Automated Interlaboratory Comparison of Therapeutic Drug Monitoring Data and Its Use for Evaluation of Published Therapeutic Reference Ranges
Abstract
:1. Introduction
- The plasma level of a TDM drug is dosage dependent. The lowest measurement is zero (or the limit of quantification of the laboratory analysis), while the upper depends on the prescribed dosage.
- Defining a reference range for an endogenous substance is carried out to identify the variance in the healthy population. In contrast, an optimal therapeutic reference range should be based on the variation in a sick but, in regard to the therapeutic effect of the drug, well-treated cohort.
- The same drug may be used for the treatment of different diseases, having different biochemical origins, symptoms, and therapeutic ranges. This is particularly true for psychopharmacologic treatments.
2. Materials and Methods
2.1. Model Description
- Patients that have not been medication fasting prior to sampling and therefore are not at their minimum at steady state.
- Patients that have not reached steady state at the time of the sampling.
- Samples taken during adjustment of dosage and where the patient is not optimally treated.
- Samples from patients not taking the medicine as prescribed (noncompliance).
- Patients that are abusing the medicine.
- Samples from patients with a high degree of comedication or who are taking the medicine in combination with general drug abuse.
- Patients receiving a standard dosage but who are pharmacogenetically poor or ultrafast metabolisers of the drug.
- Patients that are misdiagnosed and thus cannot be optimally treated.
2.2. Data Collection
2.3. Data Analysis and Evaluation of the Model
2.4. Calculation of Therapeutic Analytical Ranges
3. Results
3.1. Evaluation of the TDM Model
3.2. Interlaboratory Comparison
3.3. Comparison to Published Therapeutic Reference Ranges and Ranges in the AGNP Consensus Guideline
3.4. Investigation of Age and Sex Differences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schwarz, M.J.; Hiemke, C.; Baumann, P.; AGNP TDM Expert Group. Clinical relevance of TDM of SSRIs. Ther. Drug Monit. 2006, 28, 716–717. [Google Scholar] [CrossRef] [PubMed]
- Urban, A.E.; Cubala, W.J. Therapeutic drug monitoring of atypical antipsychotics. Psychiatr. Pol. 2017, 51, 1059–1077. [Google Scholar] [CrossRef] [PubMed]
- Hiemke, C.; Bergemann, N.; Clement, H.W.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; Egberts, K.; Gerlach, M.; Greiner, C.; et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018, 51, 9–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertino, J.S., Jr. Therapeutic drug monitoring of antibiotics. Lancet Infect. Dis. 2014, 14, 1180–1181. [Google Scholar] [CrossRef]
- Mohammadpour, N.; Elyasi, S.; Vahdati, N.; Mohammadpour, A.H.; Shamsara, J. A review on therapeutic drug monitoring of immunosuppressant drugs. Iran J. Basic Med. Sci. 2011, 14, 485–498. [Google Scholar]
- Bengtsson, F. Therapeutic drug monitoring of psychotropic drugs. TDM "nouveau". Ther. Drug Monit. 2004, 26, 145–151. [Google Scholar] [CrossRef]
- CLSI. Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory. In Approved Guideline, 3rd ed.; CLSI document C28-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Reis, M.; Aamo, T.; Spigset, O.; Ahlner, J. Serum concentrations of antidepressant drugs in a naturalistic setting: Compilation based on a large therapeutic drug monitoring database. Ther. Drug Monit. 2009, 31, 42–56. [Google Scholar] [CrossRef]
