Novel Iron-Chelating Prodrug Significantly Enhanced Fluorescence-Mediated Detection of Glioma Cells Experimentally In Vitro
Abstract
:1. Introduction
1.1. Glioma and Fluorescence-Guided Resection
1.2. PpIX and the Haem Biosynthesis Pathway
1.3. PpIX and Iron Chelation
1.4. AP2-18, a Novel Prodrug
1.5. Intraoperative Photodynamic Therapy in Glioma
1.6. Aim of the Present Study
2. Materials and Methods
2.1. Cell Culture
2.2. Test Compound Preparation
2.3. Incubation of Cells with Test Compounds
2.4. PpIX Fluorescence Quantification
2.5. Photodynamic Therapy of Cells
2.6. Neutral Red Cell Viability Assay
2.7. Data Analysis
3. Results
3.1. PpIX Fluorescence
3.2. PDT-Induced Cell Death
4. Discussion
4.1. PpIX Fluorescence
4.1.1. AP2-18 Significantly Increased PpIX Fluorescence
4.1.2. AP2-18 Increased PpIX Fluorescence in a Shorter Time Frame than Other Compounds
4.1.3. Separate Administration of CP94 Appeared to Decrease PpIX Fluorescence
4.2. PDT-Induced Cell Death
4.2.1. PDT-Induced Cell Death Was Achieved with All Test Compound Combinations
4.2.2. Low Cytotoxicity Observed in Control Cells
4.2.3. Lack of PpIX Fluorescence Correlation with Post-PDT Cell Viability
4.3. Limitations of the Present Study and Areas for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Komori, T. The 2016 WHO Classification of Tumours of the Central Nervous System: The Major Points of Revision. Neurol. Med. Chir. 2017, 57, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Botros, D.; Dux, H.; Price, C.; Khalafallah, A.M.; Mukherjee, D. Assessing the Efficacy of Repeat Resections in Recurrent Glioblastoma: A Systematic Review. Neurosurg. Rev. 2021, 44, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Goenka, A.; Tiek, D.; Song, X.; Huang, T.; Hu, B.; Cheng, S.-Y. The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells 2021, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Rapp, M.; Baernreuther, J.; Turowski, B.; Steiger, H.-J.; Sabel, M.; Kamp, M.A. Recurrence Pattern Analysis of Primary Glioblastoma. World Neurosurg. 2017, 103, 733–740. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence (NICE). Brain Tumours (Primary) and Brain Metastases in Adults: Guidance. Available online: https://www.nice.org.uk/guidance/ng99 (accessed on 21 October 2023).
- Sterckx, W.; Coolbrandt, A.; Dierckx de Casterlé, B.; Van den Heede, K.; Decruyenaere, M.; Borgenon, S.; Mees, A.; Clement, P. The Impact of a High-Grade Glioma on Everyday Life: A Systematic Review from the Patient’s and Caregiver’s Perspective. Eur. J. Oncol. Nurs. 2013, 17, 107–117. [Google Scholar] [CrossRef]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.-J. Fluorescence-Guided Surgery with 5-Aminolevulinic Acid for Resection of Malignant Glioma: A Randomised Controlled Multicentre Phase III Trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Mansi, M.; Howley, R.; Chandratre, S.; Chen, B. Inhibition of ABCG2 Transporter by Lapatinib Enhances 5-Aminolevulinic Acid-Mediated Protoporphyrin IX Fluorescence and Photodynamic Therapy Response in Human Glioma Cell Lines. Biochem. Pharm. 2022, 200, 115031. [Google Scholar] [CrossRef]
- Kiening, M.; Lange, N. A Recap of Heme Metabolism towards Understanding Protoporphyrin IX Selectivity in Cancer Cells. Int. J. Mol. Sci. 2022, 23, 7974. [Google Scholar] [CrossRef]
