Hepatotoxicity. Appl. In Vitro Toxicol. 2016, 2, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Sultan, M.; Rao, A.; Elpeleg, O.; Vaz, F.M.; Abu Libdeh, B.Y.; Karpen, S.J.; Dawson, P.A. Organic solute transporter-β (SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis. Hepatology 2018, 68, 590–598. [Google Scholar] [CrossRef] [Green Version]
- Soroka, C.J.; Mennone, A.; Hagey, L.R.; Ballatori, N.; Boyer, J.L. Mouse organic solute transporter α deficiency enhances renal excretion of bile acids and attenuates cholestasis. Hepatology 2009, 51, 181–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groen, A.; Romero, M.R.; Kunne, C.; Hoosdally, S.J.; Dixon, P.H.; Wooding, C.; Williamson, C.; Seppen, J.; Van Den Oever, K.; Mok, K.S.; et al. Complementary Functions of the Flippase ATP8B1 and the Floppase ABCB4 in Maintaining Canalicular Membrane Integrity. Gastroenterology 2011, 141, 1927–1937.e4. [Google Scholar] [CrossRef]
- Aleo, M.D.; Shah, F.; He, K.; Bonin, P.D.; Rodrigues, A.D. Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals. Chem. Res. Toxicol. 2017, 30, 1219–1229. [Google Scholar] [CrossRef]
- Smith, A.J.; van Helvoort, A.; van Meer, G.; Szabó, K.; Welker, E.; Szakács, G.; Váradi, A.; Sarkadi, B.; Borst, P. MDR3 P-glycoprotein, a Phosphatidylcholine Translocase, Transports Several Cytotoxic Drugs and Directly Interacts with Drugs as Judged by Interference with Nucleotide Trapping. J. Biol. Chem. 2000, 275, 23530–23539. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Gautam, S.; Nguyen, T.; Soroka, C.J.; Rahner, C.; Boyer, J.L. ATP8B1 Deficiency Disrupts the Bile Canalicular Membrane Bilayer Structure in Hepatocytes, But FXR Expression and Activity Are Maintained. Gastroenterology 2009, 136, 1060–1069.e4. [Google Scholar] [CrossRef]
- van Wessel, D.B.E.; Thompson, R.J.; Gonzales, E.; Jankowska, I.; Shneider, B.L.; Sokal, E.; Grammatikopoulos, T.; Kadaristiana, A.; Jacquemin, E.; Spraul, A.; et al. Impact of Genotype, Serum Bile Acids, and Surgical Biliary Diversion on Native Liver Survival in FIC1 Deficiency. Hepatology 2021, 74, 892–906. [Google Scholar] [CrossRef]
- Li, Q.; Sun, Y.; van Ijzendoorn, S.C.D. A Link between Intrahepatic Cholestasis and Genetic Variations in Intracellular Trafficking Regulators. Biology 2021, 10, 119. [Google Scholar] [CrossRef]
- Wagner, M.; Zollner, G.; Trauner, M. New molecular insights into the mechanisms of cholestasis. J. Hepatol. 2009, 51, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Choi, M.; Moschetta, A.; Peng, L.; Cummins, C.L.; McDonald, J.G.; Luo, G.; Jones, S.A.; Goodwin, B.; Richardson, J.A.; et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005, 2, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, B.; Jones, S.A.; Price, R.R.; Watson, M.A.; McKee, D.D.; Moore, L.B.; Galardi, C.; Wilson, J.G.; Lewis, M.C.; Roth, M.E.; et al. A Regulatory Cascade of the Nuclear Receptors FXR, SHP-1, and LRH-1 Represses Bile Acid Biosynthesis. Mol. Cell 2000, 6, 517–526. [Google Scholar] [CrossRef]
- Gartung, C.; Ananthanarayanan, M.; Rahman, M.A.; Schuele, S.; Nundy, S.; Soroka, C.J.; Stolz, A.; Suchy, F.J.; Boyer, J.L. Down-regulation of expression and function of the rat liver Na+/bile acid cotransporter in extrahepatic cholestasis. Gastroenterology 1996, 110, 199–209. [Google Scholar] [CrossRef]
- Jung, D.; Elferink, M.G.L.; Stellaard, F.; Groothuis, G.M.M. Analysis of bile acid-induced regulation of FXR target genes in human liver slices. Liver Int. 2007, 27, 137–144. [Google Scholar] [CrossRef]