- Chermá, M.D.; Reis, M.; Hägg, S.; Ahlner, J.; Bengtsson, F. Therapeutic drug monitoring of ziprasidone in a clinical treatment setting. Ther. Drug Monit. 2008, 30, 682–688. [Google Scholar] [CrossRef]
- Ma, C.; Wang, X.; Wu, J.; Cheng, X.; Xia, L.; Xue, F.; Qiu, L. Real-world big-data studies in laboratory medicine: Current status, application, and future considerations. Clin. Biochem. 2020, 84, 21–30. [Google Scholar] [CrossRef]
- Noel, C. A review of a recently published guidelines’ “strong recommendation” for therapeutic drug monitoring of olanzapine, haloperidol, perphenazine, and fluphenazine. Ment. Health Clin. 2019, 9, 287–293. [Google Scholar] [CrossRef]
- Scherf-Clavel, M.; Hommers, L.; Wurst, C.; Stonawski, S.; Deckert, J.; Domschke, K.; Unterecker, S.; Menke, A. Higher venlafaxine serum concentrations necessary for clinical improvement? Time to re-evaluate the therapeutic reference range of venlafaxine. J. Psychopharmacol. 2020, 34, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Baumann, P.; Hiemke, C.; Ulrich, S.; Eckermann, G.; Gaertner, I.; Gerlach, M.; Kuss, H.J.; Laux, G.; Muller-Oerlinghausen, B.; Rao, M.L.; et al. The AGNP-TDM expert group consensus guidelines: Therapeutic drug monitoring in psychiatry. Pharmacopsychiatry 2004, 37, 243–265. [Google Scholar] [CrossRef] [PubMed]
- Baumann, P.; Hiemke, C.; Ulrich, S.; Eckermann, G.; Kuss, H.L.; Laux, G.; Muller-Oerlingenhausen, B.; Rao, M.L.; Riederer, P.; Zernig, G.; et al. Therapeutic drug monitoring (TDM) of psychotropic drugs: A consensus guideline of the AGNP-TDM group. Rev. Med. Suisse. 2006, 2, 1413–1418, 1420–1422, 1424–1426. [Google Scholar] [PubMed]
- Baumann, P.; Hiemke, C.; Ulrich, S.; Gaertner, I.; Rao, M.L.; Eckermann, G.; Gerlach, M.; Kuss, H.J.; Laux, G.; Muller-Oerlinghausen, B.; et al. Therapeutic monitoring of psychotropic drugs: An outline of the AGNP-TDM expert group consensus guideline. Ther. Drug Monit. 2004, 26, 167–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumann, P.; Ulrich, S.; Eckermann, G.; Gerlach, M.; Kuss, H.J.; Laux, G.; Muller-Oerlinghausen, B.; Rao, M.L.; Riederer, P.; Zernig, G.; et al. The AGNP-TDM Expert Group Consensus Guidelines: Focus on therapeutic monitoring of antidepressants. Dialogues Clin. Neurosci. 2005, 7, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Hiemke, C. Consensus Guideline Based Therapeutic Drug Monitoring (TDM) in Psychiatry and Neurology. Curr. Drug Deliv. 2016, 13, 353–361. [Google Scholar] [CrossRef]
- Unterecker, S.; Hefner, G.; Baumann, P.; Grunder, G.; Bergemann, N.; Clement, H.W.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; et al. Therapeutic drug monitoring in neuropsychopharmacology: Summary of the consensus guidelines 2017 of the TDM task force of the AGNP. Nervenarzt 2019, 90, 463–471, Erratum in Nervenarzt 2019, 90, 958–960. [Google Scholar] [CrossRef] [Green Version]
- Van Putten, T.; Marder, S.R.; Wirshing, W.C.; Aravagiri, M.; Chabert, N. Neuroleptic plasma levels. Schizophr. Bull. 1991, 17, 197–216. [Google Scholar] [CrossRef] [Green Version]
- Kistrup, K.; Gerlach, J.; Aaes-Jorgensen, T.; Larsen, N.E. Perphenazine decanoate and cis(z)-flupentixol decanoate in maintenance treatment of schizophrenic outpatients. Serum levels at the minimum effective dose. Psychopharmacology 1991, 105, 42–48. [Google Scholar] [CrossRef]
