Photodynamic Therapy-Induced Anti-Tumor Immunity: Influence Factors and Synergistic Enhancement Strategies
Abstract
:1. Introduction
2. Immunological Effects of PDT
2.1. Activation of Innate Immunity
2.2. Activation of Specific Immunity
DAMP | PRR Receptor | Function | References | |
---|---|---|---|---|
1 | CRT | LRP1 (CD91) | As a pro-phagocytic signal and promoting antigen presentation | [25,26] |
2 | ATP | P2RX7 | Activate inflammatory bodies and promote the secretion of inflammatory factors | [28,31] |
P2RY2 | Attract recruitment of monocytes | |||
3 | HMGB1 | TLR2, TLR4, TLR9 | Promote DC maturation (especially its metastasis to lymph nodes) and activate T cells | [28,30] |
4 | HSP70 | TLR2, TLR4 | Induce DC expression and maturation, and promote cytokine release, especially IL-12 and TNF-α | [32,33,34] |
HSP90 | ||||
5 | Annexin A1 | FPR1 | Help DC move to dying cells | [35] |
6 | CpG DNA | TLR9 | Expression of high levels of MHCII and costimulatory molecules (CD80, CD86) and production of IL-12, interleukin, and other cytokines to promote DC maturation and activation | [36,37] |
7 | CXCL10 | CXCR3 | Induction of DC activation and T cell infiltration | [38] |
8 | ExRNA | TLR3 | Release TNF-α, IL-1β, or IL-6 and other inflammatory cytokines | [39,40,41] |
9 | dsDNA | TLR3, RIG-I | Promote the expression of proinflammatory cytokines type I IFN, etc. | [42] |
10 | dsRNA | TLR3 | Promote the expression of proinflammatory cytokines type I IFN, etc. | [43] |
11 | Type I IFNs | IFNAR1/IFNAR2 | Enhance the function of CTL and NK cells and promote the secretion of CXCL10 | [44,45,46] |
12 | ssRNA | TLR7, TLR8 | Promote the release of other DAMPs, release cytokines, and promote DC maturation | [47,48] |
Photosensitizer | Cell Line | Cell Death Type | Subcellular Localization | DAMP | Immunological Effects of Tumor Cells In Vitro | Immunological Effects of Tumor Cells In Vivo | Reference |
---|---|---|---|---|---|---|---|
Indocyanine green (Scheme 1, Compound 9) | CT26 | Apoptosis | ER | CRT | N/D | Maturation of DCs; CD8+T cells ↑; TNF-α, IFN-γ ↑; Tregs cells ↓; | [49] |
B16 | N/D | Maturation of DCs (CD11c+/CD80+/CD86+↑); CD4+ T cells, CD8+ T cells ↑; IL-6 ↑, TNF-α, IFN-γ ↑; Tregs cells ↓; | |||||
TCPP-TER | 4T1 | N/D | ER | CRT, HMGB1 | Maturation of DCs (CD80+CD86+ ↑); IL-12, TNF-α ↑; | CD8+ T cells ↑; IL-12, TNF-α, INF-γ ↑; | [50] |
Hypericin (Scheme 1, Compound 1) | T24 | Apoptosis | ER | CRT, ATP | Phenotypic maturation of DCs (MHC II, CD80+, CD83+ and CD86+ ↑); | DC phenotype maturation (CD80+, CD83+, CD86+, MHC II ↑); IL-1β ↑, IL-10 ↓; | [18] |
5-aminolevulinic acid (Scheme 1, Compound 6) | PECA | Apoptosis | ER | CRT, HSP70, and HMGB1 | Phenotypic maturation of DCs (CD80+, CD86+ and MHC II↑); IFN-γ, IL-12 ↑; | N/D | [51] |
Porphyrazines (Pz I and Pz III) | MCA205 | Apoptosis | Pz-I: GA and Lys | ATP, HMGB1 | Maturation of DCs (CD80+, CD86+ ↑); | N/D | [52] |
Ferroptosis, Necrosis | Pz-III: ER and Lys | ||||||
Verteporfin (Scheme 1, Compound 7) | CT26 | Apoptosis, Necrosis | N/D | CRT, HSP70, and HMGB1 | Maturation of DCs (CD11c+CD40+CD86+ ↑); | Phenotypic maturation of DCs (CD86+↑); CTL ↑; IFN-γ ↑; Tregs ↓; | [53] |
TPE-PR-FFKDEL | 4T1 | N/D | ER | CRT, ATP, HMGB1, and HSP70 | N/D | DC phenotype maturation (CD80+CD86+ ↑); CD8+ T cells, NK cells ↑; | [54] |
Photosens (Scheme 1, Compound 10) | GL261, MCA205 | Apoptosis, Ferroptosis | Lys | CRT, HMGB1, and ATP | Maturation of DCs (CD86+ ↑); IL-6 ↑; | N/D | [55] |
Photodithazine | GL261, MCA205 | Apoptosis | ER and GA | CRT, HMGB1, and ATP | DC phenotype maturation (CD86+ ↑); IL-6 ↑; | N/D | [55] |
Photofrin (Scheme 1, Compound 2) | C-26 | Apoptosis, Necrosis | N/D | HSP | Maturation of DCs (IL-2 ↑); | CD8+ T cells, NK cells ↑; | [56] |
Cu-TBP nMOF | B16F10 | Apoptosis | N/D | CRT | N/D | Maturation of DCs (CD11+ ↑); IFN-β, CD4+ T cells and CD8+ T cells ↑; | [57] |
Chlorin e6 (Scheme 1, Compound 5) | 4T1 | Apoptosis | N/D | CRT | Phenotypic maturation of DCs (CD80+, CD86+ ↑); | DC phenotype maturation (CD86 ↑); CD8+ T cells, CD4+ T cells ↑; | [58] |
Chlorin e6 (Scheme 1, Compound 5) | B16 | Apoptosis | N/D | CRT, HSP90, HMGB1, and ATP | MI macrophage activation (GBP5, iNOS and MHC-II ↑); IFN-β ↑; | N/D | [59] |
Indocyanine green (Scheme 1, Compound 9) | MC38 | Apoptosis | N/D | CRT, HSP70, and ATP | Maturation of DCs (CD86+ ↑); IL-12-p40 ↑; | Significantly inhibited tumor growth; | [60] |
CT26 | |||||||
Pyrolipid | 4T1 | Apoptosis, Necrosis | N/D | CRT | N/D | TNF-α, IL-6 and IFN-γ ↑; B cells, CD8+ T cells ↑; Significantly inhibited tumor growth; | [61] |
Chlorin e6 (Scheme 1, Compound 5) | 4T1 | Apoptosis | N/D | CRT | DC phenotype maturation (CD80+CD86+ ↑); | DC phenotype maturation (CD80+CD86+ ↑); CD8+ T cells ↑; | [62] |
Chlorin e6 (Scheme 1, Compound 5) | 4T1 | Apoptosis | N/D | CRT, HMGB1, and ATP | Phenotypic maturation of DCs (MHC II, CD86 ↑); | CD8+ T cells, CD4+ T cells and NK cells ↑; | [63] |
Pyropheophorbide | CT26 | Apoptosis, Necrosis | N/D | CRT | N/D | TNF-α, IL-6 and IFN-γ ↑; | [64] |
Porphyrin (Scheme 1, Compound 4) | CT26 | Apoptosis | N/D | CRT, ATP, and HMGB1 | N/D | DC phenotype maturation (CD80+CD86+ ↑); CD8+ T cells ↑; | [65] |
Chlorin e6 (Scheme 1, Compound 5) | LLC or A549 | Apoptosis | N/D | CRT, HSP 90, and HMGB1 | MHC I ↑ | Ce6-PDT showed excellent anti-tumor efficacy; MHC I ↑; | [66] |
Indocyanine green (Scheme 1, Compound 9) | 4T1 | N/D | N/D | CRT | N/D | Phenotypic maturation of DCs (CD86, CD80 ↑); IL-10 and IFN-γ ↑; CD8+ T cells, CD4+ T cells and NK cells ↑; TGF-β ↓; | [67] |