- Ananthanarayanan, M.; Balasubramanian, N.; Makishima, M.; Mangelsdorf, D.J.; Suchy, F.J. Human Bile Salt Export Pump Promoter Is Transactivated by the Farnesoid X Receptor/Bile Acid Receptor. J. Biol. Chem. 2001, 276, 28857–28865. [Google Scholar] [CrossRef] [Green Version]
- Kast, H.R.; Goodwin, B.; Tarr, P.T.; Jones, S.A.; Anisfeld, A.M.; Stoltz, C.M.; Tontonoz, P.; Kliewer, S.; Willson, T.M.; Edwards, P.A. Regulation of Multidrug Resistance-associated Protein 2 (ABCC2) by the Nuclear Receptors Pregnane X Receptor, Farnesoid X-activated Receptor, and Constitutive Androstane Receptor. J. Biol. Chem. 2002, 277, 2908–2915. [Google Scholar] [CrossRef] [Green Version]
- Renga, B.; Migliorati, M.; Mencarelli, A.; Cipriani, S.; D’Amore, C.; Distrutti, E.; Fiorucci, S. Farnesoid X receptor suppresses constitutive androstane receptor activity at the multidrug resistance protein-4 promoter. Biochim. Biophys. Acta (BBA)—Gene Regul. Mech. 2011, 1809, 157–165. [Google Scholar] [CrossRef]
- Garzel, B.; Zhang, L.; Huang, S.-M.; Wang, H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr. Drug Metab. 2019, 20, 621–632. [Google Scholar] [CrossRef]
- Purushotham, A.; Xu, Q.; Lu, J.; Foley, J.F.; Yan, X.; Kim, D.-H.; Kemper, J.K.; Li, X. Hepatic Deletion of SIRT1 Decreases Hepatocyte Nuclear Factor 1α/Farnesoid X Receptor Signaling and Induces Formation of Cholesterol Gallstones in Mice. Mol. Cell. Biol. 2012, 32, 1226–1236. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.R.; Soroka, C.J.; Hagey, L.R.; Boyer, J.L. Sirtuin 1 activation alleviates cholestatic liver injury in a cholic acid-fed mouse model of cholestasis. Hepatology 2016, 64, 2151–2164. [Google Scholar] [CrossRef] [Green Version]
- Kauffmann, H.-M.; Pfannschmidt, S.; Zöller, H.; Benz, A.; Vorderstemann, B.; I Webster, J.; Schrenk, D. Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology 2001, 171, 137–146. [Google Scholar] [CrossRef]
- Teng, S.; Piquette-Miller, M. Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis. J. Cereb. Blood Flow Metab. 2007, 151, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Akita, H.; Suzuki, H.; Ito, K.; Kinoshita, S.; Sato, N.; Takikawa, H.; Sugiyama, Y. Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump. Biochim. Biophys. Acta (BBA)—Biomembr. 2001, 1511, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Dolezelova, E.; Prasnicka, A.; Cermanova, J.; Carazo, A.; Hyrsova, L.; Hroch, M.; Mokry, J.; Adamcova, M.; Mrkvicova, A.; Pavek, P.; et al. Resveratrol modifies biliary secretion of cholephilic compounds in sham-operated and cholestatic rats. World J. Gastroenterol. 2017, 23, 7678–7692. [Google Scholar] [CrossRef]
- Zelcer, N.; Reid, G.; Wielinga, P.; Kuil, A.; Van Der Heijden, I.; Schuetz, J.D.; Borst, P. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem. J. 2003, 371, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Vinken, M. In vitro prediction of drug-induced cholestatic liver injury: A challenge for the toxicologist. Arch. Toxicol. 2018, 92, 1909–1912. [Google Scholar] [CrossRef] [Green Version]
- Burban, A.; Sharanek, A.; Humbert, L.; Eguether, T.; Guguen-Guillouzo, C.; Rainteau, M.; Guillouzo, A. Predictive Value of Cellular Accumulation of Hydrophobic Bile Acids As a Marker of Cholestatic Drug Potential. Toxicol. Sci. 2019, 168, 474–485. [Google Scholar] [CrossRef]