- Morselli, P.L.; Bianchetti, G.; Dugas, M. Haloperidol plasma level monitoring in neuropsychiatric patients. Ther. Drug Monit. 1982, 4, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Volavka, J.; Cooper, T.B.; Meisner, M.; Bitter, I.; Czobor, P.; Jaeger, J. Haloperidol blood levels and effects in schizophrenia and schizoaffective disorder: A progress report. Psychopharmacol. Bull. 1990, 26, 13–17. [Google Scholar] [PubMed]
- Stevens, A.; Stevens, I.; Mahal, A.; Gaertner, H.J. Haloperidol and lorazepam combined: Clinical effects and drug plasma levels in the treatment of acute schizophrenic psychosis. Pharmacopsychiatry 1992, 25, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Stevens, A.; Mahal, A.; Gaertner, H.J. Haloperidol and reduced haloperidol serum levels: Correlation with psychopathology in acute schizophrenia. Pharmacopsychiatry 1992, 25, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Palao, D.J.; Arauxo, A.; Brunet, M.; Bernardo, M.; Haro, J.M.; Ferrer, J.; Gonzalez-Monclus, E. Haloperidol: Therapeutic window in schizophrenia. J. Clin. Psychopharmacol. 1994, 14, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, S.; Wurthmann, C.; Brosz, M.; Meyer, F.P. The relationship between serum concentration and therapeutic effect of haloperidol in patients with acute schizophrenia. Clin. Pharmacokinet. 1998, 34, 227–263. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, S.; Neuhof, S.; Braun, V.; Meyer, F.P. Therapeutic window of serum haloperidol concentration in acute schizophrenia and schizoaffective disorder. Pharmacopsychiatry 1998, 31, 163–169. [Google Scholar] [CrossRef]
- Balant-Gorgia, A.E.; Eisele, R.; Aeschlimann, J.M.; Balant, L.P.; Garrone, G. Plasma flupentixol concentrations and clinical response in acute schizophrenia. Ther. Drug Monit. 1985, 7, 411–414. [Google Scholar] [CrossRef]
- Roman, M.; Kronstrand, R.; Lindstedt, D.; Josefsson, M. Quantitation of seven low-dosage antipsychotic drugs in human postmortem blood using LC-MS-MS. J. Anal. Toxicol. 2008, 32, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Gex-Fabry, M.; Gervasoni, N.; Eap, C.B.; Aubry, J.M.; Bondolfi, G.; Bertschy, G. Time course of response to paroxetine: Influence of plasma level. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 892–900. [Google Scholar] [CrossRef]
- Tomita, T.; Yasui-Furukori, N.; Nakagami, T.; Tsuchimine, S.; Ishioka, M.; Kaneda, A.; Nakamura, K.; Kaneko, S. Therapeutic reference range for plasma concentrations of paroxetine in patients with major depressive disorders. Ther. Drug Monit. 2014, 36, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Shams, M.E.; Arneth, B.; Hiemke, C.; Dragicevic, A.; Muller, M.J.; Kaiser, R.; Lackner, K.; Hartter, S. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J. Clin. Pharm. Ther. 2006, 31, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Veefkind, A.H.; Haffmans, P.M.; Hoencamp, E. Venlafaxine serum levels and CYP2D6 genotype. Ther. Drug Monit. 2000, 22, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, O.L.; Gram, L.F.; Kristensen, C.B.; Moller, M.; Thayssen, P.; Bjerre, M.; Kragh-SoRensen, P.; Klitgaard, N.A.; Sindrup, E.; Hole, P.; et al. Overdosage of antidepressants: Clinical and pharmacokinetic aspects. Eur. J. Clin. Pharmacol. 1982, 23, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.G.; Warsh, J.J.; Stancer, H.C.; Reed, K.L.; Persad, E. The nonlinear kinetics of desipramine and 2-hydroxydesipramine in plasma. Clin. Pharmacol. Ther. 1984, 36, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.C.; Jatlow, P.; Quinlan, D.M.; Bowers, M.B., Jr. Desipramine plasma concentration and antidepressant response. Arch. Gen. Psychiatry 1982, 39, 1419–1422. [Google Scholar] [CrossRef]