Core-shell gold nanocages coated with manganese dioxide (AuNC@MnO2) | 4T1 | Apoptosis | N/D | CRT, ATP, and HMGB1 | DC phenotype maturation (CD83, CD86 ↑); IL-12 ↑; | Maturation of DCs (CD86+ ↑); NK cells, CD8+ T cells and CD4+ T cells ↑; Treg cells↓; | [68] |
Chlorin e6 (Scheme 1, Compound 5) | 4T1 | Apoptosis, Necrosis | Cytoplasm | CRT, ATP | Maturation of DCs (CD80+CD86+ ↑); | Significantly inhibited tumor growth; CD4+ T cells, CD8+ T cells ↑; | [69] |
2-(1-hexyloxyethyl)-2-devinyl pyropheophor-bide-a (HPPH) | B16F10 | Apoptosis | Endo/Lys then in ER | CRT | N/D | IL-6, TNF-α ↑; CD8+ T cells ↑; | [70] |
Zinc-phthalocyanine | MC38 | Apoptosis | Mitochondria | CRT | N/D | Significantly inhibited tumor growth | [71] |
Zinc-phthalocyanine | TC-1 | Pyroptosis | Mitochondria | CRT, HMGB1 | N/D | Significantly inhibited the growth of primary tumors and metastatic tumors | [72] |
IR780 | CT26 | N/D | Mitochondria | CRT, ATP, HMGB1, and HSP90 | Phenotypic maturation of DCs (CD80+CD86+ ↑); | CD4+T cells and CD8+T cells ↑; Significantly inhibited the growth of primary tumors and metastatic tumors | [73] |
TPE-DPA-TCyP | 4T1 | N/D | Mitochondria | CRT, ATP, HMGB1, and HSP70 | N/D | DC phenotype maturation (CD80+ CD86+ ↑); Significantly inhibited the growth of primary tumors and metastatic tumors; CD4+ T cells, NK cells ↑; | [74] |
3. Influence Factors of the Anti-Tumor Immunity Induced by PDT
3.1. Localization of PSs
3.2. Dose of PSs
3.3. Light Fluence Rate
3.4. Oxygen Content
3.5. Immune System
4. PDT Combined with Other Therapies
4.1. PDT Combines with DC Vaccines
4.2. PDT Combines with Immune Checkpoint Inhibitors
4.3. PDT Combines with Chemotherapy
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucena, S.R.; Salazar, N.; Gracia-Cazana, T.; Zamarron, A.; Gonzalez, S.; Juarranz, A.; Gilaberte, Y. Combined Treatments with Photodynamic Therapy for Non-Melanoma Skin Cancer. Int. J. Mol. Sci. 2015, 16, 25912–25933. [Google Scholar] [CrossRef] [PubMed]
- Togsverd-Bo, K.; Sandberg, C.; Helsing, P.; Mørk, G.; Wennberg, A.M.; Wulf, H.C.; Haedersdal, M. Cyclic photodynamic therapy delays first onset of actinic keratoses in renal transplant recipients: A 5-year randomized controlled trial with 12-month follow-up. J. Eur. Acad. Dermatol. Venereol. 2022, 36, E946–E948. [Google Scholar] [CrossRef]
- Garg, A.D.; Agostinis, P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem. Photobiol. Sci. 2014, 13, 474–487. [Google Scholar] [CrossRef]
- De Santana, W.M.O.S.; Surur, A.K.; Momesso, V.M.; Lopes, P.M.; Santilli, C.V.; Fontana, C.R. Nanocarriers for photodynamic-gene therapy. Photodiagn. Photodyn. Ther. 2023, 43, 103644. [Google Scholar] [CrossRef]
- Barreca, M.; Ingarra, A.M.; Raimondi, M.V.; Spanò, V.; Piccionello, A.P.; De Franco, M.; Menilli, L.; Gandin, V.; Miolo, G.; Barraja, P.; et al. New tricyclic systems as photosensitizers towards triple negative breast cancer cells. Arch. Pharmacal Res. 2022, 45, 806–821. [Google Scholar] [CrossRef] [PubMed]
- Castano, A.P.; Mroz, P.; Hamblin, M.R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535–545. [Google Scholar] [CrossRef]
- Moserova, I.; Kralova, J. Role of ER stress response in photodynamic therapy: ROS generated in different subcellular compartments trigger diverse cell death pathways. PLoS ONE 2012, 7, e32972. [Google Scholar] [CrossRef] [PubMed]
- Mroz, P.; Hashmi, J.T.; Huang, Y.Y.; Lange, N.; Hamblin, M.R. Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev. Clin. Immunol. 2011, 7, 75–91. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheung, Y.K.; Ng, D.K.P.; Fong, W.P. Enhancement of innate and adaptive anti-tumor immunity by serum obtained from vascular photodynamic therapy-cured BALB/c mouse. Cancer Immunol. Immunother. 2021, 70, 3217–3233. [Google Scholar] [CrossRef]
- Nkune, N.W.; Simelane, N.W.N.; Montaseri, H.; Abrahamse, H. Photodynamic Therapy-Mediated Immune Responses in Three-Dimensional Tumor Models. Int. J. Mol. Sci. 2021, 22, 12618. [Google Scholar] [CrossRef]
- Kick, G.; Messer, G.; Goetz, A.; Plewig, G.; Kind, P. Photodynamic therapy induces expression of interleukin 6 by activation of AP-1 but not NF-kappa B DNA binding. Cancer Res. 1995, 55, 2373–2379. [Google Scholar] [PubMed]
- Volanti, C.; Matroule, J.Y.; Piette, J. Involvement of oxidative stress in NF-kappaB activation in endothelial cells treated by photodynamic therapy. Photochem. Photobiol. 2002, 75, 36–45. [Google Scholar] [CrossRef]
- de Vree, W.J.A.; Essers, M.C.; Koster, J.F.; Sluiter, W. Role of Interleukin 1 and Granulocyte Colony-Stimulating Factor in Photofrin-based Photodynamic Therapy of Rat Rhabdomyosarcoma Tumors1. Cancer Res. 1997, 57, 2555–2558. [Google Scholar] [PubMed]
- Sun, J.; Cecic, I.; Parkins, C.S.; Korbelik, M. Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumours. Photochem. Photobiol. Sci. 2002, 1, 690–695. [Google Scholar] [CrossRef]
- Kousis, P.C.; Henderson, B.W.; Maier, P.G.; Gollnick, S.O. Photodynamic Therapy Enhancement of Antitumor Immunity Is Regulated by Neutrophils. Cancer Res. 2007, 67, 10501–10510. [Google Scholar] [CrossRef] [PubMed]
- Stott, B.; Korbelik, M. Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy. Cancer Immunol. Immunother. 2007, 56, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Cecic, I.; Serrano, K.; Gyongyossy-Issa, M.; Korbelik, M. Characteristics of complement activation in mice bearing Lewis lung carcinomas treated by photodynamic therapy. Cancer Lett. 2005, 225, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.D.; Krysko, D.V.; Verfaillie, T.; Kaczmarek, A.; Ferreira, G.B.; Marysael, T.; Rubio, N.; Firczuk, M.; Mathieu, C.; Roebroek, A.J.; et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 2012, 31, 1062–1079. [Google Scholar] [CrossRef]