- Sharanek, A.; Burban, A.; Humbert, L.; Azzi, P.B.-E.; Felix-Gomes, N.; Rainteau, D.; Guillouzo, A. Cellular Accumulation and Toxic Effects of Bile Acids in Cyclosporine A-Treated HepaRG Hepatocytes. Toxicol. Sci. 2015, 147, 573–587. [Google Scholar] [CrossRef] [Green Version]
- Román, I.D.; Fernández-Moreno, M.D.; Fueyo, J.A.; Roma, M.G.; Coleman, R. Cyclosporin A induced internalization of the bile salt export pump in isolated rat hepatocyte couplets. Toxicol. Sci. 2003, 71, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Sokol, R.J.; Dahl, R.; Devereaux, M.W.; Yerushalmi, B.; E Kobak, G.; Gumpricht, E. Human Hepatic Mitochondria Generate Reactive Oxygen Species and Undergo the Permeability Transition in Response to Hydrophobic Bile Acids. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 235–243. [Google Scholar] [CrossRef]
- Yerushalmi, B.; Dahl, R.; Devereaux, M.W.; Gumpricht, E.; Sokol, R.J. Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 2001, 33, 616–626. [Google Scholar] [CrossRef]
- Gores, G.J.; Miyoshi, H.; Botla, R.; Aguilar, H.I.; Bronk, S.F. Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis: A potential role for mitochondrial proteases. Biochim. Biophys. Acta 1998, 1366, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Rolo, A.P.; Palmeira, C.M.; Holy, J.M.; Wallace, K.B. Role of Mitochondrial Dysfunction in Combined Bile Acid-Induced Cytotoxicity: The Switch Between Apoptosis and Necrosis. Toxicol. Sci. 2004, 79, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Setchell, K.D.; Rodrigues, C.; Clerici, C.; Solinas, A.; Morelli, A.; Gartung, C.; Boyer, J. Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Gastroenterology 1997, 112, 226–235. [Google Scholar] [CrossRef]
- Burban, A.; Sharanek, A.; Guguen-Guillouzo, C.; Guillouzo, A. Endoplasmic reticulum stress precedes oxidative stress in antibi-otic-induced cholestasis and cytotoxicity in human hepatocytes. Free Radic. Biol. Med. 2018, 115, 166–178. [Google Scholar] [CrossRef]
- van der Vlies, D.; Makkinje, M.; Jansens, A.; Braakman, I.; Verkleij, A.J.; Wirtz, K.W.; Post, J.A. Oxidation of ER resident proteins upon oxidative stress: Effects of altering cellular redox/antioxidant status and implications for protein maturation. Antioxid. Redox Signal. 2003, 5, 381–387. [Google Scholar] [CrossRef]
- Kim, S.; Han, S.Y.; Yu, K.S.; Han, D.; Ahn, H.-J.; Jo, J.-E.; Kim, J.-H.; Shin, J.; Park, H.-W. Impaired autophagy promotes bile acid-induced hepatic injury and accumulation of ubiquitinated proteins. Biochem. Biophys. Res. Commun. 2018, 495, 1541–1547. [Google Scholar] [CrossRef]
- Nah, J.; Zhai, P.; Huang, C.-Y.; Fernández, F.; Mareedu, S.; Levine, B.; Sadoshima, J. Upregulation of Rubicon promotes autosis during myocardial ischemia/reperfusion injury. J. Clin. Investig. 2020, 130, 2978–2991. [Google Scholar] [CrossRef]
- Li, M.; Cai, S.-Y.; Boyer, J.L. Mechanisms of bile acid mediated inflammation in the liver. Mol. Asp. Med. 2017, 56, 45–53. [Google Scholar] [CrossRef]
- Mita, S.; Suzuki, H.; Akita, H.; Hayashi, H.; Onuki, R.; Hofmann, A.F.; Sugiyama, Y. Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab. Dispos. 2006, 34, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Heredi-Szabo, K.; Kis, E.; Molnar, E.; Gyorfi, A.; Krajcsi, P. Characterization of 5(6)-carboxy-2′,7′-dichlorofluorescein transport by MRP2 and utilization of this substrate as a fluorescent surrogate for LTC4. J. Biomol. Screen. 2008, 13, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Brecklinghaus, T.; Albrecht, W.; Kappenberg, F.; Duda, J.; Vartak, N.; Edlund, K.; Marchan, R.; Ghallab, A.; Cadenas, C.; Günther, G.; et al. The hepatocyte export carrier inhibition assay improves the separation of hepatotoxic from non-hepatotoxic compounds. Chem. Biol. Interact. 2022, 351, 109728. [Google Scholar] [CrossRef]