- Nelson, J.C.; Jatlow, P.I.; Mazure, C. Desipramine plasma levels and response in elderly melancholic patients. J. Clin. Psychopharmacol. 1985, 5, 217–220. [Google Scholar] [CrossRef]
- Vogel, F.; Gansmuller, R.; Leiblein, T.; Dietmaier, O.; Wassmuth, H.; Grunder, G.; Hiemke, C. The use of ziprasidone in clinical practice: Analysis of pharmacokinetic and pharmacodynamic aspects from data of a drug monitoring survey. Eur. Psychiatry 2009, 24, 143–148. [Google Scholar] [CrossRef]
- Regenthal, R.; Krueger, M.; Koeppel, C.; Preiss, R. Drug levels: Therapeutic and toxic serum/plasma concentrations of common drugs. J. Clin. Monit. Comput. 1999, 15, 529–544. [Google Scholar] [CrossRef]
- Kjølbye, M.; Thomsen, K.; Rogne, T.; Rehfelt, E.; Olesen, O.V. Search for a therapeutic range for serum zuclopenthixol concentrations in schizophrenic patients. Ther. Drug Monit. 1994, 16, 541–547. [Google Scholar] [CrossRef]
- Jonsson, A.K.; Spigset, O.; Reis, M. A Compilation of Serum Concentrations of 12 Antipsychotic Drugs in a Therapeutic Drug Monitoring Setting. Ther. Drug Monit. 2019, 41, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Perry, P.J.; Zeilmann, C.; Arndt, S. Tricyclic antidepressant concentrations in plasma: An estimate of their sensitivity and specificity as a predictor of response. J. Clin. Psychopharmacol. 1994, 14, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Vandel, S.; Vandel, B.; Sandoz, M.; Allers, G.; Bechtel, P.; Volmat, R. Clinical response and plasma concentration of amitriptyline and its metabolite nortriptyline. Eur. J. Clin. Pharmacol. 1978, 14, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Molden, E.; Lunde, H.; Lunder, N.; Refsum, H. Pharmacokinetic variability of aripiprazole and the active metabolite dehydroaripiprazole in psychiatric patients. Ther. Drug Monit. 2006, 28, 744–749. [Google Scholar] [CrossRef]
- Kirschbaum, K.M.; Muller, M.J.; Malevani, J.; Mobascher, A.; Burchardt, C.; Piel, M.; Hiemke, C. Serum levels of aripiprazole and dehydroaripiprazole, clinical response and side effects. World J. Biol. Psychiatry 2008, 9, 212–218. [Google Scholar] [CrossRef]
- Bachmann, C.J.; Rieger-Gies, A.; Heinzel-Gutenbrunner, M.; Hiemke, C.; Remschmidt, H.; Theisen, F.M. Large variability of aripiprazole and dehydroaripiprazole serum concentrations in adolescent patients with schizophrenia. Ther. Drug Monit. 2008, 30, 462–466. [Google Scholar] [CrossRef]
- Horn, P.S.; Pesce, A.J. Reference intervals: An update. Clinica Chimica Acta 2003, 334, 5–23. [Google Scholar] [CrossRef]
- Fang, J.; Baker, G.B.; Silverstone, P.H.; Coutts, R.T. Involvement of CYP3A4 and CYP2D6 in the metabolism of haloperidol. Cell Mol. Neurobiol. 1997, 17, 227–233. [Google Scholar] [CrossRef]
- Jerling, M.; Dahl, M.L.; Aberg-Wistedt, A.; Liljenberg, B.; Landell, N.E.; Bertilsson, L.; Sjoqvist, F. The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin. Pharmacol. Ther. 1996, 59, 423–428. [Google Scholar] [CrossRef]
- Linnet, K.; Wiborg, O. Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin. Pharmacol. Ther. 1996, 60, 41–47. [Google Scholar] [CrossRef]