- Garg, A.D.; Dudek, A.M.; Ferreira, G.B.; Verfaillie, T.; Vandenabeele, P.; Krysko, D.V.; Mathieu, C.; Agostinis, P. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 2013, 9, 1292–1307. [Google Scholar] [CrossRef]
- Verfaillie, T.; Rubio, N.; Garg, A.D.; Bultynck, G.; Rizzuto, R.; Decuypere, J.P.; Piette, J.; Linehan, C.; Gupta, S.; Samali, A.; et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 2012, 19, 1880–1891. [Google Scholar] [CrossRef]
- Garg, A.D.; Krysko, D.V.; Golab, J.; Vandenabeele, P.; Agostinis, P. Contribution of ER Stress to Immunogenic Cancer Cell Death. In Endoplasmic Reticulum Stress in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2012; pp. 413–428. [Google Scholar]
- Chaudhari, N.; Talwar, P.; Parimisetty, A.; Lefebvre d’Hellencourt, C.; Ravanan, P. A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress. Front. Cell. Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Bettigole, S.E.; Glimcher, L.H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 2015, 33, 107–138. [Google Scholar] [CrossRef] [PubMed]
- Ti, D.; Yan, X.; Wei, J.; Wu, Z.; Wang, Y.; Han, W. Inducing immunogenic cell death in immuno-oncological therapies. Chin. J. Cancer Res. 2022, 34, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Panaretakis, T.; Kepp, O.; Brockmeier, U.; Tesniere, A.; Bjorklund, A.C.; Chapman, D.C.; Durchschlag, M.; Joza, N.; Pierron, G.; van Endert, P.; et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009, 28, 578–590. [Google Scholar] [CrossRef]
- Martins, I.; Kepp, O.; Schlemmer, F.; Adjemian, S.; Tailler, M.; Shen, S.; Michaud, M.; Menger, L.; Gdoura, A.; Tajeddine, N.; et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 2011, 30, 1147–1158. [Google Scholar] [CrossRef]
- Donohoe, C.; Senge, M.O.; Arnaut, L.G.; Gomes-da-Silva, L.C. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 188308. [Google Scholar] [CrossRef]
- Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 2012, 12, 860–875. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Warren, S.; Adjemian, S.; Agostinis, P.; Martinez, A.B.; Chan, T.A.; Coukos, G.; Demaria, S.; Deutsch, E.; et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 2020, 8, e000337. [Google Scholar] [CrossRef]
- Bianchi, M.E.; Manfredi, A.A. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev. 2007, 220, 35–46. [Google Scholar] [CrossRef]
- Elliott, M.R.; Chekeni, F.B.; Trampont, P.C.; Lazarowski, E.R.; Kadl, A.; Walk, S.F.; Park, D.; Woodson, R.I.; Ostankovich, M.; Sharma, P.; et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009, 461, 282–286. [Google Scholar] [CrossRef]
- Jalili, A.; Makowski, M.; Switaj, T.; Nowis, D.; Wilczynski, G.M.; Wilczek, E.; Chorazy-Massalska, M.; Radzikowska, A.; Maslinski, W.; Bialy, L.; et al. Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin. Cancer Res. 2004, 10, 4498–4508. [Google Scholar] [CrossRef]
- Korbelik, M.; Sun, J.; Cecic, I. Photodynamic Therapy–Induced Cell Surface Expression and Release of Heat Shock Proteins: Relevance for Tumor Response. Cancer Res. 2005, 65, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.D.; Nowis, D.; Golab, J.; Vandenabeele, P.; Krysko, D.V.; Agostinis, P. Immunogenic cell death, DAMPs and anticancer therapeutics: An emerging amalgamation. Biochim. Biophys. Acta 2010, 1805, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, G.; Chen, Y.; Wang, H.; Hua, Y.; Cai, Z. Immunogenic cell death in cancer therapy: Present and emerging inducers. J. Cell Mol. Med. 2019, 23, 4854–4865. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Luo, T.; Lan, G.; Culbert, A.; Song, Y.; Wu, T.; Jiang, X.; Lin, W. A Nanoscale Metal-Organic Framework to Mediate Photodynamic Therapy and Deliver CpG Oligodeoxynucleotides to Enhance Antigen Presentation and Cancer Immunotherapy. Angew. Chem. Int. Ed. Engl. 2020, 59, 1108–1112. [Google Scholar] [CrossRef]
- Xia, Y.; Gupta, G.K.; Castano, A.P.; Mroz, P.; Avci, P.; Hamblin, M.R. CpG oligodeoxynucleotide as immune adjuvant enhances photodynamic therapy response in murine metastatic breast cancer. J. Biophotonics 2014, 7, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Vummidi, B.R.; Noreen, F.; Alzeer, J.; Moelling, K.; Luedtke, N.W. Photodynamic Agents with Anti-metastatic Activities. ACS Chem. Biol. 2013, 8, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Feng, Y.; Zou, L.; Wang, L.; Chen, H.H.; Cai, J.Y.; Xu, J.M.; Sosnovik, D.E.; Chao, W. Role of Extracellular RNA and TLR3-Trif Signaling in Myocardial Ischemia–Reperfusion Injury. J. Am. Heart Assoc. 2014, 3, e000683. [Google Scholar] [CrossRef]
- Preissner, K.T.; Fischer, S.; Deindl, E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front. Cell Dev. Biol. 2020, 8, 619221. [Google Scholar] [CrossRef]
- Ojcius, D.M.; Noll, F.; Behnke, J.; Leiting, S.; Troidl, K.; Alves, G.T.; Müller-Redetzky, H.; Preissner, K.T.; Fischer, S. Self-extracellular RNA acts in synergy with exogenous danger signals to promote inflammation. PLoS ONE 2017, 12, e0190002. [Google Scholar] [CrossRef]
- Garg, A.D.; Agostinis, P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol. Rev. 2017, 280, 126–148. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, M.J.; Nigro, A.; Casolaro, V.; Rumie Vittar, N.B.; Dal Col, J. Damage-Associated Molecular Patterns Modulation by microRNA: Relevance on Immunogenic Cell Death and Cancer Treatment Outcome. Cancers 2021, 13, 2566. [Google Scholar] [CrossRef]
- Rapoport, B.; Anderson, R. Realizing the Clinical Potential of Immunogenic Cell Death in Cancer Chemotherapy and Radiotherapy. Int. J. Mol. Sci. 2019, 20, 959. [Google Scholar] [CrossRef]
