Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Main Hypoglycemic Mechanisms of Action
4.1.1. Insulin Signaling
4.1.2. Effects on Lipids
4.1.3. Glucose Metabolism
4.1.4. Influence on the Intestinal Microbiota
4.1.5. Oxidative Stress
4.1.6. Other Mechanisms
4.2. Perspectives for Pharmaceutical Dosage Forms
4.3. Safety Test Assessments
4.4. Pharmacological Assessment
4.5. Other Natural Resources with Anti-DM Potential
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Association Diabetes American Diagnosis and classification of diabetes mellitus. Diabetes Care 2009, 32, S62–S67. [CrossRef] [Green Version]
- Maida, C.D.; Daidone, M.; Pacinella, G.; Norrito, R.L.; Pinto, A.; Tuttolomondo, A. Diabetes and Ischemic Stroke: An Old and New Relationship an Overview of the Close Interaction between These Diseases. Int. J. Mol. Sci. 2022, 23, 2397. [Google Scholar] [CrossRef] [PubMed]
- WHO. Diagnosis and Management of Type 2 Diabetes (HEARTS-D). Geneva. (WHO/UCN/NCD/20.1). Available online: https://www.who.int/publications/i/item/who-ucn-ncd-20.1 (accessed on 17 June 2022).
- National Institutes of Health. What is Diabetes? NIDDK. Available online: https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes (accessed on 16 April 2022).
- National Diabetes Statistics Report. 2020. Available online: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf (accessed on 16 April 2022).
- Association American Diabetes 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Am. Diabetes Assoc. 2021, 44, S15–S33. [Google Scholar]
- International Diabetes Federation. Five questions on the IDF Diabetes Atlas. Diabetes Res. Clin. Pract. 2013, 102, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Mei Wong, J.L.; Sim, Y.J.; Wong, S.S.; Mohamed Elhassan, S.A.; Tan, S.H.; Ling Lim, G.P.; Rong Tay, N.W.; Annan, N.C.; Bhattamisra, S.K.; et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 367–372. [Google Scholar] [CrossRef]
- Salehi, B.; Ata, A.; Kumar, N.V.A.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Ayatollahi, S.A.; Fokou, P.V.T.; Kobarfard, F.; Zakaria, Z.A.; et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Almanza, M.; Cámara-Gómez, R.; Merino-Torres, J.F. Obesity and type 2 diabetes: Also linked in therapeutic options. Endocrinol. Diabetes y Nutr. 2019, 66, 140–149. [Google Scholar] [CrossRef]
- Serván, P.R. Diet recomendations in diabetes and obesity. Nutr. Hosp. 2018, 35, 109–115. [Google Scholar] [CrossRef]
- Xie, F.; Chan, J.C.N.; Ma, R.C.W. Precision medicine in diabetes prevention, classification and management. J. Diabetes Investig. 2018, 9, 998–1015. [Google Scholar] [CrossRef] [Green Version]
- Rey, D.; Ospina, L.; Aragón, D. Inhibitory effects of an extract of fruits of Physalis peruviana on some intestinal carbohydrases. Rev. Colomb. Cienc. Químico-Farm. 2015, 44, 72–89. [Google Scholar] [CrossRef]
- Rey, D.; Miranda Sulis, P.; Alves Fernandes, T.; Gonçalves, R.; Silva Frederico, M.J.; Costa, G.M.; Aragon, M.; Ospina, L.F.; Mena Barreto Silva, F.R. Astragalin augments basal calcium influx and insulin secretion in rat pancreatic islets. Cell Calcium 2019, 80, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Monzón Daza, G.; Meneses Macías, C.; Forero, A.M.; Rodríguez, J.; Aragón, M.; Jiménez, C.; Ramos, F.A.; Castellanos, L. Identification of α-Amylase and α-Glucosidase Inhibitors and Ligularoside A, a New Triterpenoid Saponin from Passiflora ligularis Juss (Sweet Granadilla) Leaves, by a Nuclear Magnetic Resonance-Based Metabolomic Study. J. Agric. Food Chem. 2021, 69, 2919–2931. [Google Scholar] [CrossRef] [PubMed]
- Bernal, C.A.; Castellanos, L.; Aragón, D.M.; Martínez-Matamoros, D.; Jiménez, C.; Baena, Y.; Ramos, F.A. Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as α-amylase inhibitors. Carbohydr. Res. 2018, 461, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M.; Santini, A. Molecular Sciences Plants and Diabetes: Description, Role, Comprehension and Exploitation. Int. J. Mol. Sci. 2021, 22, 3938. [Google Scholar] [CrossRef] [PubMed]
- Ríos, J.L.; Francini, F.; Schinella, G.R. Natural Products for the Treatment of Type 2 Diabetes Mellitus. Planta Med. 2015, 81, 975–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.S.; Hoyte, C. Review of Biguanide (Metformin) Toxicity. J. Intensive Care Med. 2019, 34, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wei, J.; Tan, F.; Zhou, S.; Würthwein, G.; Rohdewald, P. Antidiabetic effect of Pycnogenol® French maritime pine bark extract in patients with diabetes type II. Life Sci. 2004, 75, 2505–2513. [Google Scholar] [CrossRef]
