In Vitro Dissolution and Permeability Testing of Inhalation Products: Challenges and Advances
Abstract
:1. Introduction
2. Process Overview of Dissolution and Permeability Testing for Inhaled Products
3. In Vitro Dissolution and Permeability Testing Methods
3.1. Paddle Dissolution Apparatus
3.2. Flow through Cell Apparatus (USP Apparatus IV)
3.3. Diffusion-Controlled Cell Apparatus
3.4. Dissolvit®
3.5. Cell-Based Permeability Assays
3.6. Recent Advancements in Technology for In Vitro Testing
4. Aerosol Particle Collection
5. Optimization of Dissolution Medium for Orally Inhaled Drug Particles
6. Application of Statistics to Dissolution Data
6.1. Modeling of Dissolution Profiles
6.2. Methods for Comparing Dissolution Profiles
- If the f1 value is less than 15 (0–15), there is no difference (i.e., there is no proof of difference or there is no “signal over noise” to be seen).
- f2 values between 50 and 100 (above 50) suggest similarity (i.e., there is evidence that there is no important difference). Additionally, authorities (e.g., FDA) want that the sponsor compares dissolution profiles using the similarity factor using at least 12 distinct dosage units. When comparing dissolution profiles to support “biowaivers” for process scale-up or formulation adjustments for oral solid dosage forms, regulatory advice has mostly focused on the f2 measure. Generally speaking, “suitable statistical testing with the rationale” is permitted under the FDA guidance [98,99]. The EMA recommendation [100] suggests comparing distinct time points, model parameters, and similarity variables. The addition of several acceptance limits for various size ranges [25], which also apply to tests other than f1 and f2, is another factor for OIP particles fractionated by cascade impactors.
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bailey, C.J.; Barnett, A.H. Why is Exubera being withdrawn? Br. Med. J. 2007, 335, 1156. [Google Scholar] [CrossRef] [Green Version]
- Laube, B.L. The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination. Respir. Care 2005, 50, 1161–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, Y.; He, Y.; Yang, G.; Johnson, J.L.H.; Yalkowsky, H. Estimation of aqueous solubility of organic compounds by using the general solubility equation. Chemosphere 2002, 48, 487–509. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.M.; Feddah, M.R. A novel method for assessing dissolution of aerosol inhaler products. Int. J. Pharm. 2003, 255, 175–187. [Google Scholar] [CrossRef]
- Buttini, F.; Rozou, S.; Rossi, A.; Zoumpliou, V.; Rekkas, D.M. The Application of Quality by Design Framework in the Pharmaceutical Development of Dry Powder Inhalers. Eur. J. Pharm. Sci. 2018, 113, 64–76. [Google Scholar] [CrossRef]
- Gray, V.A.; Hickey, A.J.; Balmer, P.; Davies, N.M.; Dunbar, C.; Foster, T.S.; Olsson, B.L.; Sakagami, M.; Shah, V.P.; Smurthwaite, M.J.; et al. The Inhalation Ad Hoc Advisory Panel for the USP Performance Tests of Inhalation Dosage Forms. Pharm. Forum 2008, 34, 1068–1074. [Google Scholar]
- Olsson, B.; Backman, P. Mouth-Throath Models for Realistic in Vitro Testing-A Proposal for Debate. Respir. Drug Deliv. 2014, 1, 287–293. [Google Scholar]
- Tolman, J.A.; Williams, R.O., III. Advances in the Pulmonary Delivery of Poorly Water-Soluble Drugs: Influence of Solubilization on Pharmacokinetic Properties. Drug Dev. Ind. Pharm. 2010, 36, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Möllmann, H.; Wagner, M.; Krishnaswami, S.; Dimova, H.; Tang, Y.; Falcoz, C.; Daley-Yates, P.T.; Krieg, M.; Stöckmann, R.; Barth, J.; et al. Single-Dose and Steady-State Pharmacokinetic and Pharmacodynamic Evaluation of Therapeutically Clinically Equivalent Doses of Inhaled Fluticasone Propionate and Budesonide, Given as Diskus® or Turbohaler® Dry-Powder Inhalers to Healthy Subjects. J. Clin. Pharmacol. 2001, 41, 1329–1338. [Google Scholar] [CrossRef]