- Vacchelli, E.; Sistigu, A.; Yamazaki, T.; Vitale, I.; Zitvogel, L.; Kroemer, G. Autocrine signaling of type 1 interferons in successful anticancer chemotherapy. Oncoimmunology 2015, 4, e988042. [Google Scholar]
- Fucikova, J.; Moserova, I.; Urbanova, L.; Bezu, L.; Kepp, O.; Cremer, I.; Salek, C.; Strnad, P.; Kroemer, G.; Galluzzi, L.; et al. Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer. Front. Immunol. 2015, 6, 402. [Google Scholar] [CrossRef]
- Locy, H.; de Mey, S.; de Mey, W.; De Ridder, M.; Thielemans, K.; Maenhout, S.K. Immunomodulation of the Tumor Microenvironment: Turn Foe Into Friend. Front. Immunol. 2018, 9, 2909. [Google Scholar] [CrossRef] [PubMed]
- Seelige, R.; Searles, S.; Bui, J.D. Mechanisms regulating immune surveillance of cellular stress in cancer. Cell Mol. Life Sci. 2018, 75, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, J.; Luo, L.; Jiang, M.; Qin, B.; Yin, H.; Zhu, C.; Yuan, X.; Zhang, J.; Luo, Z.; et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zhou, Z.; Yang, W.; Lin, L.S.; Wang, S.; Niu, G.; Song, J.; Chen, X. Endoplasmic Reticulum Targeting to Amplify Immunogenic Cell Death for Cancer Immunotherapy. Nano Lett. 2020, 20, 1928–1933. [Google Scholar] [CrossRef]
- Wang, X.; Ji, J.; Zhang, H.; Fan, Z.; Zhang, L.; Shi, L.; Zhou, F.; Chen, W.R.; Wang, H.; Wang, X. Stimulation of dendritic cells by DAMPs in ALA-PDT treated SCC tumor cells. Oncotarget 2015, 6, 44688–44702. [Google Scholar] [CrossRef]
- Turubanova, V.D.; Mishchenko, T.A.; Balalaeva, I.V.; Efimova, I.; Peskova, N.N.; Klapshina, L.G.; Lermontova, S.A.; Bachert, C.; Krysko, O.; Vedunova, M.V.; et al. Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death. Sci. Rep. 2021, 11, 7205. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Shim, M.K.; Yang, S.; Hwang, H.S.; Cho, H.; Kim, J.; Yun, W.S.; Moon, Y.; Kim, J.; Yoon, H.Y.; et al. Visible-Light-Triggered Prodrug Nanoparticles Combine Chemotherapy and Photodynamic Therapy to Potentiate Checkpoint Blockade Cancer Immunotherapy. ACS Nano 2021, 15, 12086–12098. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, H.; Liu, R.; Chen, C.; Zeng, S.; Liu, Q.; Ding, D. Endoplasmic reticulum targeted AIE bioprobe as a highly efficient inducer of immunogenic cell death. Sci. China Chem. 2020, 63, 1428–1434. [Google Scholar] [CrossRef]
- Turubanova, V.D.; Balalaeva, I.V.; Mishchenko, T.A.; Catanzaro, E.; Alzeibak, R.; Peskova, N.N.; Efimova, I.; Bachert, C.; Mitroshina, E.V.; Krysko, O.; et al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J. Immunother. Cancer 2019, 7, 350. [Google Scholar] [CrossRef]
- Hanlon, J.G.; Adams, K.; Rainbow, A.J.; Gupta, R.S.; Singh, G. Induction of Hsp60 by Photofrin-mediated photodynamic therapy. J. Photochem. Photobiol. B Biol. 2001, 64, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Aung, T.; Li, S.; Fatuzzo, N.; Liang, X.; Lin, W. Nanoscale Metal-Organic Framework Mediates Radical Therapy to Enhance Cancer Immunotherapy. Chem 2019, 5, 1892–1913. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, N.; Sun, H.; Fu, X.; Zhai, S.; Cui, J. Self-adjuvanting photosensitizer nanoparticles for combination photodynamic immunotherapy. Biomater. Sci. 2021, 9, 6940–6949. [Google Scholar] [CrossRef] [PubMed]
- Li, T.F.; Xu, H.Z.; Xu, Y.H.; Yu, T.T.; Tang, J.M.; Li, K.; Wang, C.; Peng, X.C.; Li, Q.R.; Sang, X.Y.; et al. Efficient Delivery of Chlorin e6 by Polyglycerol-Coated Iron Oxide Nanoparticles with Conjugated Doxorubicin for Enhanced Photodynamic Therapy of Melanoma. Mol. Pharm. 2021, 18, 3601–3615. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Chung, C.K.; Gu, Z.; Schomann, T.; Dong, X.; Veld, R.V.H.i.t.; Camps, M.G.M.; ten Dijke, P.; Ossendorp, F.A.; Cruz, L.J. Combinatorial therapeutic approaches of photodynamic therapy and immune checkpoint blockade for colon cancer treatment. Mol. Biomed. 2022, 3, 26. [Google Scholar] [CrossRef]
- Duan, X.; Chan, C.; Guo, N.; Han, W.; Weichselbaum, R.R.; Lin, W. Photodynamic Therapy Mediated by Nontoxic Core-Shell Nanoparticles Synergizes with Immune Checkpoint Blockade To Elicit Antitumor Immunity and Antimetastatic Effect on Breast Cancer. J. Am. Chem. Soc. 2016, 138, 16686–16695. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, Z.; Chen, G.; Li, T.; Peng, Y.; Shuai, X. A pH-sensitive nanomedicine incorporating catalase gene and photosensitizer augments photodynamic therapy and activates antitumor immunity. Nano Today 2022, 43, 101390. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, L.; Liang, R.; Luo, Z.; He, H.; Wu, Z.; Tian, H.; Zheng, M.; Ma, Y.; Cai, L. Bioinspired Hybrid Protein Oxygen Nanocarrier Amplified Photodynamic Therapy for Eliciting Anti-tumor Immunity and Abscopal Effect. ACS Nano 2018, 12, 8633–8645. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Duan, X.; Guo, N.; Chan, C.; Poon, C.; Weichselbaum, R.R.; Lin, W. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 2016, 7, 12499. [Google Scholar] [CrossRef]
- Song, H.; Cai, Z.; Li, J.; Xiao, H.; Qi, R.; Zheng, M. Light triggered release of a triple action porphyrin-cisplatin conjugate evokes stronger immunogenic cell death for chemotherapy, photodynamic therapy and cancer immunotherapy. J. Nanobiotechnol. 2022, 20, 329. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.T.; Hu, J.; Li, Q.R.; Peng, X.C.; Xu, H.Z.; Han, N.; Li, L.G.; Yang, X.X.; Xu, X.; Yang, Z.Y.; et al. Chlorin e6-induced photodynamic effect facilitates immunogenic cell death of lung cancer as a result of oxidative endoplasmic reticulum stress and DNA damage. Int. Immunopharmacol. 2023, 115, 109661. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; He, H.; Luo, Z.; Zhou, H.; Liang, R.; Pan, H.; Ma, Y.; Cai, L. In Situ Photocatalyzed Oxygen Generation with Photosynthetic Bacteria to Enable Robust Immunogenic Photodynamic Therapy in Triple-Negative Breast Cancer. Adv. Funct. Mater. 2020, 30, 1910176. [Google Scholar] [CrossRef]