- De Bruyn, T.; Ye, Z.W.; Peeters, A.; Sahi, J.; Baes, M.; Augustijns, P.F.; Annaert, P.P. Determination of OATP-, NTCP- and OCT-mediated substrate uptake activities in individual and pooled batches of cryopreserved human hepatocytes. Eur. J. Pharm. Sci. 2011, 43, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Yang, K.; Brouwer, K.R.; St Claire, R.L., 3rd; Brouwer, K.L. Prediction of Altered Bile Acid Disposition Due to Inhibition of Multiple Transporters: An Integrated Approach Using Sandwich-Cultured Hepatocytes, Mechanistic Modeling, and Simula-tion. J. Pharmacol. Exp. Ther. 2016, 358, 324–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seward, D.J.; Koh, A.S.; Boyer, J.L.; Ballatori, N.; Loris, R.; Marianovsky, I.; Lah, J.; Laeremans, T.; Engelberg-Kulka, H.; Glaser, G.; et al. Functional Complementation between a Novel Mammalian Polygenic Transport Complex and an Evolutionarily Ancient Organic Solute Transporter, OSTα-OSTβ. J. Biol. Chem. 2003, 278, 27473–27482. [Google Scholar] [CrossRef] [Green Version]
- van de Wiel, S.M.W.; de Waart, D.R.; Oude Elferink, R.P.J.; van de Graaf, S.F.J. Intestinal Farnesoid X Receptor Activation by Phar-macologic Inhibition of the Organic Solute Transporter α-β. Cell Mol. Gastroenterol. Hepatol. 2017, 5, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Malinen, M.M.; Kauttonen, A.; Beaudoin, J.J.; Sjöstedt, N.; Honkakoski, P.; Brouwer, K.L.R. Novel in Vitro Method Reveals Drugs That Inhibit Organic Solute Transporter Alpha/Beta (OSTα/β). Mol. Pharm. 2018, 16, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Kis, E.; Ioja, E.; Nagy, T.; Szente, L.; Herédi-Szabó, K.; Krajcsi, P. Effect of Membrane Cholesterol on BSEP/Bsep Activity: Species Specificity Studies for Substrates and Inhibitors. Drug Metab. Dispos. 2009, 37, 1878–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, R.E.; Trauner, M.; Van Staden, C.J.; Lee, P.H.; Ramachandran, B.; Eschenberg, M.; Afshari, C.A.; Qualls, C.W.; Lightfoot-Dunn, R.; Hamadeh, H.K. Interference with Bile Salt Export Pump Function Is a Susceptibility Factor for Human Liver Injury in Drug Development. Toxicol. Sci. 2010, 118, 485–500. [Google Scholar] [CrossRef]
- Marion, T.L.; Perry, C.H.; St Claire, R.L., 3rd; Brouwer, K.L. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes. Toxicol. Appl. Pharmacol. 2012, 261, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, D.F.; Fredriksson Puigvert, L.; Messner, S.; Mortiz, W.; Ingelman-Sundberg, M. Hepatic 3D spheroid models for the de-tection and study of compounds with cholestatic liability. Sci. Rep. 2016, 6, 35434. [Google Scholar] [CrossRef]
- Ramaiahgari, S.C.; Ferguson, S.S. Organotypic 3D HepaRG Liver Model for Assessment of Drug-Induced Cholestasis. Methods Mol. Biol. 2019, 1981, 313–323. [Google Scholar] [CrossRef]