- Vitetta, L.; Butcher, B.; Dal Forno, S.; Vitetta, G.; Nikov, T.; Hall, S.; Steels, E. A Double-Blind Randomized Placebo-Controlled Study Assessing the Safety, Tolerability and Efficacy of a Herbal Medicine Containing Pycnogenol Combined with Papain and Aloe vera in the Prevention and Management of Pre-Diabetes. Medicines 2020, 7, 22. [Google Scholar] [CrossRef]
- Governa, P.; Baini, G.; Borgonetti, V.; Cettolin, G.; Giachetti, D.; Magnano, A.R.; Miraldi, E.; Biagi, M. Phytotherapy in the management of diabetes: A review. Molecules 2018, 23, 105. [Google Scholar] [CrossRef] [Green Version]
- Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Type 2 diabetes mellitus: A review of multi-target drugs. Molecules 2020, 25, 1987. [Google Scholar] [CrossRef]
- AragónNovoa, D. Passifloraligularis Juss. (Granadilla): Farmacológicos de una Estudios Químicos y Plantacon Potencial Terapéutico; Universidad Nacional de Colombia—Sede Bogotá: Bogotá, Colombia, 2021. [Google Scholar]
- Narayan, T.; Sanjay, B.; Bhaswati, K.; Simanta, B.; Sagar, B.; Barsha, D.; Yunus, S.; Seydur, R.; Aparajita, G.; Pratim, D.P.; et al. A Herbal Composition from Premna herbacea, Useful for Prevention of Obesity and Type 2 Diabetes and a Method for Its Extraction. WO Patent 2020115767 (A1), 11 June 2020. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20200611&CC=WO&NR=2020115767A1&KC=A1 (accessed on 29 March 2022).
- Saya, O.; Reiko, T.; Takuya, Y.; Norio, I. Agent for Suppressing Carbohydrate Breakdown and Absorption. U.S. Patent 2020147160 [A1], 14 May 2020. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20200514&CC=US&NR=2020147160A1&KC=A1 (accessed on 29 March 2022).
- Lal, H. A Novel Synergic Herbal Formulation for the Prevention and Treatment of Pre-Diabetes, Diabetes and Other Insulin Resistance Cases. WO Patent 2020012299 [A1], 16 January 2020. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20200116&CC=WO&NR=2020012299A1&KC=A1 (accessed on 29 March 2022).
- Patanjali, S.; Sundaram, C.; Jayashree, M.; Anilkumar, K.; Sarala, S.; Bishwajit, N.; Ramesh, V.; Nitish, N.; Jayarajan, K. Herbal Composition. SG Patent 11201908574T [A], 30 October 2019. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20191030&CC=SG&NR=11201908574TA&KC=A (accessed on 29 March 2022).
- Hexiao, S.; Guolong, L. Composite Preparation for Improving Insulin Resistance, Preparation Method and Application. WO Patent 2019205943 [A1], 31 October 2019. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20191031&CC=WO&NR=2019205943A1&KC=A1 (accessed on 29 March 2022).
- Vasant, S.C.; Anantrao, S.V. Plant Fractions Having Anti-Pathogenesis Properties. WO Patent 2019186579 [A1], 3 October 2019. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20191003&CC=WO&NR=2019186579A1&KC=A1 (accessed on 29 March 2022).
- Vieira, K. Herbal Nutraceutical Formulation to Reduce Oxidative Stress, Viral and Microbial Infections, and Inflammation. U.S. Patent 2019209634 [A1], 11 July 2019. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20190711&CC=US&NR=2019209634A1&KC=A1 (accessed on 29 March 2022).
- Kasim, T. The Use of Jerusalem Thorn Fruits as Herbal Tea For Diabetes Treatment. WO Patent 2019088958 [A2], 9 May 2019. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20190509&CC=WO&NR=2019088958A2&KC=A2 (accessed on 29 March 2022).
- Diaz, A.M.L.; Uribe, J.A.G.; Torres, N.T.Y.; Palacio, A.R.T.; Lopez, L.G.N. Agavaceae Extract Comprising Steroidal Saponins to Treat or Prevent Metabolic Disorder Related Pathologies. MX Patent 2018004489 [A], 21 January 2019. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20190121&CC=MX&NR=2018004489A&KC=A (accessed on 29 March 2022).
- Eishin, K.; Shinya, H. Gnetin c-Rich Melinjo Extract and Production Method Thereof. U.S. Patent 2019031635 [A1], 31 January 2019. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20190131&CC=US&NR=2019031635A1&KC=A1 (accessed on 29 March 2022).
- Housey, G.; Balash, M.E. Plant Extracts with Anti-Diabetic and Other Useful Activities. AU Patent 2018278958 [A1], 17 January 2019. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20190117&CC=AU&NR=2018278958A1&KC=A1 (accessed on 29 March 2022).
- Vijayabhanu, S. Herbo-Mineral Formulation for Prevention, Treatment and Management of Diabetes and Method of Preparation Thereof. U.S. Patent 2019125816 [A1], 2 May 2019. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20190502&CC=US&NR=2019125816A1&KC=A1 (accessed on 29 March 2022).