- Liang, R.; Liu, L.; He, H.; Chen, Z.; Han, Z.; Luo, Z.; Wu, Z.; Zheng, M.; Ma, Y.; Cai, L. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases. Biomaterials 2018, 177, 149–160. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Y.; Sun, Y.; Wan, C.; Zhang, Z.; Dai, X.; Lin, Z.; He, Q.; Yang, Z.; Huang, P.; et al. Co-delivery of Bee Venom Melittin and a Photosensitizer with an Organic-Inorganic Hybrid Nanocarrier for Photodynamic Therapy and Immunotherapy. ACS Nano 2019, 13, 12638–12652. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, F.; Deng, H.; Lin, L.; Wang, S.; Kang, F.; Yu, G.; Lau, J.; Tian, R.; Zhang, M.; et al. Smart Nanovesicle-Mediated Immunogenic Cell Death through Tumor Microenvironment Modulation for Effective Photodynamic Immunotherapy. ACS Nano 2020, 14, 620–631. [Google Scholar] [CrossRef]
- Nash, G.T.; Luo, T.; Lan, G.; Ni, K.; Kaufmann, M.; Lin, W. Nanoscale Metal–Organic Layer Isolates Phthalocyanines for Efficient Mitochondria-Targeted Photodynamic Therapy. J. Am. Chem. Soc. 2021, 143, 2194–2199. [Google Scholar] [CrossRef]
- Wang, H.; Jing, G.; Niu, J.; Yang, L.; Li, Y.; Gao, Y.; Wang, H.; Xu, X.; Qian, Y.; Wang, S. A mitochondria-anchored supramolecular photosensitizer as a pyroptosis inducer for potent photodynamic therapy and enhanced antitumor immunity. J. Nanobiotechnol. 2022, 20, 513. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, C.; Wang, H.; Peng, T.; Zhang, L.; Wang, Y.; Han, W.; Shi, C. Mitochondria-Targeting Immunogenic Cell Death Inducer Improves the Adoptive T-Cell Therapy Against Solid Tumor. Front. Oncol. 2019, 9, 1196. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ni, X.; Jia, S.; Liang, Y.; Wu, X.; Kong, D.; Ding, D. Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure. Adv. Mater. 2019, 31, e1904914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, Y.; Ma, H.; Sun, Y.; Cao, J. How to improve photodynamic therapy-induced antitumor immunity for cancer treatment? Theranostics 2022, 12, 4629–4655. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.D.; Krysko, D.V.; Vandenabeele, P.; Agostinis, P. DAMPs and PDT-mediated photo-oxidative stress: Exploring the unknown. Photochem. Photobiol. Sci. 2011, 10, 670–680. [Google Scholar] [CrossRef]
- Brodin, N.P.; Guha, C.; Tome, W.A. Photodynamic Therapy and Its Role in Combined Modality Anticancer Treatment. Technol. Cancer Res. Treat. 2015, 14, 355–368. [Google Scholar] [CrossRef]
- Alzeibak, R.; Mishchenko, T.A.; Shilyagina, N.Y.; Balalaeva, I.V.; Vedunova, M.V.; Krysko, D.V. Targeting immunogenic cancer cell death by photodynamic therapy: Past, present and future. J. Immunother. Cancer 2021, 9, e001926. [Google Scholar] [CrossRef]
- Teiten, M.H.; Bezdetnaya, L.; Morlière, P.; Santus, R.; Guillemin, F. Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells. Br. J. Cancer 2003, 88, 146–152. [Google Scholar] [CrossRef]
- Kessel, D. Death Pathways Associated with Photodynamic Therapy. Photochem. Photobiol. 2021, 97, 1101–1103. [Google Scholar] [CrossRef]
- Garg, A.D.; Krysko, D.V.; Vandenabeele, P.; Agostinis, P. The emergence of phox-ER stress induced immunogenic apoptosis. OncoImmunology 2014, 1, 786–788. [Google Scholar] [CrossRef]
- Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and Cancer. Cell 2016, 166, 555–566. [Google Scholar] [CrossRef]
- Luzio, J.P.; Pryor, P.R.; Bright, N.A. Lysosomes: Fusion and function. Nat. Rev. Mol. Cell Biol. 2007, 8, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Holland, L.K.K.; Nielsen, I.Ø.; Maeda, K.; Jäättelä, M. SnapShot: Lysosomal Functions. Cell 2020, 181, 748.e741. [Google Scholar] [CrossRef]
- Doix, B.; Trempolec, N.; Riant, O.; Feron, O. Low Photosensitizer Dose and Early Radiotherapy Enhance Antitumor Immune Response of Photodynamic Therapy-Based Dendritic Cell Vaccination. Front. Oncol. 2019, 9, 811. [Google Scholar] [CrossRef]
- Morais, J.A.V.; Almeida, L.R.; Rodrigues, M.C.; Azevedo, R.B.; Muehlmann, L.A. The induction of immunogenic cell death by photodynamic therapy in B16F10 cells in vitro is effected by the concentration of the photosensitizer. PhotoDiagn. Photodyn. Ther. 2021, 35, 102392. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.W.; Gollnick, S.O.; Snyder, J.W.; Busch, T.M.; Kousis, P.C.; Cheney, R.T.; Morgan, J. Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors. Cancer Res. 2004, 64, 2120–2126. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.W.; Busch, T.M.; Snyder, J.W. Fluence rate as a modulator of PDT mechanisms. Lasers Surg. Med. 2006, 38, 489–493. [Google Scholar] [CrossRef]
- Shams, M.; Owczarczak, B.; Manderscheid-Kern, P.; Bellnier, D.A.; Gollnick, S.O. Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease. Cancer Immunol. Immunother. 2015, 64, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Wang, L.; Tang, H.; Cao, D. Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia. J. Mater. Chem. B 2023, 11, 4600–4618. [Google Scholar] [CrossRef]
- Huang, H.; Xie, W.; Hu, D.; He, X.; Li, R.; Zhang, X.; Wei, Y. Type I photodynamic therapy with a self-degradable conjugated polyelectrolyte in combination with CpG adjuvant for cancer immunotherapy. Chem. Eng. J. 2023, 451, 138617. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Yi, H.B.; Wang, F.; Chu, X.; Jiang, J.H. Type I Photosensitizer Targeting G-Quadruplex RNA Elicits Augmented Immunity for Cancer Ablation. Angew. Chem. Int. Ed. Engl. 2023, 62, e202300162. [Google Scholar] [CrossRef] [PubMed]