- Peng, Q.; Berg, K.; Moan, J.; Kongshaug, M.; Nesland, J.M. 5-Aminolevulinic Acid-Based Photodynamic Therapy: Principles and Experimental Research. Photochem. Photobiol. 1997, 65, 235–251. [Google Scholar] [CrossRef]
- Tyrrell, J.; Paterson, C.; Curnow, A. Regression analysis of protoporphyrin IX measurements obtained during dermatological photodynamic therapy. Cancers 2019, 11, 72. [Google Scholar] [CrossRef]
- Curnow, A.; Pye, A. The Importance of Iron Chelation and Iron Availability during PpIX-Induced Photodynamic Therapy. Photonics Lasers Med. 2015, 4, 39–58. [Google Scholar] [CrossRef]
- Lee, P.K.; Kloser, A. Current Methods for Photodynamic Therapy in the US: Comparison of MAL/PDT and ALA/PDT. J. Drugs Dermatol. 2013, 12, 925–930. [Google Scholar] [PubMed]
- Chan, D.T.M.; Yi-Pin Sonia, H.; Poon, W.S. 5-Aminolevulinic Acid Fluorescence Guided Resection of Malignant Glioma: Hong Kong Experience. Asian J. Surg. 2018, 41, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Orillac, C.; Stummer, W.; Orringer, D.A. Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection. Neurosurgery 2020, 89, 727–736. [Google Scholar] [CrossRef]
- Blake, E.; Allen, J.; Curnow, A. An in Vitro Comparison of the Effects of the Iron-Chelating Agents, CP94 and Dexrazoxane, on Protoporphyrin IX Accumulation for Photodynamic Therapy and/or Fluorescence Guided Resection. Photochem. Photobiol. 2011, 87, 1419–1426. [Google Scholar] [CrossRef]
- Piffaretti, D.; Burgio, F.; Thelen, M.; Kaelin-Lang, A.; Paganetti, P.; Reinert, M.; D’Angelo, M.L. Protoporphyrin IX Tracer Fluorescence Modulation for Improved Brain Tumor Cell Lines Visualization. J. Photochem. Photobiol. B Biol. 2019, 201, 111640. [Google Scholar] [CrossRef]
- Berg, K.; Anholt, H.; Bech, O.; Moan, J. The Influence of Iron Chelators on the Accumulation of Protoporphyrin IX in 5-Aminolaevulinic Acid-Treated Cells. Br. J. Cancer 1996, 74, 688–697. [Google Scholar] [CrossRef]
- Pye, A.; Curnow, A. Direct comparison of delta-aminolevulinic acid and methyl-aminolevulinate-derived protoporphyrin IX accumulations potentiated by desferrioxamine or the novel hydroxypyridinone iron chelator CP94 in cultured human cells. Photochem. Photobiol. 2007, 83, 766–773. [Google Scholar] [CrossRef]
- Nomoto, T.; Komoto, K.; Nagano, T.; Ishii, T.; Guo, H.; Honda, Y.; Ogura, S.; Ishizuka, M.; Nishiyama, N. Polymeric iron chelators for enhancing 5-aminolevulinic acid-induced photodynamic therapy. Cancer Sci. 2023, 114, 1086–1094. [Google Scholar] [CrossRef]
- Curnow, A.; Wood, M.; Perry, A. Novel Iron Chelating Prodrug (AP2-18) for Protoporphyrin IX-Induced Photodynamic Therapy. WO2014033477A1, 6 March 2014. [Google Scholar]
- Anayo, L.; Magnussen, A.; Perry, A.; Wood, M.; Curnow, A. An Experimental Investigation of a Novel Iron Chelating Protoporphyrin IX Prodrug for the Enhancement of Photodynamic Therapy. Lasers Surg. Med. 2018, 50, 552–565. [Google Scholar] [CrossRef]
- Magnussen, A.; Reburn, C.; Perry, A.; Wood, M.; Curnow, A. Experimental Investigation of a Combinational Iron Chelating Protoporphyrin IX Prodrug for Fluorescence Detection and Photodynamic Therapy. Lasers Med. Sci. 2022, 37, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Rynda, A.Y. Possibilities of Photodynamic Therapy in the Complex Treatment of Malignant Gliomas. Neurosurgery 2019, 66, 310–811. [Google Scholar] [CrossRef]