- Lien, P.-J.; Sun, C.-C.; Kuo, T.-C.; Yang, S.-C.; Wu, Y.-C.; Chang, F.-R.; Hsieh, T.-J.; Tsai, Y.-H.; Du, Y.-C. Extract of Toona Sinensis from Supercritical Fluid Extraction for Treating Diabetes and Metabolic Disease, the Preparation Method and the Use Thereof. U.S. Patent 2017252393 [A1], 7 September 2017. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20170907&CC=US&NR=2017252393A1&KC=A1 (accessed on 29 March 2022).
- Wah, M.C.; Zhen, L.; Xia, Z.; Xiaolei, G. Compositions Comprising Cyclocarya Paliurus Extract and Preparation Method and Uses Thereof. U.S. Patent 2017173103 [A1], 22 June 2017. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20170622&CC=US&NR=2017173103A1&KC=A1 (accessed on 29 March 2022).
- Arvind, S.; Parikshit, G.; Aslam, B.; Somesh, S. Herbal Composition for the Treatment of Metabolic Disorders. NZ Patent 630125 [A], 27 January 2017. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20170127&CC=NZ&NR=630125A&KC=A (accessed on 29 March 2022).
- Ko, Y.-F.; Jan, M.; Liau, J.-C.; Chang, I.-T.; Lee, C.-S.; Wang, W.-C.; Chiu, W.-C.; Chang, C.Y.; Lin, C.-S.; Wu, T.-R.; et al. Method to Prepare Hirsutella Sinensis Polysaccharides Possessing Insulin-Sensitizing Properties and Applications Thereof. U.S. Patent 2016361341 [A1], 15 December 2016. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20161215&CC=US&NR=2016361341A1&KC=A1 (accessed on 29 March 2022).
- Horn, G.; Trimbo, S. Compositions Capable of Enhancing Thermogenesis and Uses Thereof. U.S. Patent 2016228400 [A1], 11 August 2016. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20160811&CC=US&NR=2016228400A1&KC=A1 (accessed on 29 March 2022).
- Sik, H.K.; Yong, C.J.; Young, P.S.; Zhangjun, H. Composition Comprising Suaeda Japonica for Preventing or Alleviating Diabetes. U.S. Patent 2016067294 [A1], 10 March 2016. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20160310&CC=US&NR=2016067294A1&KC=A1 (accessed on 29 March 2022).
- Mihaylivna, M.S.; Oleksandrivna, S.A.; Yurivna, K.O. Herbal Species for Treatment of Diabetes Mellitus Type ll. UA Patent 104161 [U], 12 January 2016. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20160112&CC=UA&NR=104161U&KC=U (accessed on 29 March 2022).
- Gaikwad, S.B.; Krishna Mohan, G.; Rani, M.S. Phytochemicals for Diabetes Management. Pharm. Crop. 2014, 5, 983–992. [Google Scholar] [CrossRef]
- Xia, B.; Shi, X.C.; Xie, B.C.; Zhu, M.Q.; Chen, Y.; Chu, X.Y.; Cai, G.H.; Liu, M.; Yang, S.Z.; Mitchell, G.A.; et al. Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biol. 2020, 18, e3000688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laddha, A.P.; Kulkarni, Y.A. Tannins and vascular complications of Diabetes: An update. Phytomedicine 2019, 56, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tian, L. A new flavone glucoside together with known ellagitannins and flavones with anti-diabetic and anti-obesity activities from the flowers of pomegranate (Punica granatum). Nat. Prod. Res. 2019, 33, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Ferreira, D.; Seeram, N. Punicatannins A and B: α-glucosidase inhibitory ellagitannins from pomegranate (Punica granatum) flowers. Planta Med. 2012, 78, PI154. [Google Scholar] [CrossRef]
- Lee, M.; Nam, S.-H.; Yoon, H.-G.; Kim, S.; You, Y.; Choi, K.-C.; Lee, Y.-H.; Lee, J.; Park, J.; Jun, W. Fermented Curcuma longa L. Prevents Alcoholic Fatty Liver Disease in Mice by Regulating CYP2E1, SREBP-1c, and PPAR-α. J. Med. Food 2022, 25, 456–463. [Google Scholar] [CrossRef]
- Pujimulyani, D.; Yulianto, W.A.; Setyowati, A.; Arumwardana, S.; Kusuma, H.S.W.; Sholihah, I.A.; Rizal, R.; Widowati, W.; Maruf, A. Hypoglycemic activity of curcuma mangga val. Extract via modulation of GLUT4 and ppar-γ mrna expression in 3T3-L1 adipocytes. J. Exp. Pharmacol. 2020, 12, 363–369. [Google Scholar] [CrossRef]
- Mohammadi, E.; Behnam, B.; Mohammadinejad, R.; Guest, P.C.; Simental-Mendía, L.E.; Sahebkar, A. Antidiabetic Properties of Curcumin: Insights on New Mechanisms. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2021; Volume 1291. [Google Scholar]
- Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients 2019, 11, 1837. [Google Scholar] [CrossRef] [Green Version]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Yu, G.; Hao, W.; Yang, K.; Chen, H. The efficacy and safety of Curcuma longa extract and curcumin supplements on osteoarthritis: A systematic review and meta-analysis. Biosci. Rep. 2021, 41, 6. [Google Scholar] [CrossRef]