- Allen, A.; Bareille, P.J.; Rousell, V.M. Fluticasone Furoate, a Novel Inhaled Corticosteroid, Demonstrates Prolonged Lung Absorption Kinetics in Man Compared with Inhaled Fluticasone Propionate. Clin. Pharmacokin. 2013, 52, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Riley, T.; Christopher, D.; Arp, J.; Casazza, A.; Colombani, A.; Cooper, A.; Dey, M.; Maas, J.; Mitchell, J.; Reiners, M.; et al. Challenges with developing in vitro dissolution tests for orally inhaled products (OIPs). AAPS PharmSCiTech 2012, 13, 978–989. [Google Scholar] [CrossRef] [Green Version]
- Forbes, B.; Backman, P.; Christopher, D.; Dolovich, M.; Li, B.V.; Morgan, B. In Vitro Testing for Orally Inhaled Products: Developments in Science-Based Regulatory Approaches. AAPS J. 2015, 17, 837–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velaga, S.P.; Djuris, J.; Cvijic, S.; Rozou, S.; Russo, P.; Colombo, G.; Rossi, A. Dry powder inhalers: An overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products. Eur. J. Pharm. 2018, 113, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Salama, R.O.; Traini, D.; Chan, H.K.; Young, P.M. Preparation and charcterisation of controlled release methodologies for controlled release respiratory aerosols. Eur. J. Pharm. Biopharm. 2008, 70, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.-J.; McConville, J.T. Development of a standardized dissolution test method for inhaled pharmaceutical formulations. Int. J. Pharm. 2009, 382, 15–22. [Google Scholar] [CrossRef]
- May, S.; Jensen, B.; Wolkenhauer, M.; Scheneider, M.; Lehr, C.M. Dissolution techniques for in vitro testing of dry powders for inhalation. Pharm. Res. 2012, 29, 2157–2166. [Google Scholar] [CrossRef]
- Arora, D.; Shah, K.A.; Halquist, M.S.; Sakagami, M. In vitro aqueous fluid-capacity-limited dissolution testing of respirable aerosol drug particles generated from inhaler products. Pharm Res. 2010, 27, 786–795. [Google Scholar] [CrossRef]
- Amini, E.; Kurumaddali, A.; Bhagwat, S.; Berger, S.M.; Hochhaus, G. Optimization of the Transwell® System for Assessing the Dissolution Behavior of Orally Inhaled Drug Products through In Vitro and In Silico Approaches. Pharmaceutics 2021, 13, 1109. [Google Scholar] [CrossRef]
- Franek, F.; Fransson, R.; Thörn, H.; Bäckman, P.; Andersson, P.U.; Tehler, U. Ranking in Vitro Dissolution of Inhaled Micronized Drug Powders including a Candidate Drug with Two Different Particle Sizes. Mol. Pharm. 2018, 15, 5319–5326. [Google Scholar] [CrossRef]
- Salama, R.O.; Traini, D.; Chan, H.K.; Sung, A.; Ammit, A.J.; Young, P.M. Preparation and evaluation of controlled release microparticles for respiratory protein therapy. J. Pharm. Sci. 2009, 98, 2709–2717. [Google Scholar] [CrossRef]
- Gerde, P.; Malmlöf, M.; Havsborn, L.; Sjöberg, C.O.; Ewing, P.; Eirefelt, S.; Ekelund, K. DissolvIt: An In Vitro Method for Simulating the Dissolution and Absorption of Inhaled Dry Powder Drugs in the Lungs. Assay Drug Dev. Technol. 2017, 15, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Sonvico, F.; Chierici, V.; Varacca, G.; Quarta, E.; D’Angelo, D.; Forbes, B.; Buttini, F. RespiCellTM: An Innovative Dissolution Apparatus for Inhaled Products. Pharmaceutics 2021, 13, 1541. [Google Scholar] [CrossRef]