- Linnet, K.; Wiborg, O. Influence of Cyp2D6 genetic polymorphism on ratios of steady-state serum concentration to dose of the neuroleptic zuclopenthixol. Ther. Drug Monit. 1996, 18, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Ohara, K.; Tanabu, S.; Ishibashi, K.; Ikemoto, K.; Yoshida, K.; Shibuya, H. Effects of age and the CYP2D6*10 allele on the plasma haloperidol concentration/dose ratio. Prog. Neuropsychopharmacol. Biol. Psychiatry 2003, 27, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, V.; Bertilsson, L.; Miura, J.; Carpenter, E.; Reist, C.; Harper, P.; Widen, J.; Svensson, J.O.; Albers, L.J.; Kennedy, J.L.; et al. CYP2D6 genotype in relation to perphenazine concentration and pituitary pharmacodynamic tissue sensitivity in Asians: CYP2D6-serotonin-dopamine crosstalk revisited. Pharmacogenet. Genomics 2007, 17, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Otani, K.; Mihara, K.; Yasui, N.; Kaneko, S.; Inoue, Y.; Hayashi, K. Effects of the CYP2D6 genotype on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese schizophrenic patients. Pharmacogenetics 1997, 7, 415–418. [Google Scholar] [CrossRef]
- Tveito, M.; Smith, R.L.; Molden, E.; Hoiseth, G. Impact of age and CYP2D6 genotype on exposure of zuclopenthixol in patients using long-acting injectable versus oral formulation-an observational study including 2044 patients. Eur. J. Clin. Pharmacol. 2021, 77, 215–221. [Google Scholar] [CrossRef]
- Waade, R.B.; Solhaug, V.; Hoiseth, G. Impact of CYP2D6 on serum concentrations of flupentixol, haloperidol, perphenazine and zuclopenthixol. Br. J. Clin. Pharmacol. 2021, 87, 2228–2235. [Google Scholar] [CrossRef]
- Tomita, T.; Yasui-Furukori, N.; Nakagami, T.; Tsuchimine, S.; Ishioka, M.; Kaneda, A.; Nakamura, K. Effects of personality on the association between paroxetine plasma concentration and response. Neuropsychiatr. Dis. Treat. 2018, 14, 3299–3306. [Google Scholar] [CrossRef] [Green Version]
- Gilles, C.; Luthringer, R. Pharmacological models in healthy volunteers: Their use in the clinical development of psychotropic drugs. J. Psychopharmacol. 2007, 21, 272–282. [Google Scholar] [CrossRef]
- Ji, Y.; Schaid, D.J.; Desta, Z.; Kubo, M.; Batzler, A.J.; Snyder, K.; Mushiroda, T.; Kamatani, N.; Ogburn, E.; Hall-Flavin, D.; et al. Citalopram and escitalopram plasma drug and metabolite concentrations: Genome-wide associations. Br. J. Clin. Pharmacol. 2014, 78, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Sramek, J.J.; Murphy, M.F.; Cutler, N.R. Sex differences in the psychopharmacological treatment of depression. Dialogues Clin. Neurosci. 2016, 18, 447–457. [Google Scholar] [CrossRef]
- Edelbroek, P.M.; Zitman, F.G.; Knoppert-van der Klein, E.A.; van Putten, P.M.; de Wolff, F.A. Therapeutic drug monitoring of amitriptyline: Impact of age, smoking and contraceptives on drug and metabolite levels in bulimic women. Clin. Chim. Acta 1987, 165, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Gex-Fabry, M.; Balant-Gorgia, A.E.; Balant, L.P. Therapeutic drug monitoring of olanzapine: The combined effect of age, gender, smoking, and comedication. Ther. Drug Monit. 2003, 25, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.R.; Kuhlmann, I.B.; Pottegard, A.; Damkier, P. Therapeutic Drug Monitoring of Venlafaxine in an Everyday Clinical Setting: Analysis of Age, Sex and Dose Concentration Relationships. Basic Clin. Pharmacol. Toxicol. 2017, 121, 298–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unterecker, S.; Riederer, P.; Proft, F.; Maloney, J.; Deckert, J.; Pfuhlmann, B. Effects of gender and age on serum concentrations of antidepressants under naturalistic conditions. J. Neural. Transm. 2013, 120, 1237–1246. [Google Scholar] [CrossRef]