- Jin, T.; Song, Z.; Weng, J.; Fantus, I.G. Curcumin and other dietary polyphenols: Potential mechanisms of metabolic actions and therapy for diabetes and obesity. Am. J. Physiol.—Endocrinol. Metab. 2018, 314, E201–E205. [Google Scholar] [CrossRef] [PubMed]
- Scazzocchio, B.; Minghetti, L.; D’archivio, M. Interaction between gut microbiota and curcumin: A new key of understanding for the health effects of curcumin. Nutrients 2020, 12, 2499. [Google Scholar] [CrossRef] [PubMed]
- Nazaruk, J.; Borzym-Kluczyk, M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem. Rev. 2015, 14, 675–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.Y.; Chen, H.S.; Wu, P.P.; Zhang, B.J.; Yang, Y.; Zhu, Q.Y.; Zhang, C.G.; Zhao, S.Q. Synthesis and biological evaluation of novel oleanolic acid analogues as potential α-glucosidase inhibitors. Eur. J. Med. Chem. 2019, 164, 706–716. [Google Scholar] [CrossRef]
- Ding, H.; Hu, X.; Xu, X.; Zhang, G.; Gong, D. Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α-glucosidase. Int. J. Biol. Macromol. 2018, 107, 1844–1855. [Google Scholar] [CrossRef]
- Chen, W.; Balan, P.; Popovich, D.G. Review of ginseng anti-diabetic studies. Molecules 2019, 24, 4501. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Gao, H.Y.; Fan, Z.Y.; He, Y.; Yan, Y.X. Metabolomics signatures in type 2 diabetes: A systematic review and integrative analysis. J. Clin. Endocrinol. Metab. 2020, 105. [Google Scholar] [CrossRef]
- Kim, Y.A.; Keogh, J.B.; Clifton, P.M. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr. Res. Rev. 2018, 31, 35–51. [Google Scholar] [CrossRef]
- Judge, A.; Dodd, M.S. Metabolism. Essays Biochem. 2020, 64, 607–647. [Google Scholar] [CrossRef]
- Tokarz, V.L.; MacDonald, P.E.; Klip, A. The cell biology of systemic insulin function. J. Cell Biol. 2018, 217, 2273–2289. [Google Scholar] [CrossRef] [Green Version]
- Sims, E.K.; Carr, A.L.J.; Oram, R.A.; DiMeglio, L.A.; Evans-Molina, C. 100 years of insulin: Celebrating the past, present and future of diabetes therapy. Nat. Med. 2021, 27, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Devangan, S.; Varghese, B.; Johny, E.; Gurram, S.; Adela, R. The effect of Gymnema sylvestre supplementation on glycemic control in type 2 diabetes patients: A systematic review and meta-analysis. Phyther. Res. 2021, 35, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Sandech, N.; Jangchart, R.; Komolkriengkrai, M.; Boonyoung, P.; Khimmaktong, W. Efficiency of Gymnema sylvestre-derived gymnemic acid on the restoration and improvement of brain vascular characteristics in diabetic rats. Exp. Ther. Med. 2021, 22, 1420. [Google Scholar] [CrossRef] [PubMed]
- Al-Romaiyan, A.; Liu, B.; Persaud, S.; Jones, P. A novel Gymnema sylvestre extract protects pancreatic beta-cells from cytokine-induced apoptosis. Phyther. Res. 2020, 34, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Abdulrahman, M.D.; Zakariya, A.M.; Hama, H.A.; Hamad, S.W.; Al-Rawi, S.S.; Bradosty, S.W.; Ibrahim, A.H. Ethnopharmacology, Biological Evaluation, and Chemical Composition of Ziziphus spina- christi (L.) Desf.: A Review. Adv Pharmacol. Pharm. Sci. 2022, 2022, 4495688. [Google Scholar] [CrossRef]
- Kane, J.P.; Pullinger, C.R.; Goldfine, I.D.; Malloy, M.J. Dyslipidemia and diabetes mellitus: Role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Curr. Opin. Pharmacol. 2021, 61, 32–37. [Google Scholar] [CrossRef]
- Athyros, V.G.; Michael Doumas Konstantinos P Imprialos; Stavropoulos, K.; Georgianou, E.; Katsimardou, A.; Karagiannis, A. Diabetes and lipid metabolism. Hormones 2018, 17, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Manukumar, H.M.; Shiva Kumar, J.; Chandrasekhar, B.; Raghava, S.; Umesha, S. Evidences for diabetes and insulin mimetic activity of medicinal plants: Present status and future prospects. Crit. Rev. Food Sci. Nutr. 2017, 57, 2712–2729. [Google Scholar] [CrossRef]
- Choi, H.M.; Doss, H.M.; Kim, K.S. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int. J. Mol. Sci. 2020, 21, 1219. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Judd, R.L. Adiponectin regulation and function. Compr. Physiol. 2018, 8, 1031–1063. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Lebelo, S.L. Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. Oxid. Med. Cell. Longev. 2020, 2020, 1356893. [Google Scholar] [CrossRef] [PubMed]
- EMA. Assessment Report on Panax Ginseng C.A. Meyer, Radix 2014. Available online: https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-panax-ginseng-ca-meyer-radix_en.pdf (accessed on 19 September 2022).