- Hein, S.; Bur, M.; Schaefer, U.F.; Lehr, C.M. A new pharmaceutical aerosol deposition device on cell cultures (PADDOCC) to evaluate pulmonary drug absorption for metered dose dry powder formulations. Eur. J. Pharm. Biopharm. 2011, 77, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Grainger, C.I.; Greenwell, L.L.; Martin, G.P.; Forbes, B. The permeability of large molecular weight solutes following particle delivery to airinterfaced cells that model the respiratory mucosa. Eur. J. Pharm. Biopharm. 2009, 71, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.J.; Horng, M.; Copley, M.; McConville, J.T. Optimization of an in vitro dissolution test method for inhalation formulations. Dissolution Technol. 2010, 17, 6–13. [Google Scholar] [CrossRef]
- May, S.; Kind, B.; Jensen, M.; Wolkenhauer, M.; Schenider, M.; Lehr, C.M. Miniature in vitro dissolution testing of powder for inhalation. Dissolution Technol. 2015, 22, 40–51. [Google Scholar] [CrossRef]
- Sakagami, M.; Li, H.; Venitz, J.J. In-vivo relevant transwell dish-based dissolution testing for orally inhaled corticosteroids products. Pharm. Res. 2019, 36, 95. [Google Scholar] [CrossRef] [PubMed]
- Price, R.; Shur, J.; Ganley, W.; Farias, G.; Fotaki, N.; Conti, D.S.; Delvadia, R.; Absar, M.; Saluja, B.; Lee, S. Development of an aerosol dose collection apparatus for in vitro dissolution measurements of orally inhaled drug products. AAPS J. 2020, 22, 47. [Google Scholar] [CrossRef]
- Frenning, G.; van der Zwaan, I.; Franek, F.; Fransson, R.; Tehler, U. Model for the analysis of membrane-type dissolution tests for inhaled drugs. Mol. Pharm. 2020, 17, 2426–2434. [Google Scholar] [CrossRef]
- Rohrschneider, M.; Bhagwat, S.; Krampe, R.; Michler, V.; Breitkreutz, J.; Hochhaus, G. Evaluation of the transwell system for characterization of dissolution behavior of inhalation drugs: Effects of membrane and surfactant. Mol. Pharm. 2015, 12, 2618–2624. [Google Scholar] [CrossRef]
- Gerde, P.; Malmolf, M.; Selg, E. In Vitro to ex Vivo/In Vivo Correlation (IVIVC) of dissolution kinetics from inhaled particulate solutes using air/blood barrier models: Relation between in vitro design, lung physiology and kinetic output of models. J. Aerosol Sci. 2021, 151, 105698. [Google Scholar] [CrossRef]
- Noriega-Fernandes, B.; Malmlöf, M.; Nowenwik, M.; Gerde, P.; Corvo, M.L.; Costa, E. Dry powder inhaler formulation comparison: Study of the role of particle deposition pattern and dissolution. Int. J. Pharm. 2021, 607, 121025. [Google Scholar] [CrossRef] [PubMed]
- Inhalation Sciences Receives Landmark FDA Approval for Co-Financing of Its Study to Validate DissolvIt as a Standard Research Method in the US. Available online: https://news.cision.com/inhalation-sciences/r/inhalation-sciences-receives-landmark-fda-approval-for-co-financing-of-its-study-to-validate-dissolv,c3610227 (accessed on 15 January 2023).
- Cingolani, E.; Alqahtani, S.; Sadler, R.C.; Prime, D.; Stolnik, S.; Bosquillon, C. In vitro investigation on the impact of airway mucus on drug dissolution and absorption at the air-epithelium interface in the lungs. Eur. J. Pharm. Biopharm. 2019, 141, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Newby, D.; Freitas, A.A.; Ghafourian, T. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. Eur. J. Med. Chem. 2015, 90, 751–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. M9 Biopharmaceutics Classification System Based Biowaivers Guidance for Industry; Center for Drug Evaluation and Research, Food and Drug Administration: Silver Spring, MD, USA, 2021. Available online: https://www.fda.gov/media/148472/ (accessed on 15 November 2022).