Clozapine Patients = 1398 | Perphenazine Patients = 405 | Imipramine Patients = 127 | ||||
---|---|---|---|---|---|---|
Incl. Samples | Range nmol/L | Incl. Samples | Range nmol/L | Incl. Samples | Range nmol/L | |
(A) All samples | 14,095 | 409–2143 | 1224 | 1.5–14.3 | 281 | 43–846 |
(B) TDM model | 3224 | 400–1980 | 621 | 1.8–13.8 | 146 | 27–437 |
(C) First sample | 1398 | 276–2034 | 405 | 1.0–14.4 | 127 | 25–331 |
(D) Last sample | 1398 | 354–2091 | 405 | 1.5–13.6 | 127 | 26–390 |
Therapeutic Drug | AUH | EHL | RH | ||||
---|---|---|---|---|---|---|---|
AGNP | p | Range nmol/L | p | Range nmol/L | p | Range nmol/L | |
Amitriptyline | ND | 1033 | 35–464 | 612 | 83–479 | 1492 | 20–441 |
Nortriptyline | 266–646 | 4436 | 105–623 | 2016 | 104–630 | 4671 | 69–661 |
Amitriptyline + metabolite | 288–720 | 1308 | 79–809 | 570 | 201–917 | 1025 | 129–906 |
Aripiprazole | 223–781 | 1695 | 116–1148 | 1449 | 154–1064 | ND | - |
Dehydroaripiprazole | ND | 1662 | 42–347 | 1366 | 83–406 | ND | - |
Aripiprazole + metabolite | 335–1115 | 1889 | 217–1378 | 1365 | 283–1465 | ND | - |
Citalopram | 154–339 | 1981 | 69–379 | 632 | 80–499 | ND | - |
Escitalopram | 46–246 | 795 | 33–197 | 99 | 31–283 | ND | - |
Dosulipine | 153–339 | ND | - | ND | - | 107 | 20–505 |
Northiaden | ND | ND | - | ND | - | 105 | 20–356 |
Dosulipine + metabolite | ND | ND | - | ND | - | 92 | 119–888 |
Clomipramine | ND | 1192 | 96–610 | 400 | 122–628 | 448 | 71–652 |
Desmethylclomipramine | ND | 1185 | 82–777 | 394 | 136–895 | 445 | 45–950 |
Clomipramine + metabolite | 731–1494 | 1156 | 285–1252 | 394 | 326–1445 | 409 | 272–1497 |
Clozapine | 1071–1836 | 1398 | 400–1980 | 1355 | 349–2389 | 2028 | 130–2180 |
Duloxetine | 100–403 | 1467 | 47–428 | 179 | 47–421 | ND | - |
Fluoxetine | ND | 468 | 118–1183 | ND | - | ND | - |
Norfluoxetine | ND | 472 | 255–1169 | ND | - | ND | - |
Fluoxetine + metabolite | 388–1695 | 326 | 356–1486 | ND | - | ND | - |
Flupentixol | 1.2–11.5 | ND | - | 136 | 2–23 | ND | - |
Haloperidol | 2.7–26.6 | ND | - | 445 | 5–48 | ND | - |
Imipramine | ND | 127 | 27–437 | 95 | 71–530 | 178 | 20–588 |
Desimipramine | 375–1125 | 126 | 20–409 | 88 | 73–510 | 179 | 20–528 |
Imipramine + metabolite | 641–1098 | 124 | 68–812 | 79 | 175–1032 | 136 | 141–1137 |
Mirtazapine | 113–302 | 1000 | 37–256 | 253 | 75–398 | ND | - |
Olanzapine | 64–256 | 1854 | 38–247 | 2663 | 30–273 | ND | - |
Paroxetine | 61–198 | ND | - | 268 | 61–537 | ND | - |
Perphenazine | 1.5–6 | 405 | 1.8–13.8 | 360 | 2–18 | ND | - |
Quetiapine | 261–1305 | 2653 | 33–851 | 1649 | 48–1268 | ND | - |
Risperidone | ND | 1564 | 3–58 | 880 | 7–82 | ND | - |
Paliperidone | 47–141 | 2349 | 11–109 | 959 | 17–121 | ND | - |
Risperidone + metabolite | 41–146 | 2098 | 16–139 | 851 | 35–177 | ND | - |
Sertindole | 114–227 | ND | - | 114 | 48–236 | ND | - |
Sertraline | 33–491 | 3438 | 33–233 | 934 | 36–289 | ND | - |
Venlafaxine | ND | 4154 | 57–966 | 2938 | 96–1073 | ND | - |
O-Desmethyl-venlafaxine | ND | 4181 | 309–1774 | 3107 | 312–1694 | ND | - |
Venlafaxine + metabolite. | 361–1520 | 4134 | 489–2522 | 2926 | 615–2588 | ND | - |
Ziprasidone | 128–510 | 246 | 38–347 | ND | - | ND | - |
Zuclopenthixole | 10–125 | 885 | 6.5–42.8 | 1062 | 7–62.2 | ND | - |
AUH | EHL | RH | |||||
---|---|---|---|---|---|---|---|
Therapeutic Drug | AGNP | p | Range nmol/L | p | Range nmol/L | p | Range nmol/L |
Amitriptyline | ND | 1033 | 77–310 | 612 | 140–332 | 1492 | 20–281 |