- Korbelik, M.; Cecic, I. Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy. Cancer Lett. 1999, 137, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Farhood, B.; Najafi, M.; Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol. 2018, 234, 8509–8521. [Google Scholar] [CrossRef]
- Nowarski, R.; Gagliani, N.; Huber, S.; Flavell, R.A. Innate Immune Cells in Inflammation and Cancer. Cancer Immunol. Res. 2013, 1, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Korbelik, M.; Dougherty, G.J. Photodynamic therapy-mediated immune response against subcutaneous mouse tumors. Cancer Res. 1999, 59, 1941–1946. [Google Scholar]
- Hwang, H.S.; Shin, H.; Han, J.; Na, K. Combination of photodynamic therapy (PDT) and anti-tumor immunity in cancer therapy. J. Pharm. Investig. 2018, 48, 143–151. [Google Scholar] [CrossRef]
- Sang, W.; Xie, L.; Wang, G.; Li, J.; Zhang, Z.; Li, B.; Guo, S.; Deng, C.X.; Dai, Y. Oxygen-Enriched Metal-Phenolic X-Ray Nanoprocessor for Cancer Radio-Radiodynamic Therapy in Combination with Checkpoint Blockade Immunotherapy. Adv. Sci. 2020, 8, 2003338. [Google Scholar] [CrossRef]
- Ni, K.; Lan, G.; Song, Y.; Hao, Z.; Lin, W. Biomimetic nanoscale metal–organic framework harnesses hypoxia for effective cancer radiotherapy and immunotherapy. Chem. Sci. 2020, 11, 7641–7653. [Google Scholar] [CrossRef]
- Anguille, S.; Smits, E.L.; Lion, E.; van Tendeloo, V.F.; Berneman, Z.N. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014, 15, e257–e267. [Google Scholar] [CrossRef]
- Cui, W.; Joshi, N.S.; Jiang, A.; Kaech, S.M. Effects of Signal 3 during CD8 T cell priming: Bystander production of IL-12 enhances effector T cell expansion but promotes terminal differentiation. Vaccine 2009, 27, 2177–2187. [Google Scholar] [CrossRef]
- Saxena, M.; Bhardwaj, N. Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment. Trends Cancer 2018, 4, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.D.; Vandenberk, L.; Koks, C.; Verschuere, T.; Boon, L.; Van Gool, S.W.; Agostinis, P. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci. Transl. Med. 2016, 8, 328ra327. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, P.; Wang, X.; Shi, L.; Fan, Z.; Zhang, G.; Yang, D.; Bahavar, C.F.; Zhou, F.; Chen, W.R.; et al. Antitumor Effects of DC Vaccine With ALA-PDT-Induced Immunogenic Apoptotic Cells for Skin Squamous Cell Carcinoma in Mice. Technol. Cancer Res. Treat. 2018, 17, 1533033818785275. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ma, W.J.; Zou, Z.H.; Gao, W.P.; Xue, Z.X.; Li, Y.X. Generation of Antitumor Vaccines for H22 Tumor on Mouse Using Photodynamic Therapy. Chin. J. Lasers 2008, 34, 631–634. [Google Scholar] [CrossRef]
- Cramer, G.M.; Moon, E.K.; Cengel, K.A.; Busch, T.M. Photodynamic Therapy and Immune Checkpoint Blockade(dagger). Photochem. Photobiol. 2020, 96, 954–961. [Google Scholar] [CrossRef]
- Jin, F.; Liu, D.; Xu, X.; Ji, J.; Du, Y. Nanomaterials-Based Photodynamic Therapy with Combined Treatment Improves Antitumor Efficacy Through Boosting Immunogenic Cell Death. Int. J. Nanomed. 2021, 16, 4693–4712. [Google Scholar] [CrossRef]
- Su, Z.; Xiao, Z.; Huang, J.; Wang, Y.; An, Y.; Xiao, H.; Peng, Y.; Pang, P.; Han, S.; Zhu, K.; et al. Dual-Sensitive PEG-Sheddable Nanodrug Hierarchically Incorporating PD-L1 Antibody and Zinc Phthalocyanine for Improved Immuno-Photodynamic Therapy. ACS Appl. Mater. Interfaces 2021, 13, 12845–12856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sang, W.; Xie, L.; Li, W.; Li, B.; Li, J.; Tian, H.; Yuan, Z.; Zhao, Q.; Dai, Y. Polyphenol-Based Nanomedicine Evokes Immune Activation for Combination Cancer Treatment. Angew. Chem. Int. Ed. Engl. 2021, 60, 1967–1975. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Y.; Xu, Y.; Ren, X.; Zhou, S.; Shang, Q.; Jiang, Y.; Luan, Y. Molecular engineering of anti-PD-L1 peptide and photosensitizer for immune checkpoint blockade photodynamic-immunotherapy. Chem. Eng. J. 2020, 400, 125995. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, W.; Jiang, W.; Kumar, A.; Zhou, S.; Cao, Z.; Zhan, S.; Yang, W.; Liu, R.; Teng, Y.; et al. Nanoconjugates to enhance PDT-mediated cancer immunotherapy by targeting the indoleamine-2,3-dioxygenase pathway. J. Nanobiotechnol. 2021, 19, 182. [Google Scholar] [CrossRef]
- Lan, G.; Ni, K.; Xu, Z.; Veroneau, S.S.; Song, Y.; Lin, W. Nanoscale Metal–Organic Framework Overcomes Hypoxia for Photodynamic Therapy Primed Cancer Immunotherapy. J. Am. Chem. Soc. 2018, 140, 5670–5673. [Google Scholar] [CrossRef]
- Sasaki, M.; Tanaka, M.; Kojima, Y.; Nishie, H.; Shimura, T.; Kubota, E.; Kataoka, H. Anti-tumor immunity enhancement by photodynamic therapy with talaporfin sodium and anti-programmed death 1 antibody. Mol. Ther. Oncolytics 2023, 28, 118–131. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Q.; Zhang, X.; Tiemuer, A.; Wang, J.; Zhang, Y.; Sun, X.; Liu, Y. Hot-band absorption assisted single-photon frequency upconversion luminescent nanophotosensitizer for 808 nm light triggered photodynamic immunotherapy of cancer. Biomater. Sci. 2023, 11, 2167–2176. [Google Scholar] [CrossRef]
- Feng, X.; Chen, Z.; Liu, Z.; Fu, X.; Song, H.; Zhang, Q. Self-delivery photodynamic-hypoxia alleviating nanomedicine synergizes with anti-PD-L1 for cancer immunotherapy. Int. J. Pharm. 2023, 639, 122970. [Google Scholar] [CrossRef]