- Hastedt, J.E.; Bäckman, P.; Clark, A.R.; Doub, W.; Hickey, A.; Hochhaus, G.; Kuehl, P.J.; Lehr, C.M.; Mauser, P.; McConville, J.; et al. Scope and relevance of a pulmonary biopharmaceutical classification system. AAPS Open 2016, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Hastedt, J.E.; Bäckman, P.; Cabal, A.; Clark, A.; Ehrhardt, C.; Forbes, B.; Hickey, A.J.; Hochhaus, G.; Jiang, W.; Kassinos, S.; et al. iBCS: 1. Principles and framework of an inhalation-based biopharmaceutics classification system. Mol. Pharm. 2022, 19, 2032–2039. [Google Scholar] [CrossRef]
- Ehrhardt, C.; Fiegel, J.; Fuchs, S.; Abu-Dahab, R.; Schaefer, U.F.; Hanes, J.; Lehr, C.M. Drug Absorption by the Respiratory Mucosa: Cell Culture Models and Particulate Drug Carriers. J. Aerosol Med. 2002, 15, 131–139. [Google Scholar] [CrossRef]
- Fröhlich, E. Replacement Strategies for Animal Studies in Inhalation Testing. Sci 2021, 3, 45. [Google Scholar] [CrossRef]
- Cao, X.; Coyle, J.P.; Xiong, R.; Wang, Y.; Heflich, R.H.; Ren, B.; Gwinn, W.M.; Hayden, P.; Rojanasakul, L. Invited review: Human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell. Dev. Biol. Anim. 2021, 57, 104–132. [Google Scholar] [CrossRef] [PubMed]
- Forbes, B.; Ehrhardt, C. Human respiratory epithelial cell culture for drug delivery applications. Eur. J. Pharm. Biopharm. 2005, 60, 193–205. [Google Scholar] [CrossRef]
- Ong, H.X.; Traini, D.; Young, P.M. Pharmaceutical applications of the Calu-3 lung epithelia cell line. Expet. Opin. Drug Deliv. 2013, 10, 1287–1302. [Google Scholar] [CrossRef]
- Gerde, P. Deposition of aerosols for dissolution experiments: How to combine the one with the other. In Proceedings of the Drug Delivery to the Lungs Conference (DDL25), Edinburgh, Scotland, 10–12 December 2014; The Aerosol Society: Portishead, UK, 2014. [Google Scholar]
- Haghi, M.; Traini, D.; Young, P.M. In vitro cell integrated impactor deposition methodology for the study of aerodynamically relevant size fractions from commercial pressurised metered dose inhalers. Pharm. Res. 2014, 31, 1779–1787. [Google Scholar] [CrossRef]
- VITROCELL® PowderX: For Cell Culture Exposure to Smallest Quantities of Dry Powders. Available online: https://www.vitrocell.com/inhalation-toxicology/exposure-systems/vitrocell-powder-chamber (accessed on 10 February 2023).
- Horstmann, J.C.; Thorn, C.R.; Carius, P.; Graef, F.; Murgia, X.; de Souza Carvalho-Wodarz, C.; Lehr, C.M. A custom-made device for reproducibly depositing pre-metered doses of nebulized drugs on pulmonary cells in vitro. Front. Bioengin. Biotech. 2021, 9, 643491. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, E.; Stolnik-Trenkic, S.; Sadler, R.C.; Bosquillon, C. A Simple In-Vitro Deposition System to Understand the Role of Inhaled Particle Characteristics on their Fate in the Lung. J. Aerosol Med. Pulm Drug Del. 2016, 26, A9. [Google Scholar]
- Simkova, K.; Thormann, U.; Imanidis, G. Investigation of drug dissolution and uptake from low-density DPI formulations in an impactor–integrated cell culture model. Eur. J. Pharm. Biopharm. 2020, 155, 12–21. [Google Scholar] [CrossRef]
- Kuehn, A.; Kletting, S.; de Souza Carvalho-Wodarz, C.; Repnik, U.; Griffiths, G.; Fischer, U.; Meese, E.; Huwer, H.; Wirth, D.; May, T.; et al. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier. ALTEX 2016, 33, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Kanagaki, S.; Ikeo, S.; Suezawa, T.; Yamamoto, Y.; Seki, M.; Hirai, T.; Hagiwara, M.; Suzuki, Y.; Gotoh, S. Directed induction of alveolar type I cells derived from pluripotent stem cells via Wnt signaling inhibition. Stem Cells 2020, 39, 156–169. [Google Scholar] [CrossRef]