- Muñoz-Garach, A.; Diaz-Perdigones, C.; Tinahones, F.J. Gut microbiota and type 2 diabetes mellitus. Endocrinol. Nutr. 2016, 63, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Hills, R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut microbiome: Profound implications for diet and disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Betz, M.J.; Enerbäck, S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat. Rev. Endocrinol. 2018, 14, 77–87. [Google Scholar] [CrossRef]
- Pfeiffer, A.F.H.; Klein, H.H. Therapie des diabetes mellitus typ 2. Dtsch. Arztebl. Int. 2014, 111, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Abrilla, A.A.; Pajes, A.N.N.I.; Jimeno, C.A. Metformin extended-release versus metformin immediate-release for adults with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2021, 178, 108824. [Google Scholar] [CrossRef]
- Li, H.; Qi, J.; Li, L. Phytochemicals as potential candidates to combat obesity via adipose non-shivering thermogenesis. Pharmacol. Res. 2019, 147, 104393. [Google Scholar] [CrossRef]
- Chukwuma, C.I.; Matsabisa, M.G.; Ibrahim, M.A.; Erukainure, O.L.; Chabalala, M.H.; Islam, M.S. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. J. Ethnopharmacol. 2019, 235, 329–360. [Google Scholar] [CrossRef]
- Anderson, L.A. Drug Names and Their Pharmaceutical Salts—Clearing Up the Confusion. Drugs.com. 2022. Available online: https://www.drugs.com/article/pharmaceutical-salts.html (accessed on 14 October 2022).
- de Freitas, C.D.T.; Nishi, B.C.; do Nascimento, C.T.M.; Silva, M.Z.R.; Bezerra, E.H.S.; Rocha, B.A.M.; Grangeiro, T.B.; de Oliveira, J.P.B.; Souza, P.F.N.; Ramos, M.V. Characterization of Three Osmotin-Like Proteins from Plumeria rubra and Prospection for Adiponectin Peptidomimetics. Protein Pept. Lett. 2020, 27, 593–603. [Google Scholar] [CrossRef]
- Sushma, M.; Raju, Y.; Sundaresan, C.R.; Vandana, K.R.; Kumar, N.; Chowdary, V. Transmucosal Delivery of Metformin- A Comprehensive Study. Curr. Drug Deliv. 2014, 11, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Modgill, V.; Garg, T.; Goyal, A.; Rath, G. Transmucosal Delivery of Linagliptin for the Treatment of Type- 2 Diabetes Mellitus by Ultra-Thin Nanofibers. Curr. Drug Deliv. 2015, 12, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.J.; Lan, K.C.; Kang, H.Y.; Liu, Y.C.; Der Hsuuw, Y.; Chan, W.H.; Huang, K.E. Effect of curcumin on in vitro early post-implantation stages of mouse embryo development. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 166, R713–R715. [Google Scholar] [CrossRef] [PubMed]
- Felter, S.P.; Vassallo, J.D.; Carlton, B.D.; Daston, G.P. A safety assessment of coumarin taking into account species-specificity of toxicokinetics. Food Chem. Toxicol. 2006, 44, 462–475. [Google Scholar] [CrossRef]
- Miura, T.; Uehara, S.; Shimizu, M.; Murayama, N.; Suemizu, H.; Yamazaki, H. Roles of human cytochrome P450 1A2 in coumarin 3,4-epoxidation mediated by untreated hepatocytes and by those metabolically inactivated with furafylline in previously transplanted chimeric mice. J. Toxicol. Sci. 2021, 46, 525–530. [Google Scholar] [CrossRef]
- Hsieh, C.Y.J.; Sun, M.; Osborne, G.; Ricker, K.; Tsai, F.C.; Li, K.; Tomar, R.; Phuong, J.; Schmitz, R.; Sandy, M.S. Cancer Hazard Identification Integrating Human Variability: The Case of Coumarin. Int. J. Toxicol. 2019, 38, 455–468. [Google Scholar] [CrossRef]
- Zjablovskaja, P.; Danek, P.; Kardosova, M.; Alberich-Jorda, M. Proliferation and differentiation of murine myeloid precursor 32d/g-csf-r cells. J. Vis. Exp. 2018, 2018, e57033. [Google Scholar] [CrossRef]
- Pandey, S.; Dvorakova, M.C. Future Perspective of Diabetic Animal Models. Endocr. Metab. Immune Disord.—Drug Targets 2019, 20. [Google Scholar] [CrossRef]
- Kottaisamy, C.P.D.; Raj, D.S.; Prasanth Kumar, V.; Sankaran, U. Experimental animal models for diabetes and its related complications—A review. Lab. Anim. Res. 2021, 37, 23. [Google Scholar] [CrossRef]
- Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008, 51, 536–546. [Google Scholar] [CrossRef] [Green Version]
- NIH. Search of: Herbal. Diabetes Mellitus. Adult—List Results—ClinicalTrials.gov 2022. Available online: https://www.clinicaltrials.gov/ct2/results?term=herbal&cond=Diabetes+Mellitus&age=1# (accessed on 21 September 2022).