- Zhao, L.; Rao, X.; Zheng, R.; Huang, C.; Kong, R.; Yu, X.; Cheng, H.; Li, S. Targeting glutamine metabolism with photodynamic immunotherapy for metastatic tumor eradication. J. Control. Release 2023, 357, 460–471. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, M.; Zhang, J.; Liu, Y.; Ning, J.; Yang, J.; Zhang, Z.; Hou, L.; Chen, X. In vivo activated T cell targeting with PD-1/PD-L1 blockade for sequential treatment mediated cancer immunotherapy. Nano Today 2022, 44, 101492. [Google Scholar] [CrossRef]
- Wang, Q.; Ju, X.; Wang, J.; Fan, Y.; Ren, M.; Zhang, H. Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies. Cancer Lett. 2018, 438, 17–23. [Google Scholar] [CrossRef]
- Garg, A.D.; More, S.; Rufo, N.; Mece, O.; Sassano, M.L.; Agostinis, P.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 2017, 6, e1386829. [Google Scholar] [CrossRef]
- Kepp, O.; Menger, L.; Vacchelli, E.; Locher, C.; Adjemian, S.; Yamazaki, T.; Martins, I.; Sukkurwala, A.Q.; Michaud, M.; Senovilla, L.; et al. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 2013, 24, 311–318. [Google Scholar] [CrossRef]
- Yao, D.; Wang, Y.; Bian, K.; Zhang, B.; Wang, D. A self-cascaded unimolecular prodrug for pH-responsive chemotherapy and tumor-detained photodynamic-immunotherapy of triple-negative breast cancer. Biomaterials 2023, 292, 121920. [Google Scholar] [CrossRef]
- Wang, D.; Ma, W.; Huang, Y.; Wang, W.; Li, S.; Liu, H.; Zhao, Y.; Peng, D.; Yu, C.-Y.; Wei, H. Supramolecular nanoassemblies-mediated GSH depletion boosts synergistic chemo- and photodynamic therapy for immunogenicity enhancement. Chem. Eng. J. 2023, 468, 143731. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S.Y. Multi-shell structured upconversion nanocarriers that combine IDO inhibitor-induced immunotherapy with NIR-triggered photodynamic therapy for deep tumors. Biomater. Sci. 2023, 11, 4684–4699. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiong, T.; Zhao, X.; Du, J.; Sun, W.; Fan, J.; Peng, X. Tumor Cell-Responsive Photodynamic Immunoagent for Immunogenicity-Enhanced Orthotopic and Remote Tumor Therapy. Adv. Healthc. Mater. 2023, 12, e2202085. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Luo, W.; Liu, Y.; Chen, J.; Deng, H.; Zhou, Z.; Shen, J. Killing three birds with one stone: Multi-stage metabolic regulation mediated by clinically usable berberine liposome to overcome photodynamic immunotherapy resistance. Chem. Eng. J. 2023, 454, 140164. [Google Scholar] [CrossRef]
- Wang, B.; Tang, D.; Karges, J.; Cui, M.; Xiao, H. A NIR-II Fluorescent PolyBodipy Delivering Cationic Pt-NHC with Type II Immunogenic Cell Death for Combined Chemotherapy and Photodynamic Immunotherapy. Adv. Funct. Mater. 2023, 33, 2214824. [Google Scholar] [CrossRef]
- Tian, J.; Wang, J.; Xu, H.; Zou, B.; Chen, W.; Liu, Y.; Chen, J.; Zhang, R. Nanoscale metal-organic framework delivers rapamycin to induce tissue immunogenic cell death and potentiates cancer immunotherapy. Nanomedicine 2023, 50, 102678. [Google Scholar] [CrossRef]
- Wu, H.; Du, X.; Xu, J.; Kong, X.; Li, Y.; Liu, D.; Yang, X.; Ye, L.; Ji, J.; Xi, Y.; et al. Multifunctional biomimetic nanoplatform based on photodynamic therapy and DNA repair intervention for the synergistic treatment of breast cancer. Acta Biomater. 2023, 157, 551–565. [Google Scholar] [CrossRef]
- Mai, Z.; Zhong, J.; Zhang, J.; Chen, G.; Tang, Y.; Ma, W.; Li, G.; Feng, Z.; Li, F.; Liang, X.J.; et al. Carrier-Free Immunotherapeutic Nano-Booster with Dual Synergistic Effects Based on Glutaminase Inhibition Combined with Photodynamic Therapy. ACS Nano 2023, 17, 1583–1596. [Google Scholar] [CrossRef]
Photosensitizer | Cell Line | Animal Type | Immune Checkpoint Inhibitor | Anti-Tumor Effect In Vivo | Reference |
---|---|---|---|---|---|
Cu-TBP nMOF | B16F10 | C57BL/6 | Anti-PD-L1 | Effectively restrain the growth of the primary tumors and metastatic tumors; CD4+ T cells, CD8+ T cells ↑; | [57] |
Verteporfin | CT26 | BALB/c | Anti-PD-L1 | Combined therapy can effectively inhibit the primary tumors and lung metastasis, and establish specific immune memory to prevent tumor recurrence; | [53] |
Indocyanine green | MC38 | C57BL/6J, BALB/c | Anti-CTLA4 | Significantly inhibited tumor growth; CD8+ T cells ↑; | [60] |
Pyrolipid | 4T1 | BALB/c | Anti-PD-L1 | Combined therapy effectively inhibited the growth of primary tumors and lung metastasis; CD4+ T cells, CD8+ T cells ↑, NK cells ↑; | [61] |
Pyropheophorbide | MC38 | C57BL/6 | Anti-PD-L1 | Effectively inhibit the growth of primary tumors and metastatic tumors; CD8+ T cells ↑; | [64] |
CT26 | Effectively inhibit the growth of primary tumors and metastatic tumors; | ||||
Chlorin e6 | 4T1 | BALB/c | Anti-PD-L1 | Significantly inhibited tumor growth; CD8+ T cells ↑; | [69] |
Zinc-phthalocyanine | B16F10 | C57BL/6 | Anti-PD-L1 | Combined therapy can significantly inhibit tumor growth; CD8+ T cells ↑; | [108] |
Chlorin e6 | 4T1 | BALB/c | Anti-PD-L1 | Effectively inhibit the growth of primary tumors and metastatic tumors; Tregs ↓; IL-6, IFN-γ and TNF-α ↑; | [109] |
IR780 | B16F10 | C57BL/6 | Anti-PD-L1 | Combined therapy can significantly inhibit tumor growth and effectively promote T cell infiltration; | [110] |
ZnF16Pc | B16F10 | C57BL/6 | Anti-PD-L1 | Significantly inhibited tumor growth; Memory T cells, CD8+ T cells ↑; Tregs ↓; | [111] |
Fe-TBP | CT26 | BALB/c | Anti-PD-L1 | Combined therapy can significantly inhibit tumor growth; CD4+ T cells, CD8+ T cells ↑; | [112] |
Talaporfin | MC38 | C57BL/6 | Anti-PD-L1 | Combined therapy inhibited tumor growth on both the unirradiated side and the irradiated side; CD4+ T cells, CD8+ T cells ↑; PD-L1 ↓; | [113] |