- Hittinger, M.; Janke, J.; Huwer, H.; Scherließ, R.; Schneider-Daum, N.; Lehr, C.M. Autologous co-culture of primary human alveolar macrophages and epithelial cells for investigating aerosol medicines. Part I: Model Characterization. Altern. Lab. Anim. 2016, 44, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Carius, P.; Dubois, A.; Ajdarirad, M.; Artzy-Schnirman, A.; Sznitman, J.; Schneider-Daum, N.; Lehr, C.-M. PerfuPul—A Versatile Perfusable Platform to Assess Permeability and Barrier Function of Air Exposed Pulmonary Epithelia. Front. Bioeng. Biotechnol. 2021, 9, 743236. [Google Scholar] [CrossRef]
- Selo, M.A.; Sake, J.A.; Kim, K.J.; Ehrhardt, C. In vitro and ex vivo models in inhalation biopharmaceutical research—Advances, challenges and future perspectives. Adv. Drug Del. Rev. 2021, 177, 113862. [Google Scholar] [CrossRef]
- Eedara, B.B.; Bastola, R.; Das, S.C. Dissolution and Absorption of Inhaled Drug Particles in the Lungs. Pharmaceutics 2022, 14, 2667. [Google Scholar] [CrossRef] [PubMed]
- Lagowala, D.A.; Kwon, S.; Sidhaye, V.K.; Kim, D.H. Human microphysiological models of airway and alveolar epithelia. Am. J. Physio. Lung Cellular Mol. Physio. 2021, 321, L1072–L1088. [Google Scholar] [CrossRef] [PubMed]
- Stucki, A.O.; Stucki, J.D.; Hall, S.R.R.; Felder, M.; Mermoud, Y.; Schmid, R.A.; Geiser, T.; Guenat, O.T. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 2015, 15, 1302–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konar, D.; Devarasetty, M.; Yildiz, D.V.; Atala, A.; Murphy, S.V. Lung-on-a-chip technologies for disease modeling and drug development. Biomed. Eng. Comput. Biol. 2016, 7, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, T.C.; Peters, J.I.; Williams III, R.O. Influence of particle size on regional lung deposition—What evidence is there? Int. J. Pharm. 2011, 406, 1–10. [Google Scholar] [CrossRef]
- Usmani, O.S.; Biddiscombe, M.F.; Barnes, P.J. Regional lung deposition and bronchodilator response as a function of β2-agonist particle size. Am. J. Resp. Critical Care Med. 2005, 172, 1497–1504. [Google Scholar] [CrossRef]
- Bur, M.; Huwer, H.; Muys, L.; Lehr, C.M. Drug transport across pulmonary epithelial cell monolayers: Effects of particle size, apical liquid volume, and deposition technique. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 119–127. [Google Scholar] [CrossRef]
- Floroiu, A.; Klein, M.; Krämer, J.; Lehr, C.M. Towards Standardized Dissolution Techniques for In Vitro Performance Testing of Dry Powder Inhalers. Dissolution Technol. 2018, 25, 6–18. [Google Scholar] [CrossRef]
- Eedara, B.B.; Tucker, I.G.; Das, S.C. In vitro dissolution testing of respirable size anti-tubercular drug particles using a small volume dissolution apparatus. Int. J. Pharm. 2019, 559, 235–244. [Google Scholar] [CrossRef]
- May, S.; Jensen, B.; Weiler, C.; Wolkenhauer, M.; Schneider, M.; Lehr, C.M. Dissolution testing of powders for inhalation: Influence of particle deposition and modeling of dissolution profiles. Pharm Res. 2014, 31, 3211–3224. [Google Scholar] [CrossRef]
- Marre, S.; Palmeri, J. Theoretical study of aerosol filtration by nucleopore filters: The intermediate crossover regime of Brownian diffusion and direct interception. J. Colloid Interf. Sci. 2001, 237, 230–238. [Google Scholar] [CrossRef]