- Gammone, M.A.; D’Orazio, N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar. Drugs 2015, 13, 2196–2214. [Google Scholar] [CrossRef] [PubMed]
- Bannu, S.M.; Lomada, D.; Gulla, S.; Chandrasekhar, T.; Reddanna, P.; Reddy, M.C. Potential Therapeutic Applications of C-Phycocyanin. Curr. Drug Metab. 2019, 20, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.J.; Kim, K.J.; Choi, J.; Koh, E.J.; Lee, B.Y. Spirulina maxima extract reduces obesity through suppression of adipogenesis and activation of browning in 3T3-L1 cells and high-fat diet-induced obese mice. Nutrients 2018, 10, 712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.R.; Lin, C.S.; Chang, C.J.; Lin, T.L.; Martel, J.; Ko, Y.F.; Ojcius, D.M.; Lu, C.C.; Young, J.D.; Lai, H.C. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut 2019, 68, 248–262. [Google Scholar] [CrossRef]
- Lu, Z.; Li, S.; Sun, R.; Jia, X.; Xu, C.; Aa, J.; Wang, G. Hirsutella sinensis Treatment Shows Protective Effects on Renal Injury and Metabolic Modulation in db/db Mice. Evid.-Based Complement. Altern. Med. 2019, 2019, 4273290. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Forootanfar, H.; Ameri, A.; Foroutanfar, A.; Adeli-Sardou, M.; Rahimi, H.R.; Najafi, A.; Zangiabadi, N.; Shakibaie, M. Antioxidant, cytotoxic and hyperalgesia-suppressing activity of a native Shilajit obtained from Bahr Aseman mountains. Pak. J. Pharm. Sci. 2019, 32, 2167–2173. [Google Scholar]
- Pathiraja, P.M.Y.S.; Ranatunga, Y.M.M.K.; Herapathdeniya, S.K.M.K.; Gunawardena, S.H.P. Swarna Makshika Bhasma preparation using an alternative heating method to traditional Varaha Puta. J. Ayurveda Integr. Med. 2020, 11, 529–530. [Google Scholar] [CrossRef]
- Kantak, S.; Rajurkar, N.; Adhyapak, P. Synthesis and characterization of Abhraka (mica) bhasma by two different methods. J. Ayurveda Integr. Med. 2020, 11, 236–242. [Google Scholar] [CrossRef]
- Singh, A.; Ota, S.; Srikanth, N.; Galib, R.; Bojja, S.; Dhiman, K.S. Application of Spectroscopic and Chromatographic Methods for Chemical Characterization of an Ayurvedic Herbo-Mineral Preparation: Maha Yograja Guggulu. J. Evidence-Based Integr. Med. 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- Pareek, A.; Bhatnagar, N. Physico-chemical characterization of traditionally prepared Yashada bhasma. J. Ayurveda Integr. Med. 2020, 11, 228–235. [Google Scholar] [CrossRef]
Year | Country | Registration Number | Species | Part of the Plant | Secondary Metabolites | Mechanism of Action | Formulation | Safety Assessments | Efficacy Tests | Ref |
---|---|---|---|---|---|---|---|---|---|---|
2020 | WO | WO2020115767 (A1) | Premna herbacea | Leaves | isoverbascoside | Improved insulin signaling via the AKT/AM PK pathway | ND | A single dose of 2000 mg/kg of P. herbacea methanol extract was reported as safe after acute toxicity evaluation in Swiss ICR male mice. | In vitro: [a] Uptake of glucose in L6 cells [b] Total accumulation of lipids in HepG2 cell lines by staining with oil red 0 In vivo: ND Clinical studies: ND | [25] |
2020 | US | US11007237 (B2); US2020147160 (A1) | Pinus spp. | Resin | ND | α-glucosidase inhibition | Syrup, tablets, capsules, granules, and powders. | ND | In vitro: [a] Suppression of α-glucosidase activity [b] Ability to uptake glucose Clinical studies: ND | [26] |
2020 | WO | WO2020012299 (A1) | Curcuma longa, Phylanthus emblica | ND | ND | Insulin sensitization and antihyperglycemic | ND | Efficacy studies were carried out with non-cytotoxic doses after evaluation of cytotoxicity and PPAR γ expression in fibroblasts using the MTT assay. | In vitro: [a] Evaluation of PPAR γ expression in fibroblasts cell culture. In vivo: Evaluation of streptozotocin-induced insulin resistance in rats. Clinical studies: ND | [27] |
2019 | SG | SG11201908574T (A) | Curcuma longa, Emblica officinalis, Vernonia anthelmintica, Tinospora cordifolia, Trigonella foenum-graecum, Ixora coccinea, Syzygium cumini | ND | Tannins, organic acids, curcuminoids | ND | Powders, pastes, granules, capsules, tablets, emulsions, suspensions, syrup, elixir, oral drops, and nutraceuticals | Acute toxicity test in male and female Swiss ICR mice, at doses. It was reported as safe. | In vitro: [a] Evaluation of glucose uptake potential in L6 cells [rat skeletal muscle cells] In vivo: ND Clinical studies: ND | [28] |