- Vermandel, M.; Dupont, C.; Lecomte, F.; Leroy, H.-A.; Tuleasca, C.; Mordon, S.; Hadjipanayis, C.G.; Reyns, N. Standardized Intraoperative 5-ALA Photodynamic Therapy for Newly Diagnosed Glioblastoma Patients: A Preliminary Analysis of the INDYGO Clinical Trial. J. Neurooncol. 2021, 152, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Schipmann, S.; Müther, M.; Stögbauer, L.; Zimmer, S.; Brokinkel, B.; Holling, M.; Grauer, O.; Molina, E.S.; Warneke, N.; Stummer, W. Combination of ALA-Induced Fluorescence-Guided Resection and Intraoperative Open Photodynamic Therapy for Recurrent Glioblastoma: Case Series on a Promising Dual Strategy for Local Tumor Control. J. Neurosurg. 2020, 134, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Wen, J.; Mo, Y.; Zhang, P.; Chen, H.; Wen, J. A systematic review and meta-analysis of fluorescent-guided resection and therapy-based photodynamics on the survival of patients with glioma. Lasers Med. Sci. 2022, 37, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Morton, C.; Szeimies, R.; Basset-Seguin, N.; Calzavara-Pinton, P.; Gilaberte, Y.; Hædersdal, M.; Hofbauer, G.F.L.; Hunger, R.E.; Karrer, S.; Piaserico, S.; et al. European Dermatology Forum guidelines on topical photodynamic therapy 2019 Part 1: Treatment delivery and established indications–actinic keratoses, Bowen’s disease and basal cell carcinomas. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 2225–2238. [Google Scholar] [CrossRef] [PubMed]
- Markwardt, N.A.; Haj-Hosseini, N.; Hollnburger, B.; Stepp, H.; Zelenkov, P.; Rühm, A. 405 nm versus 633 nm for protoporphyrin IX excitation in fluorescence-guided stereotactic biopsy of brain tumors. J. Biophotonics 2016, 9, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Dogra, Y.; Ferguson, D.C.J.; Dodd, N.J.F.; Smerdon, G.R.; Curnow, A.; Winyard, P.G. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species. Redox Biol. 2016, 9, 90–99. [Google Scholar] [CrossRef]
- Zhou, T.; Battah, S.; Mazzacuva, F.; Hider, R.C.; Dobbin, P.; MacRobert, A.J. Design of Bifunctional Dendritic 5-Aminolevulinic Acid and Hydroxypyridinone Conjugates for Photodynamic Therapy. Bioconjug. Chem. 2018, 29, 3411–3428. [Google Scholar] [CrossRef]
- Battah, S.; Hider, R.C.; MacRobert, A.J.; Dobbin, P.S.; Zhou, T. Hydroxypyridinone and 5-Aminolaevulinic Acid Conjugates for Photodynamic Therapy. J. Med. Chem. 2017, 60, 3498–3510. [Google Scholar] [CrossRef]
- Moseley, H. Light distribution and calibration of commercial PDT LED arrays. Photochem. Photobiol. Sci. 2005, 4, 911–914. [Google Scholar] [CrossRef]
- Wong, T.H.; Morton, C.A.; Collier, N.; Haylett, A.; Ibbotson, S.; McKenna, K.E.; Mallipeddi, R.; Moseley, H.; Seukeran, D.C.; Rhodes, L.E.; et al. British Association of Dermatologists and British Photodermatology Group Guidelines for Topical Photodynamic Therapy 2018. Br. J. Dermatol. 2019, 180, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral Red Uptake Assay for the Estimation of Cell Viability/Cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
- Valdes, P.A.; Millesi, M.; Widhalm, G.; Roberts, D.W. 5-Aminolevulinic Acid Induced Protoporphyrin IX (ALA-PpIX) Fluorescence Guidance in Meningioma Surgery. J. Neurooncol. 2019, 141, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.; Batlle, A.; Di Venosa, G.; Battah, S.; Dobbin, P.; MacRobert, A.J.; Casas, A. Mechanisms of 5-Aminolevulic Acid Ester Uptake in Mammalian Cells. Br. J. Pharmacol. 2006, 147, 825–833. [Google Scholar] [CrossRef]