- Stegemann, S.; Moreton, C.; Svanbäck, S.; Box, K.; Motte, G.; Paudel, A. Trends in oral small-molecule drug discovery and product development based on product launches before and after the Rule of Five. Drug Discov. Today 2023, 28, 103344. [Google Scholar] [CrossRef]
- Shekunov, B.; Montgomery, E.R. Theoretical Analysis of Drug Dissolution: I. Solubility and Intrinsic Dissolution Rate. J. Pharm. Sci. 2016, 105, 2685–2697. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, S.; Schilling, U.; Chen, M.J.; Wei, X.; Delvadia, R.; Absar, M.; Saluja, B.; Hochhaus, G. Predicting Pulmonary Pharmacokinetics from In Vitro Properties of Dry Powder Inhalers. Pharm. Res. 2017, 34, 2541–2556. [Google Scholar] [CrossRef]
- Kumar, A.; Terakosolphan, W.; Hassoun, M.; Vandera, K.K.; Novicky, A.; Harvey, R.; Royall, P.G.; Bicer, E.M.; Eriksson, J.; Edwards, K.; et al. A Biocompatible Synthetic Lung Fluid Based on Human Respiratory Tract Lining Fluid Composition. Pharm Res. 2017, 34, 2454–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelley, S.A.; Balis, J.U.; Paciga, J.E.; Espinoza, C.G.; Richman, A.V. Biochemical composition of adult human lung surfactant. Lung 1982, 160, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Calas, A.; Uzu, G.; Martins, J.M.; Voisin, D.; Spadini, L.; Lacroix, T.; Jaffrezo, J.L. The importance of simulated lung fluid (SLF) ex-tractions for a more relevant evaluation of the oxidative potential of particulate matter. Sci. Rep. 2017, 7, 11617. [Google Scholar] [CrossRef] [Green Version]
- Schulz, A.; Pagerols, R.L.; Kolman, J.P.; Königs, I.; Trochimiuk, M.; Appl, B.; Reinshagen, K.; Boettcher, M.; Trah, J. The Inhibitory Effect of Curosurf® and Alveofact® on the Formation of Neutrophil Extracellular Traps. Front. Immunol. 2021, 11, 582895. [Google Scholar] [CrossRef]
- Pham, S.; Wiedmann, T.S. Note: Dissolution of aerosol particles of budesonide in Survanta, a model lung surfactant. J. Pharm. Sci. 2001, 90, 98–104. [Google Scholar] [CrossRef]
- Eedara, B.B.; Tucker, I.G.; Das, S.C. A STELLA simulation model for in vitro dissolution testing of respirable size particles. Sci. Rep. 2019, 9, 18522. [Google Scholar] [CrossRef] [Green Version]
- Scheubel, E.; Lindenberg, M.; Beyssac, E.; Cardot, J.M. Small volume dissolution testing as a powerful method during pharmaceutical development. Pharmaceutics 2010, 2, 351–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaialy, K.; Nokhodchi, A. Engineered mannitol ternary additives improve disper-sion of lactose–salbutamol sulphate dry powder inhalations. AAPS J. 2013, 15, 728–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamishehkar, H.; Emami, J.; Najafabadi, A.R.; Gilani, K.; Minaiyan, M. Influence of carrier particle size, carrier ratio and addition of fine ternary particles on the dry powder inhala-tion performance of insulin-loaded PLGA microcapsules. Power Technol. 2010, 201, 289–295. [Google Scholar] [CrossRef]
- Myrdal, P.B.; Sheth, P.; Stein, S.W. Advances in metered dose inhaler technology: Formulation development. AAPS PharmSciTech 2014, 15, 434–455. [Google Scholar] [CrossRef] [Green Version]
- Buttini, F.; Miozzi, M.; Balducci, A.G.; Royall, P.G.; Brambilla, G.; Colombo, P.; Bettini, R.; Forbes, B. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers. Int. J. Pharm. 2014, 465, 42–51. [Google Scholar] [CrossRef]