2019 | WO | WO2019205943 (A1) | Polygonatum spp., Poria cocos, Lycium barbarum, Pueraria Panax ginseng, Shiitake, cordyceps, Ganoderma lucidum, Hericium erinaceus, Tremella Dendrobium officinale | ND | Flavonoids and oligosaccharides (inulin, fructooligosaccharides, oligosaccharides) | Reduction in the proportion of Firmicutes/Bacteroides in the gastrointestinal tract. | ND | The description of the methodology was not detailed, but it was concluded that the preparation is safe. | In vitro: AND In vivo: Oral glucose tolerance test in different groups of mice. Clinical studies: ND | [29] |
2019 | WO | WO2019186579 (A1) | Trigonella foenum-graecum, Solanum lycopersicum, Dudhi bhopla, Lagenaria siceraria, Vitis vinifera, Medicago sativa | Roots, stems, leaves, buds, flowers, fruits, and seeds. | Osmotin | Adiponectin agonists/mimetics. Activation of the AMPK pathway | Tablets, syrup, granules, and film for transmucosal administration. | ND | In vitro: ND In vivo: ND Clinical studies: ND | [30] |
2019 | US | US10967025 (B2) US2019209634 (A1) | Moringa Oleifera, Origanum vulgare, Shilajit, Blue-Green Algea, Phyllanthus emblica, Piper nigrum, Salvia rosmarinus, Punica granatum, Trigonella foenum-graecum, Curcuma longa. | Leaves, fruits, and seeds. | Polyphenols, carvacrol, phycocyanin | Antioxidant and anti-inflammatory—via COX-1 inhibition | Capsules | ND | In vitro: [a] ROS absorption capacity [b] DPPH radical scavenging activity [c] Oxidation of LDL in a cell-free system [d] Insulin release in islets of rats [e] Effect on cholesterol absorption in Caco-2 cells [f] Effect on COX-1 Enzyme activity. In vivo: ND Clinical studies: ND | [31] |
2019 | WO | WO2019088958 (A2); WO2019088958 (A3) | Paiiurus spina-christi | Fruits | Naringenin | Effect on ALT and AST regulation enzyme levels, antioxidant activity, increased insulin secretion, regulates blood glucose, and increased magnesium absorption | ND | ND. | In vitro: ND In vivo: Rats with streptozotocin-induced diabetes Clinical studies: ND | [32] |
2019 | MX | MX2018004489 (A) | Agavaceae spp. | Leaves, rhizomes, and mead | Steroidal saponins and sapogenins (kammogenin, manogenin, gentrogenin, and hecogenin). | Lipid and glucose metabolism improvements, energy expenditure, gut microbiota health, muscle oxidative capacity, and thermogenesis, stimulating PGC-1Q and UCP1, and activating AMPK | Pills, capsules. | ND | In vitro: ND In vivo: ND Clinical studies: ND | [33] |
2019 | US | US10640480 (B2); US2019031635 (A1) | Gnetum gnemon | Fruits | Gnetin C | Antioxidant, antibacterial, inhibition of lipase enzymes, α-glucosidase, and α-amylase. | Powders, granules, tablets, capsules. | ND | In vitro: ND In vivo: ND Clinical studies: ND | [34] |
2019 | AU | AU2018278958 (A1); AU2018278958 (B2) | Cichorium endivia, Latifolium; Lactuca sativa, Longifolia; Lactuca sativa. Plantas das famílias Asteraceae spp., Lamiaceae spp., Brassicaceae spp., Amaranthaceae spp. | Fruits, leaves, stems, and roots | ND | IRS2 branch activation of the insulin-mediated signal transduction cascade. | N.D. | ND | In vitro: ND In vivo: ND Clinical studies: ND | [35] |
2019 | US | US10576117 (B2); US2019125816 (A1) | Salacia chinensis, Gymnema sylvestre, Emblica officinalis, Eugenia jambolana, Curcuma longa, Commiphora mukul, Tinospora cordifolia. Ithania somnifera, Terminalia chebula, Andrographis paniculata, Boerhavia diffusa, Azhadirachta indica, Aristolochia indica, Aegle marmelos, Cyperus rotundus, Hemedesmus indicus, Trichosanthes dioica, Santalum alba, Terminalia arjuna, Woodfordia fruiticosa, Glycerrhiza glabra, Mucuna pruriens, Myrica nagi, Plumbago rosea, Inula racemosa, Zingiber officinalis, Piper longum y Piper nigrum | Roots, fruits, bark, leaves, heartwood, flowers, seeds, rhizomes, gum resin, and stems. | ND | Lipids/cholesterol reduction, tissue phosphatases, and tissue transaminases reduction, reversal of glycogen depletion, pancreatic islets cell regeneration, hypoglycemic, hypolipidemic, cytoprotective, and immunomodulatory action. FBS, PPBS, HbA1C reduction | Tablets, granules, capsules, solution, emulsion, suspension | According to OECD guidelines in rodent tests 423, 407, 408, and 452. It was reported as safe. | In vitro: ND In vivo: Model of diabetes in Wistar rats diabetic by alloxan. Clinical studies: A prospective, open-label, non-randomized, phase III clinical trial conducted in outpatients at Muniyal Ayurvedic Hospital and Research Centre, Manipal, India. | [36] |