Nortriptyline | 266–646 | 4436 | 221–504 | 2016 | 195–476 | 4671 | 195–502 |
Amitriptyline + metabolite | 288–720 | 1308 | 180–596 | 570 | 304–684 | 1025 | 245–676 |
Aripiprazole | 223–781 | 1695 | 266–788 | 1449 | 279–726 | ND | - |
Dehydroaripiprazole | ND | 1662 | 93–255 | 1366 | 123–294 | ND | - |
Aripiprazole + metabolite | 335–1115 | 1889 | 392–1035 | 1365 | 448–1040 | ND | - |
Citaloprame | 154–339 | 1981 | 113–271 | 642 | 133–336 | ND | - |
Escitaloprame | 46–246 | 795 | 50–133 | 99 | 54–134 | ND | - |
Dosulipine | 153–339 | ND | - | ND | - | 107 | 100–347 |
Northiaden | ND | ND | - | ND | - | 105 | 44–206 |
Dosulipine + metabolite | ND | ND | - | ND | - | 92 | 203–578 |
Clomipramine | ND | 1192 | 188–444 | 400 | 191–439 | 448 | 167–444 |
Desmethylclomipramine | ND | 1185 | 188–575 | 394 | 231–603 | 445 | 189–637 |
Clomipramine + metabolite | 731–1494 | 1156 | 477–1011 | 394 | 477–990 | 409 | 474–1127 |
Clozapine | 1071–1836 | 1398 | 677–1528 | 1355 | 656–1750 | 2028 | 478–1502 |
Duloxetine | 100–403 | 1467 | 86–278 | 179 | 83–259 | ND | - |
Fluoxetine | ND | 468 | 249–771 | 115 | 363–989 | ND | - |
Norfluoxetine | ND | 472 | 421–845 | 112 | 401–764 | ND | - |
Fluoxetine + metabolite | 388–1695 | 326 | 584–1100 | 110 | 838–1895 | ND | - |
Flupentixole | 1.2–11.5 | ND | - | 136 | 3–13 | ND | - |
Haloperidole | 2.7–26.6 | ND | - | 445 | 9–31 | ND | - |
Imipramine | ND | 127 | 71–253 | 95 | 100–324 | 178 | 68–394 |
Desimipramine | 375–1125 | 126 | 41–249 | 88 | 97–347 | 179 | 55–327 |
Imipramin + metabolite | 641–1098 | 124 | 128–535 | 79 | 262–632 | 136 | 254–857 |
Mirtazapine | 113–302 | 1000 | 64–178 | 253 | 106–242 | ND | - |
Olanzapine | 64–256 | 1854 | 65–167 | 2663 | 58–178 | ND | - |
Paroxetine | 61–198 | ND | - | 268 | 114–321 | ND | - |
Perphenazine | 1.5–6 | 405 | 3.2–8.4 | 360 | 4–11 | ND | - |
Quetiapine | 261–1305 | 2653 | 79–490 | 1649 | 125–709 | ND | - |
Risperidone | ND | 1564 | 6–28 | 880 | 10–38 | ND | - |
Paliperidone | 47–141 | 2349 | 23–73 | 959 | 30–82 | ND | - |
Risperidone + metabolite | 41–146 | 2098 | 31–95 | 851 | 53–123 | ND | - |
Sertindole | 114–227 | ND | - | 114 | 78–160 | ND | - |
Sertraline | 33–491 | 3438 | 58–153 | 934 | 62–179 | ND | - |
Venlafaxine | ND | 4154 | 133–575 | 2938 | 165–645 | ND | - |
O-Desmethyl-venlafaxine | ND | 4181 | 545–1328 | 3107 | 530–1267 | ND | - |
Venlafaxine + metabolite. | 361–1520 | 4134 | 815–1901 | 2926 | 883–1921 | ND | - |
Ziprasidone | 128–510 | 246 | 77–237 | ND | - | ND | - |
Zuclopenthixole | 10–125 | 885 | 10.5–29.5 | 1062 | 13–41 | ND | - |
Men | Women | |||
---|---|---|---|---|
Therapeutic Drug | p | Range nmol/L | p | Range nmol/L |
Amitriptyline | 366 | 34–423 | 666 | 36–473 |
Nortriptyline | 1618 | 98–613 | 2817 | 111–629 |
Amitriptyline + metabolite | 446 | 76–753 | 861 | 81–835 |
Aripiprazole | 797 | 91–1122 | 897 | 138–1197 |
Dehydroaripiprazole | 784 | 35–334 | 877 | 49–356 |
Aripiprazole + metabolite | 883 | 201–1354 | 1005 | 237–1400 |
Citalopram | 671 | 66–331 | 1309 | 70–392 |
Escitalopram | 269 | 34–213 | 526 | 32–186 |
Clomipramine | 457 | 81–606 | 734 | 110–613 |
Desmethylclomipramine | 454 | 69–714 | 730 | 90–823 |
Clomipramine + metabolite | 441 | 241–1183 | 714 | 307–1276 |
Clozapine | 818 | 380–1930 | 578 | 428–2030 |
Duloxetine | 446 | 38–373 | 1020 | 50–438 |
Fluoxetine | 124 | 83–836 | 344 | 138–1255 |
Norfluoxetine | 125 | 206–1065 | 347 | 291–1223 |
Fluoxetine + metabolite | 94 | 323–1215 | 232 | 380–1633 |