- Haghi, M.; Bebawy, M.; Colombo, P.; Forbes, B.; Lewis, D.A.; Salama, R.; Traini, D.; Young, P.M. Towards the bioequivalence of pressurised metered dose inhalers 2. Aerodynamically equivalent particles (with and without glycerol) exhibit different biopharmaceutical profiles in vitro. Eur. J. Pharm. Biopharm. 2014, 86, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Al ayoub, Y.; Buzgeia, A.; Almousawi, G.; Mazhar, H.R.A.; Alzouebi, B.; Gopalan, R.C.; Assi, K.H. In-Vitro In-Vivo Correlation (IVIVC) of Inhaled Products using Twin Stage Impinger. J. Pharm. Sci. 2022, 111, 395–402. [Google Scholar] [CrossRef]
- Jouyban, A. Handbook of Solubility Data for Pharmaceuticals; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2010. [Google Scholar]
- Stopford, W.; Turner, J.; Cappellini, D.; Brock, T. Bioaccessibility testing of cobalt compounds. J. Environ. Monit. 2003, 5, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Colombo, C.; Monhemius, A.J.; Plant, J.A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotox. Environ. Safe. 2008, 71, 722–730. [Google Scholar] [CrossRef]
- May, S. Dissolution Testing of Powders for Inhalation. Ph.D. Thesis, University of Saarlandes, Saarbrücken, Germany, 2013. [Google Scholar]
- Wiedmann, T.S.; Bhatia, R.; Wattenberg, L.W. Drug solubilization in lung surfactant. J. Control. Release. 2000, 65, 43–47. [Google Scholar] [CrossRef]
- Kaiser, H.; Aaronson, D.; Dockhorn, R.; Edsbacker, S.; Korenblat, P.; Kallen, A. Dose-proportional pharmacokinetics of budesonide inhaled via turbuhaler. Br. J. Clin. Pharmacol. 1999, 48, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.; Lobo, J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Mendyk, A.; Jachowicz, R.; Fijorek, K.; Dorożyński, P.; Kulinowski, P.; Polak, S. KinetDS: An open source software for dissolution test data analysis. Dissolution Technol. 2012, 19, 6–11. [Google Scholar] [CrossRef]
- Restani, R.B.; Pires, R.F.; Tolmatcheva, A.; Cabral, R.; Baptista, P.V.; Fernandes, A.R.; Casimiro, T.; Bonifácio, V.D.B. Poxylated Dendrimer-Based Nano-in-Micro Dry Powder Formulations for Inhalation Chemotherapy. Chemistry Open 2018, 7, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, S.; Rohrschnieder, M.; Sandini, L.; Hochaus, G.; Alfadehl, S.; Hochhaus, G. Development of an in vitro dissolution test method for inhaled corticosteroids. JAMPD 2013, 26, A58–A59. [Google Scholar]
- Hassoun, M.; Malmlöf, M.; Scheibelhofer, O.; Kumar, A.; Bansal, S.; Selg, E.; Nowenwik, M.; Gerde, P.; Radivojev, S.; Paudel, A.; et al. Use of PBPK Modeling to Evaluate the Performance of DissolvIt, a Biorelevant Dissolution Assay for Orally Inhaled Drug Products. Mol. Pharm. 2019, 16, 1245–1254. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2006, 309, 44–50. [Google Scholar] [CrossRef]
- Moore, J.W.; Flanner, H.H. Mathematical comparison of dissolution profiles. Pharma Tech. 1996, 20, 64–74. [Google Scholar]
- US Food and Drug Administration. Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms; Center for Drug Evaluation and Research (CDER): Silver Spring, MD, USA; United States Department of Health and Human Services: Washington, DC, USA, 1997. [Google Scholar]
- Tsong, Y.; Hammerstrom, T.; Sathe, P.; Shah, V.P. Statistical assessment of mean differences between two dissolution data sets. Drug Inf. J. 1996, 30, 1105–1112. [Google Scholar] [CrossRef]
- FDA; CDER. Guidance for Industry. Immediate Release solid Oral Dosage Forms. Scale-Up and Postapproval Changes: Chemistry, Manufacturing, and Controls, In Vitro Dissolution Testing, and In Vivo Bioequivalence Documentation. 1995. Available online: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070636.pdf (accessed on 15 February 2023).