2017 | US | US10668122 (B2); US2017252393 (A1) | Toona sinensis | leaves | Monoterpenes, diterpenes, triterpenes, sesquiterpenes, saturated and unsaturated fatty acids | Glucose absorption improvements, lipid degradation, inhibition of large lipid clusters, and inhibition of metabolic syndrome | ND | ND | In vitro: 24 h glucose consumption of 3T3-L1 adipocyte culture medium. 2- Adipogenesis blocked by TS-SCF in adipocytes 3- Antidiabetic effect of high to medium/high polar components of TSL, except TSL-SCF In vivo: ND Clinical studies: ND | [37] |
2017 | US | US10111923 (B2); US2017173103 (A1) | Cyclocarya paliurus, Puerariae lobatae Radix, Polygonati odorati Rhizoma. L | ND | ND | ND | Pills, capsules, granules, powders, or tea formulation | ND | In vitro: ND In vivo: Rats with streptozotocin-induced diabetes Clinical studies: ND | [38] |
2017 | NZ | NZ630125 (A) | Calophyllum inophyllum | Cortex | ND | Inhibition of DGAT-1 and SCD-1 enzyme activity | Tablets, coated tablets, capsules, powders, granules, elixir, and syrup. | ND | In vitro: 1- Assay of DGAT-1. 2- Inhibition of hDGAT-1 3- SCD-1 Assay 4- Triglyceride synthesis assay in HepG2 cells In vivo: Streptozotocin-induced diabetic rats fed a high-fat diet. Clinical studies: ND | [39] |
2016 | US | US2016361341 (A1); US9828442 (B2) | Hirsutella sinensis | ND | Polysaccharides | Hyperglycemia reduction and improvement of insulin sensitivity in humans and animals. | ND | ND | In vitro: ND In vivo: Streptozotocin-induced diabetic rats fed a high-fat diet. Clinical studies: ND | [40] |
2016 | US | US10028930 (B2); US2016228400 (A1) | Ephedra sinica and brown algae concentrate | ND | Fucoxanthin, caffeine, alkaloids such as ephedrine | Thermogenesis potentiator | Extended-release tablets, transdermal patches | ND | In vitro: ND In vivo: ND Clinical studies: ND | [41] |
2016 | US | US10799547 (B2); US2016067294 (A1) | Suaeda japonica | Leaves and seeds | ND | The cytoprotective activity of pancreatic β-cells, hypoglycemic action, insulin secretion increase, improvement of glucose tolerance, and increase of adiponectin content in the blood. | Pills, powders, granules, capsules. | ND | In vitro: ND In vivo: Overfeeding diabetic OLETF mice. ND clinical studies | [42] |
2016 | UA | UA104161 (U) | Equiseti arvensis, Sambucus spp., Hypericum perforatum, Tiliae spp., Polygonum aviculare, Urticae spp. Inula helenium e Mirtilli spp. | Flowers, leaves. Additional plant material: rhizomes and roots | Ascorbic acid, tannins, organic acids, flavonoids, hydroxycinnamic acids | Hypoglycemic action due to exposure to glucagon-like peptide 1 [GLP-1]. Increased insulin levels, improves carbohydrate and lipid metabolism. | ND | ND | In vitro: ND In vivo: Alloxan-diabetic female rats. Clinical studies: ND | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, I.A.; Serafini, M.; Alves, I.A.; Lang, K.L.; Silva, F.R.M.B.; Aragón, D.M. Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review. Pharmaceutics 2023, 15, 85. https://doi.org/10.3390/pharmaceutics15010085
Rodríguez IA, Serafini M, Alves IA, Lang KL, Silva FRMB, Aragón DM. Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review. Pharmaceutics. 2023; 15(1):85. https://doi.org/10.3390/pharmaceutics15010085
Chicago/Turabian StyleRodríguez, Ingrid Andrea, Mairim Serafini, Izabel Almeida Alves, Karen Luise Lang, Fátima Regina Mena Barreto Silva, and Diana Marcela Aragón. 2023. "Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review" Pharmaceutics 15, no. 1: 85. https://doi.org/10.3390/pharmaceutics15010085
APA StyleRodríguez, I. A., Serafini, M., Alves, I. A., Lang, K. L., Silva, F. R. M. B., & Aragón, D. M. (2023). Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review. Pharmaceutics, 15(1), 85. https://doi.org/10.3390/pharmaceutics15010085