PdPc (OBu) 8 | 4T1 | BALB/c | Anti-PD-L1 | The treatment of PdPc-PDT plus anti-PD-L1 can induce an anti-tumor immune response to delay the growth of primary and distant tumors; CD8+ T cells ↑; | [114] |
PpⅨ | CT26 | BALB/c | Anti-PD-L1 | ATO/PpⅨ-PDT plus Anti-PD-L1 can improve tumor hypoxic immunosuppressive microenvironment and inhibit tumor growth; CD80+CD86+↑; TNF-α, IFN-γ, IL-12 ↑; CD8+ T cells ↑; | [115] |
Chlorin e6 | 4T1 | N/D | BMS-1 | Drastically reduced the lung and liver metastasis; Fas, PD-L1 ↑; CD8+ T cells ↑; | [116] |
Photosensitizer | Drug | NPs | Cell Line | Experiment In Vitro | Experiment In Vivo | Reference |
---|---|---|---|---|---|---|
Chlorin e6 | 1-methyl-tryptophan (1MT) | The MSUCNs were modified with folic acid (FA) as a tumor-targeting ligand, Ce6 as a PS, and 1-methyl-tryptophan (1MT) as an indoleamine 2,3-dioxygenase (IDO) inhibitor | Hela | Inhibit the IDO pathway, thereby promoting T cell activity (CD4+ T cells, CD8+ T cells ↑) | N/D | [123] |
AIEgen | Doxorubicin | A self-cascading unimolecular prodrug (named: AIE-pep-DOX), which is formed by coupling doxorubicin and the aggregation-induced emission PS to a caspase-3 response peptide | 4T1 | DC maturation (CD40, CD80, CD86 ↑); TNF-α, IL-12 and IFN-γ ↑; | AIE-pep-DOX can delay tumor growth; AIE-pep-DOX + anti PD-L1 showed the strongest anti-tumor effects; functional T cell activation (Tregs ↓, CD8+/CD4+ T cells ↑); | [121] |
ICy-NH2 | The indoleamine 2,3-dioxygenase 1 inhibitor NLG919 | Conjugated ICy-NH2 with NLG919 through a glutathione (GSH)-cleavable linker. (Named: ICy-NLG) | 4T1 | DAMPs release (CRT, HMGB1 and ATP ↑); | ICy-NH2 can efficiently inhibit the growth of primary tumors; DC maturation (CD80, CD86 ↑); CTL recruitment (CD8+ T cells ↑, Tregs ↓); TNF-α, IFN-γ, IL-6 and IL-12p70 ↑; | [124] |
IR68 | Berberine | Constructed tumor-targeting liposome by combining IR68 with berberine. (Named: BBR@IR68-Lip) | CT26, MB49 | Reverse hypoxia in tumors; Decrease the expression of PD-L1; DAMP release (CRT ↑); | BBR@IR68-Lip can significantly inhibit tumor growth in CT26 tumor models; downregulate the expression of PD-L1 and IDO1 protein; effector T cell infiltration (CD4+ T cells, CD8+ T cells ↑); | [125] |
Bodipy | A platinum complex Pt-NHC | Formation of nanoparticles by electrostatic interaction of bodipy and Pt-NHC in water. (Named: NP2) | 4T1 | DAMP release (CRT, HMGB1 and ATP ↑); DC maturation (CD80, CD86 ↑); | NP2 can be effectively delivered to the tumor site and significantly inhibit tumor growth; DAMP release (CRT, HMGB1 ↑); DC maturation (CD80, CD86 ↑); T cell infiltration (CD4+ T cells, CD8+ T cells ↑); | [126] |
Porphyrin metal-organic framework PCN-224 | Rapamycin | A multifunctional nanoplatform was formed by wrapping bovine serum albumin (BSA) with rapamycin and loading it on PPCN-224, subsequently coated with hyaluronic acid (HA). (Named: RAPA@BSA-PCN@HA) | 4T1 | DAMP release (CRT, HMGB1 ↑); | RAPA@BSA-PCN@HA can effectively inhibit tumor growth in 4T1 tumor models; DAMPs release (CRT, HMGB1 ↑); T cell infiltration (CD4+ T cells, CD8+ T cells ↑); | [127] |
Chlorin e6 | Olaparib | A multifunctional biomimetic nanoplatform was developed by combining Ce6 and olaparib and coating it with 4T1 cell membrane. (Named: 4T1Mem@PGA-Ce6/Ola) | 4T1 | Promote the expression of proinflammatory cytokine (IFN- β ↑); DAMPs release (CRT, HMGB1 and ATP ↑); DC maturation (CD80, CD86 ↑); | 4T1Mem@PGA-Ce6/Ola can effectively inhibit primary and metastatic tumor growth in 4T1 tumor models; DC maturation (CD80, CD86 ↑); CTL recruitment (CD4+ T cells, CD8+ T cells ↑and Tregs ↓); | [128] |
Chlorin e6 | Cisplatin | Multicomponent supramolecular nanomedicine was constructed by combining β-cd modified chlorine e6, cisplatin and hydrophilic poly (oligoethylene glycol) methacrylate. (Named: NPCe6/Pt) | 4T1 | DAMP release (CRT, HMGB1 and ATP ↑); DC maturation; | NPCe6/Pt treatment group showed excellent inhibition of tumor growth and even tumor regression in 4T1 tumors; DAMP release (CRT, HMGB1 ↑); DC maturation (CD80, CD86 ↑); T cell infiltration (CD4+ T cells, CD8+ T cells ↑); | [122] |
Chlorin e6 | Glutaminase (GLS) inhibitor compound 968 (C968) | A double-synergistic carrier-free immunotherapy nanosynergist was constructed by self-assembling C968 with chlorine e6. (Named: C9SN) | 4T1 | DAMP release (CRT, HMGB1 ↑); DC maturation (CD80, CD86 ↑); | C9SN can inhibit the tumor growth in 4T1 tumor models; T cell infiltration (CD4+ T cells, CD8+ T cells ↑); TNF-α, IFN-γ ↑; | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, W.; Sun, T.; Peng, N.; Wang, Z.; Chen, D.; Qiu, H.; Zhao, H. Photodynamic Therapy-Induced Anti-Tumor Immunity: Influence Factors and Synergistic Enhancement Strategies. Pharmaceutics 2023, 15, 2617. https://doi.org/10.3390/pharmaceutics15112617
Chou W, Sun T, Peng N, Wang Z, Chen D, Qiu H, Zhao H. Photodynamic Therapy-Induced Anti-Tumor Immunity: Influence Factors and Synergistic Enhancement Strategies. Pharmaceutics. 2023; 15(11):2617. https://doi.org/10.3390/pharmaceutics15112617
Chicago/Turabian StyleChou, Wenxin, Tianzhen Sun, Nian Peng, Zixuan Wang, Defu Chen, Haixia Qiu, and Hongyou Zhao. 2023. "Photodynamic Therapy-Induced Anti-Tumor Immunity: Influence Factors and Synergistic Enhancement Strategies" Pharmaceutics 15, no. 11: 2617. https://doi.org/10.3390/pharmaceutics15112617
APA StyleChou, W., Sun, T., Peng, N., Wang, Z., Chen, D., Qiu, H., & Zhao, H. (2023). Photodynamic Therapy-Induced Anti-Tumor Immunity: Influence Factors and Synergistic Enhancement Strategies. Pharmaceutics, 15(11), 2617. https://doi.org/10.3390/pharmaceutics15112617