- Pass, H.I. Photodynamic Therapy in Oncology: Mechanisms and Clinical Use. J. Natl. Cancer Inst. 1993, 85, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Y.; Dong, R.; Li, W.; Qian, Z.; Yang, Y. All-in-One Device for Mapping the Interactive Effects of Photodynamic Therapy Dosimetry in Tumor Gaseous Microenvironment. J. Photochem. Photobiol. B Biol. 2023, 239, 112645. [Google Scholar] [CrossRef] [PubMed]
- Soeda, A.; Hara, A.; Kunisada, T.; Yoshimura, S.; Iwama, T.; Park, D.M. The Evidence of Glioblastoma Heterogeneity. Sci. Rep. 2015, 5, 7979. [Google Scholar] [CrossRef]
- Dubey, S.K.; Pradyuth, S.K.; Saha, R.N.; Singhvi, G.; Alexander, A.; Agrawal, M.; Shapiro, B.A.; Puri, A. Application of Photodynamic Therapy Drugs for Management of Glioma. J. Porphyr. Phthalocyanines 2019, 23, 1216–1228. [Google Scholar] [CrossRef]
- Davis, R.W.; Papasavvas, E.; Klampatsa, A.; Putt, M.; Montaner, L.J.; Culligan, M.J.; McNulty, S.; Friedberg, J.S.; Simone, C.B.; Singhal, S.; et al. A Preclinical Model to Investigate the Role of Surgically-Induced Inflammation in Tumor Responses to Intraoperative Photodynamic Therapy. Lasers Surg. Med. 2018, 50, 440–450. [Google Scholar] [CrossRef]
- Luo, X.; Zheng, X.; Huang, H. Protective Effects of Dexmedetomidine on Brain Function of Glioma Patients Undergoing Craniotomy Resection and Its Underlying Mechanism. Clin. Neurol. Neurosurg. 2016, 146, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Mathews, M.S.; Chighvinadze, D.; Gach, H.M.; Uzal, F.A.; Madsen, S.J.; Hirschberg, H. Cerebral Edema Following Photodynamic Therapy Using Endogenous and Exogenous Photosensitizers in Normal Brain. Lasers Surg. Med. 2011, 43, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Dupont, C.; Vermandel, M.; Leroy, H.A.; Quidet, M.; Lecomte, F.; Delhem, N.; Mordon, S.; Reyns, N. INtraoperative photoDYnamic Therapy for GliOblastomas (INDYGO): Study protocol for a phase I clinical trial. Neurosurgery 2019, 84, E414–E419. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reburn, C.; Gawthorpe, G.; Perry, A.; Wood, M.; Curnow, A. Novel Iron-Chelating Prodrug Significantly Enhanced Fluorescence-Mediated Detection of Glioma Cells Experimentally In Vitro. Pharmaceutics 2023, 15, 2668. https://doi.org/10.3390/pharmaceutics15122668
Reburn C, Gawthorpe G, Perry A, Wood M, Curnow A. Novel Iron-Chelating Prodrug Significantly Enhanced Fluorescence-Mediated Detection of Glioma Cells Experimentally In Vitro. Pharmaceutics. 2023; 15(12):2668. https://doi.org/10.3390/pharmaceutics15122668
Chicago/Turabian StyleReburn, Charlotte, George Gawthorpe, Alexis Perry, Mark Wood, and Alison Curnow. 2023. "Novel Iron-Chelating Prodrug Significantly Enhanced Fluorescence-Mediated Detection of Glioma Cells Experimentally In Vitro" Pharmaceutics 15, no. 12: 2668. https://doi.org/10.3390/pharmaceutics15122668
APA StyleReburn, C., Gawthorpe, G., Perry, A., Wood, M., & Curnow, A. (2023). Novel Iron-Chelating Prodrug Significantly Enhanced Fluorescence-Mediated Detection of Glioma Cells Experimentally In Vitro. Pharmaceutics, 15(12), 2668. https://doi.org/10.3390/pharmaceutics15122668