Mirtazapine | 433 | 36–243 | 567 | 39–262 |
Olanzapine | 1077 | 38–233 | 776 | 38–272 |
Perphenazine | 181 | 1.7–12.3 | 224 | 1.8–15.3 |
Quetiapine | 1098 | 37–857 | 1553 | 31–847 |
Risperidone | 867 | 3–57 | 696 | 4–59 |
Paliperidone | 1355 | 11–103 | 993 | 11–118 |
Risperidone + metabolite | 1202 | 16–127 | 895 | 17–157 |
Sertraline | 1108 | 31–223 | 2330 | 34–236 |
Venlafaxine | 1373 | 51–840 | 2780 | 61–1043 |
O-Desmethyl-venlafaxine | 1381 | 286–1699 | 2799 | 316–1798 |
Venlafaxine + metabolite. | 1369 | 462–2414 | 2764 | 517–2582 |
Ziprasidone | 88 | 34–322 | 157 | 40–376 |
Zuclopenthixole | 489 | 7.4–41.2 | 396 | 6.1–44.6 |
Age 20–64 | Age 65–100 | |||
---|---|---|---|---|
Therapeutic Drug | p | Range nmol/L | p | Range nmol/L |
Amitriptyline | 772 | 34–454 | 250 | 39–471 |
Nortriptyline | 3510 | 107–625 | 947 | 97–614 |
Amitriptyline + metabolite | 1214 | 77–800 | 328 | 87–836 |
Aripiprazole | 1424 | 135–1154 | 108 | 1–1196 |
Dehydroaripiprazole | 1405 | 46–354 | 96 | 12–380 |
Aripiprazole + metabolite | 1590 | 211–1381 | 102 | 221–1409 |
Citalopram | 1408 | 65–363 | 554 | 78–409 |
Escitalopram | 607 | 32–188 | 188 | 36–219 |
Clomipramine | 996 | 99–623 | 196 | 83–560 |
Desmethyl-clomipramine | 987 | 85–775 | 197 | 70–804 |
Clomipramine + metabolite | 964 | 284–1252 | 192 | 314–1234 |
Clozapine | 1272 | 411–1999 | 137 | 333–1793 |
Duloxetine | 1154 | 43–402 | 290 | 63–468 |
Fluoxetine | 269 | 111–1210 | ND | - |
Norfluoxetine | 270 | 246–1119 | ND | - |
Fluoxetine + metabolite | 215 | 327–1650 | ND | - |
Mirtazapine | 615 | 34–235 | 376 | 42–280 |
Olanzapine | 1497 | 39–256 | 323 | 35–204 |
Perphenazine | 335 | 1.6–14 | 69 | 2.1–12.7 |
Quetiapine | 2152 | 33–877 | 352 | 31–699 |
Risperidone | 1238 | 3–62 | 270 | 3.3–42 |
Paliperidone | 1883 | 12–111 | 353 | 11–115 |
Risperidone + Paliperidone | 1647 | 18–141 | 341 | 18–142 |
Sertraline | 2650 | 32–232 | 402 | 32–231 |
Venlafaxine | 3445 | 54–934 | 701 | 76–1084 |
O-Desmethyl-venlafaxine | 3470 | 295–1699 | 703 | 364–1973 |
Venlafaxine + metabolite | 3430 | 468–2460 | 697 | 683–2774 |
Ziprasidone | 230 | 40–361 | ND | - |
Zuclopenthixol | 729 | 6.9–44.1 | 164 | 5.5–35.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larsen, J.B.; Hoffmann-Lücke, E.; Aaslo, P.H.; Jørgensen, N.R.; Greibe, E. Automated Interlaboratory Comparison of Therapeutic Drug Monitoring Data and Its Use for Evaluation of Published Therapeutic Reference Ranges. Pharmaceutics 2023, 15, 673. https://doi.org/10.3390/pharmaceutics15020673
Larsen JB, Hoffmann-Lücke E, Aaslo PH, Jørgensen NR, Greibe E. Automated Interlaboratory Comparison of Therapeutic Drug Monitoring Data and Its Use for Evaluation of Published Therapeutic Reference Ranges. Pharmaceutics. 2023; 15(2):673. https://doi.org/10.3390/pharmaceutics15020673
Chicago/Turabian StyleLarsen, Jens Borggaard, Elke Hoffmann-Lücke, Per Hersom Aaslo, Niklas Rye Jørgensen, and Eva Greibe. 2023. "Automated Interlaboratory Comparison of Therapeutic Drug Monitoring Data and Its Use for Evaluation of Published Therapeutic Reference Ranges" Pharmaceutics 15, no. 2: 673. https://doi.org/10.3390/pharmaceutics15020673
APA StyleLarsen, J. B., Hoffmann-Lücke, E., Aaslo, P. H., Jørgensen, N. R., & Greibe, E. (2023). Automated Interlaboratory Comparison of Therapeutic Drug Monitoring Data and Its Use for Evaluation of Published Therapeutic Reference Ranges. Pharmaceutics, 15(2), 673. https://doi.org/10.3390/pharmaceutics15020673