- Schadt, S.; Simon, S.; Kustermann, S.; Boess, F.; McGinnis, C.; Brink, A.; Lieven, R.; Fowler, S.; Youdim, K.; Ullah, M.; et al. Minimizing DILI risk in drug discovery—A screening tool for drug candidates. Toxicol. Vitr. 2015, 30, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.E.; van Staden, C.J.; Chen, Y.; Kalyanaraman, N.; Kalanzi, J.; Dunn, R.T., 2nd; Afshari, C.A.; Hamadeh, H.K. A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development. Toxicol. Sci. 2013, 136, 216–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenna, J.G.; Taskar, K.S.; Battista, C.; Bourdet, D.L.; Brouwer, K.L.; Brouwer, K.R.; Dai, D.; Funk, C.; Hafey, M.J.; Lai, Y.; et al. Can Bile Salt Export Pump Inhibition Testing in Drug Discovery and Development Reduce Liver Injury Risk? An International Transporter Consortium Perspective. Clin. Pharmacol. Ther. 2018, 104, 916–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riede, J.; Poller, B.; Huwyler, J.; Camenisch, G. Assessing the Risk of Drug-Induced Cholestasis Using Unbound Intrahepatic Concentrations. Drug Metab. Dispos. 2017, 45, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Yucha, R.W.; He, K.; Shi, Q.; Cai, L.; Nakashita, Y.; Xia, C.Q.; Liao, M. In Vitro Drug-Induced Liver Injury Prediction: Criteria Opti-mization of Efflux Transporter IC50 and Physicochemical Properties. Toxicol. Sci. 2017, 157, 487–499. [Google Scholar] [CrossRef]
- Aleo, M.D.; Shah, F.; Allen, S.; Barton, H.A.; Costales, C.; Lazzaro, S.; Leung, L.; Nilson, A.; Obach, R.S.; Rodrigues, A.D.; et al. Moving beyond Binary Predictions of Human Drug-Induced Liver Injury (DILI) toward Contrasting Relative Risk Potential. Chem. Res. Toxicol. 2019, 33, 223–238. [Google Scholar] [CrossRef]
- Hafey, M.J.; Houle, R.; Tanis, K.Q.; Knemeyer, I.; Shang, J.; Chen, Q.; Baudy, A.; Monroe, J.; Sistare, F.D.; Evers, R. A Two-Tiered In Vitro Approach to De-Risk Drug Candidates for Potential Bile Salt Export Pump Inhibition Liabilities in Drug Discovery. Drug Metab. Dispos. 2020, 48, 1147–1160. [Google Scholar] [CrossRef]
- Garzel, B.; Yang, H.; Zhang, L.; Huang, S.-M.; Polli, J.E.; Wang, H. The Role of Bile Salt Export Pump Gene Repression in Drug-Induced Cholestatic Liver Toxicity. Drug Metab. Dispos. 2013, 42, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Notenboom, S.; Weigand, K.M.; Proost, J.H.; van Lipzig, M.M.; van de Steeg, E.; Broek, P.H.V.D.; Greupink, R.; Russel, F.G.; Groothuis, G.M. Development of a mechanistic biokinetic model for hepatic bile acid handling to predict possible cholestatic effects of drugs. Eur. J. Pharm. Sci. 2018, 115, 175–184. [Google Scholar] [CrossRef]
- Watkins, P.B. The DILI-sim Initiative: Insights into Hepatotoxicity Mechanisms and Biomarker Interpretation. Clin. Transl. Sci. 2019, 12, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Köck, K.; Ferslew, B.C.; Netterberg, I.; Yang, K.; Urban, T.J.; Swaan, P.; Stewart, P.W.; Brouwer, K.L.R. Risk Factors for Development of Cholestatic Drug-Induced Liver Injury: Inhibition of Hepatic Basolateral Bile Acid Transporters Multidrug Resistance-Associated Proteins 3 and 4. Drug Metab. Dispos. 2013, 42, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Benet, L.Z. Measures of BSEP Inhibition In Vitro Are Not Useful Predictors of DILI. Toxicol. Sci. 2017, 162, 499–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshikado, T.; Takada, T.; Yamamoto, T.; Yamaji, H.; Ito, K.; Santa, T.; Yokota, H.; Yatomi, Y.; Yoshida, H.; Goto, J.; et al. Itraconazole-induced cholestasis: Involvement of the inhibition of bile canalicular phospholipid translocator MDR3/ABCB4. Mol. Pharmacol. 2011, 79, 241–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdi, Z.M.; Synal-Hermanns, U.; Yoker, A.; Locher, K.P.; Stieger, B. Role of Multidrug Resistance Protein 3 in Antifungal-Induced Cholestasis. Mol. Pharmacol. 2016, 90, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Sissung, T.M.; Huang, P.A.; Hauke, R.J.; McCrea, E.M.; Peer, C.J.; Barbier, R.H.; Strope, J.D.; Ley, A.M.; Zhang, M.; Hong, J.A.; et al. Severe Hepatotoxicity of Mith-ramycin Therapy Caused by Altered Expression of Hepatocellular Bile Transporters. Mol. Pharmacol. 2019, 96, 158–167. [Google Scholar] [CrossRef]