- FDA; CDER. Guidance for Industry. SUPAC-MR: Modified Release Solid Oral Dosage Forms Scale-Up and Postapproval Changes: Chemistry, Manufacturing, and Controls; In Vitro Dissolution Testing and In Vivo Bioequivalence Documentation. 1997. Available online: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070640.pdf (accessed on 15 February 2023).
- EMEA; CPMP. CPMP/QWP/604/96. Note for Guidance on Quality of Modified Release Products: A: Oral Dosage Forms. B.; Transdermal Dosage Forms. Section I (Quality). 1999. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003664.pdf (accessed on 15 February 2023).
Dissolution Apparatus/Permeability Type | Dose Collection Method | Particle Collection Filter/Dissolution Membrane | Rotation Speed or Flow Rate | Reference |
---|---|---|---|---|
United State pharmacopoeia apparatus II (paddle) | Spray drying from aqueous PVA solutions | None | 50 rpm | [14] |
rNGI | Glass fiber filter covered with polycarbonate membrane | 50−100 rpm | [15] | |
ACI (Andersen cascade impactor) | A regenerated cellulose membrane (0.45 μm) is placed into a membrane holder | 140 rpm | [16] | |
Flow through cell apparatus | ACI | A fiberglass filter between 0.45 µm membrane filters in stainless steel holder | 0.4−1.5 mL/min | [4] |
ACI (Andersen cascade impactor) | Filter membrane consisting of regenerated cellulose covered with a second membrane | 1 mL/min | [16] | |
Spray drying from aqueous PVA solutions | A nitrocellulose membrane with a pore size of 0.45 μm is placed between a second membrane filter and a metal mesh screen | 0.5 mL/min | [14] | |
Transwell® system apparatus | ACI | Polyvinylidene difluoride (PVDF) membrane filter with a pore size of 0.22 μm | N/A | [17] |
NGI | Glass microfilter paper (GF/CTM) | N/A | [18] | |
ACI | Sedimentation onto filter | N/A | [19] | |
Franz cell apparatus | Spray drying from aqueous PVA solutions | Nitrocellulose membrane with a pore size of 0.45 μm | N/A | [14,20] |
ACI (Andersen cascade impactor) | A regenerated cellulose membrane with a pore size of 0.45 μm | 100 rpm | [17] | |
Dissolvit® | PreciseInhale exposure system | Glass coverslip | 0.42 mL/min | [21] |
RespicellTM | fast screening impactor (FSI) | Filter from FSI collects particles less than 5 µm | magnetically stirred | [22] |
Cell-based methods | Aerosolization using a PennCentury™ | Broncho-epithelial cell line Calu-3 mounted onto Transwells® | N/A | [23] |
TSI | Broncho-epithelial cell line Calu-3 mounted onto Transwells® | N/A | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nokhodchi, A.; Chavan, S.; Ghafourian, T. In Vitro Dissolution and Permeability Testing of Inhalation Products: Challenges and Advances. Pharmaceutics 2023, 15, 983. https://doi.org/10.3390/pharmaceutics15030983
Nokhodchi A, Chavan S, Ghafourian T. In Vitro Dissolution and Permeability Testing of Inhalation Products: Challenges and Advances. Pharmaceutics. 2023; 15(3):983. https://doi.org/10.3390/pharmaceutics15030983
Chicago/Turabian StyleNokhodchi, Ali, Salonee Chavan, and Taravat Ghafourian. 2023. "In Vitro Dissolution and Permeability Testing of Inhalation Products: Challenges and Advances" Pharmaceutics 15, no. 3: 983. https://doi.org/10.3390/pharmaceutics15030983
APA StyleNokhodchi, A., Chavan, S., & Ghafourian, T. (2023). In Vitro Dissolution and Permeability Testing of Inhalation Products: Challenges and Advances. Pharmaceutics, 15(3), 983. https://doi.org/10.3390/pharmaceutics15030983