- Jackson, J.P.; Brouwer, K.R. The C-DILI™ Assay: An Integrated In Vitro Approach to Predict Cholestatic Hepatotoxicity. In Experimental Cholestasis Research; Humana: New York, NY, USA, 2019; pp. 75–85. [Google Scholar] [CrossRef]
- Weaver, R.J.; Blomme, E.A.; Chadwick, A.; Copple, I.M.; Gerets, H.H.J.; Goldring, C.E.; Guillouzo, A.; Hewitt, P.G.; Ingelman-Sundberg, M.; Jensen, K.G.; et al. Managing the challenge of drug-induced liver injury: A roadmap for the development and deployment of preclinical predictive models. Nat. Rev. Drug Discov. 2019, 19, 131–148. [Google Scholar] [CrossRef]
- Sticova, E.; Jirsa, M. ABCB4 disease: Many faces of one gene deficiency. Ann. Hepatol. 2020, 19, 126–133. [Google Scholar] [CrossRef]
Source | Morgan et al., 2013 [144] | Schadt et al., 2015 [143] | Riede et al., 2017 [146] | Yucha et al., 2017 [147] | Kenna et al., 2018 [145] | Aleo et al., 2020 [148] | Hafey et al., 2020 [149] |
---|---|---|---|---|---|---|---|
BSEP assay method | VT (probe: TC) | VT (probe: TC) | VT (probe: TC) | VT (probe: TC) | VT (probe: TC) or SCH (probe: TC) | VT (probe: TC) | VT (probe: TC) |
Recommended DILI risk cut-off/score for BSEP | Css/IC50 ≥ 0.1 | Cplasma/IC50 > 0.05 | IC50/Chep,inlet,u < 26: cholestasis common; 26 < IC50/Chep,inlet,u < 529: cholestasis rare | IC50 < 50 µM | Drugs in discovery: IC50 ≤ 25µM Drugs in discovery to Phase I–II: Css/IC50 ≥ 0.1 | IC50/Cmax,total: Score = 1 if >50–≤100); Score = 2 if >10–≤50); Score = 3 if >1–≤10); Score = 4 if ≤1); | IC50 < 5 µM |
Recommendations for other transporter interaction assays | MRP2, MRP3, and MRP4 recommended | MRP2, MRP3, MRP4, OSTα/β, NTCP, OATP1B1, and OATP1B3 recommended in the case of clinically relevant BSEP inhibition | MRP2, MRP3, and MRP4 not recommended | ||||
Other recommended assays | Reactive metabolites; mitochondrial toxicity; cellular toxicity | In vitro Kp,uu | Reactive metabolites; mitochondrial toxicity; oxidative stress | Cytotoxicity; mitochondrial dysfunction (isolated mitochondria); mitochondrial dysfunction (cell) | Inhibition of TC transport in hMPCC: IC50 for clearance and BEI | ||
Further considerations | MW > 600; cLogP > 3; dose > 100 mg/day | Physicochemical properties |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tátrai, P.; Erdő, F.; Krajcsi, P. Role of Hepatocyte Transporters in Drug-Induced Liver Injury (DILI)—In Vitro Testing. Pharmaceutics 2023, 15, 29. https://doi.org/10.3390/pharmaceutics15010029
Tátrai P, Erdő F, Krajcsi P. Role of Hepatocyte Transporters in Drug-Induced Liver Injury (DILI)—In Vitro Testing. Pharmaceutics. 2023; 15(1):29. https://doi.org/10.3390/pharmaceutics15010029
Chicago/Turabian StyleTátrai, Péter, Franciska Erdő, and Péter Krajcsi. 2023. "Role of Hepatocyte Transporters in Drug-Induced Liver Injury (DILI)—In Vitro Testing" Pharmaceutics 15, no. 1: 29. https://doi.org/10.3390/pharmaceutics15010029
APA StyleTátrai, P., Erdő, F., & Krajcsi, P. (2023). Role of Hepatocyte Transporters in Drug-Induced Liver Injury (DILI)—In Vitro Testing. Pharmaceutics, 15(1), 29. https://doi.org/10.3390/pharmaceutics15010029