Semifluorinated Alkanes as New Drug Carriers—An Overview of Potential Medical and Clinical Applications
Abstract
:1. Introduction
2. Section 1—Physicochemical and Biological Aspects
2.1. (Poly-)Fluorinated Compounds
2.2. Fluorinated Compounds in Medicine
2.3. Physicochemical Properties of Semifluorinated Alkanes
2.4. Oxygen Solubility-Application as Oxygen Transport Carrier
2.5. Semifluorinated Alkanes as Solvents
2.6. Semifluorinated Alkanes as Surfactants
2.7. Biocompatibility
3. Section 2—Clinical Use of SFAs in Ophthalmology
4. Section 3—Potential Bio-Medical Applications
4.1. SFAs as Oxygen Carriers
4.2. SFA-Containing Emulsions as Oxygen Carriers
4.3. SFAs in Partial Liquid Ventilation
4.4. Pancreas Storage in Perfluorohexyloctane (F6H8) for Islet Isolation
4.5. SFA as Oxygen-Probes in 19F-MRI
5. Section 4—Drug-Delivery Capability of SFAs
5.1. SFAs for Topical Drug Delivery on the Eye
5.2. SFAs for Topical Drug Delivery on the Skin
5.3. Oral Bioavailability
5.4. Intravenous Drug Delivery
5.5. Pulmonary Drug Delivery
5.6. SFA as Drug Carriers in Acute Respiratory Distress Syndrome (ARDS)
5.7. SFAs for Protein Drug Delivery
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AKI | Acute kidney injury |
ALI | Acute lung injury |
ARDS | Acute Respiratory Distress Syndrome |
AUC | Area under the curve |
AZM | Azithromycin |
CSTH | Critical temperature of solution in hexane |
CST | Critical temperature of solution |
DED | Dry eye disease |
F4H5 | Perfluorobutylpentane |
F6H8 | Perfluorohexyloctane |
F6H8-cEM | Perfluorohexyloctane-containing emulsions |
F6H8S5 | perfluorohexyloctane/polydimethylsiloxane |
F6H10 | Perfluorohexyldecane |
HBO | Hyperbaric hyperoxygenation |
H2O | Water |
H&E | Hematoxylin and eosin (staining) |
mAb | Monoclonal antibodies |
MCT | Medium-Chain Triglyceride |
MGD | Myoboma gland dysfunction |
MMAD | Mass Median Aerodynamic Diameter |
mPas | Millipascal |
MRT | Magnetic resonance tomography |
19F-MRI | 19F magnetic resonance imaging |
NBO | Normobaric hyperoxygenation |
NMR | Nuclear magnetic resonance |
19F-NMR | 19F nuclear magnetic resonance |
PET | Positron emission tomography |
PFCs | Perfluorcarbons |
PFCL | Perfluorocarbon liquids |
PFD | Perfluorodecaline |
PFO | Perfluorooctane |
PFOB | Perfluoroctylbromide |
PLV | Partial liquid ventilation |
PTFE | Polytetrafluoroethylene |
PVR | Proliferative vitreoretinopathy |
RES | Reticuloendothelial system |
SFAs | Semifluorinated alkanes |
S75 | Lecithin |
SH | Sodium hyaluronate |
TLV | Total liquid ventilation |
VEGF | Vascular endothelial growth factor |
References
- Krafft, M.P.; Riess, J.G. Chapter 11—Perfluorochemical-Based Oxygen Therapeutics, Contrast Agents, and Beyond. In Fluorine and Health; Tressaud, A., Ed.; Elsevier: Amsterdam, The Netherland, 2008; pp. 447–486. [Google Scholar]
- Tressaud, A.; Haufe, G. Fluorine and Health: Molecular Imaging, Biomedical Materials and Pharmaceuticals; Elsevier: New York, NY, USA, 2008. [Google Scholar]
- Yu, Q.; Liu, K.; Su, L.; Xia, X.; Xu, X. Perfluorocarbon Liquid: Its Application in Vitreoretinal Surgery and Related Ocular Inflammation. BioMed Res. Int. 2014, 2014, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kacmarek, R.M.; Wiedemann, H.P.; Lavin, P.T.; Wedel, M.K.; Tütüncü, A.S.; Slutsky, A.S. Partial liquid ventilation in adult patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2006, 173, 882–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacoby, C.; Temme, S.; Mayenfels, F.; Benoit, N.; Krafft, M.P.; Schubert, R.; Schrader, J.; Flögel, U. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: Image reconstruction, biological half-lives and sensitivity. NMR Biomed. 2014, 27, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Krafft, M.P.; Riess, J.G. Perfluorocarbons: Life sciences and biomedical uses Dedicated to the memory of Professor Guy Ourisson, a true RENAISSANCE man. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 1185–1198. [Google Scholar] [CrossRef]
- Winter, P.M. Perfluorocarbon Nanoparticles: Evolution of a Multimodality and Multifunctional Imaging Agent. Scientifica 2014, 2014, 746574. [Google Scholar] [CrossRef] [Green Version]
- Meinert, H.; Knoblich, A. The use of semifluorinated alkanes in blood-substitutes. Biomater. Artif. Cells Immobil. Biotechnol. 1993, 21, 583–595. [Google Scholar] [CrossRef]
- Krafft, M.P.; Riess, J.G. Highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field. A contribution. Biochimie 1998, 80, 489–514. [Google Scholar] [CrossRef]
- Seiffge, D.J.; Lapina, N.E.; Tsagogiorgas, C.; Theisinger, B.; Henning, R.H.; Schilling, L. Improvement of oxygen supply by an artificial carrier in combination with normobaric oxygenation decreases the volume of tissue hypoxia and tissue damage from transient focal cerebral ischemia. Exp. Neurol. 2012, 237, 18–25. [Google Scholar] [CrossRef]
- Dembinski, R.; Bensberg, R.; Marx, G.; Rossaint, R.; Quintel, M.; Kuhlen, R. Semi-fluorinated alkanes as carriers for drug targeting in acute respiratory failure. Exp. Lung Res. 2010, 36, 499–507. [Google Scholar] [CrossRef]
- Brandhorst, H.; Asif, S.; Andersson, K.; Theisinger, B.; Andersson, H.H.; Felldin, M.; Foss, A.; Salmela, K.; Tibell, A.; Tufveson, G. A new oxygen carrier for improved long-term storage of human pancreata before islet isolation. Transplantation 2010, 89, 155–160. [Google Scholar] [CrossRef]
- Kim, Y.K.; Gunther, B.; Meinert, H. A new, heavier-than-water silicone oil: A solution of perfluorohexyloctane in polydimethylsiloxane. Eur. J. Ophthalmol. 2005, 15, 627–637. [Google Scholar] [CrossRef]
- Kirchhof, B.; Wong, D.; Van Meurs, J.; Hilgers, R.D.; Macek, M.; Lois, N.; Schrage, N.F. Use of perfluorohexyloctane as a long-term internal tamponade agent in complicated retinal detachment surgery. Am. J. Ophthalmol. 2002, 133, 95–101. [Google Scholar] [CrossRef]
- Mackiewicz, J.; Muhling, B.; Hiebl, W.; Meinert, H.; Kociok, N.; Joussen, A.M. Pneumatic retinopexy by evaporation of fluorocarbon liquids: In vitro and in vivo results. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 69–79. [Google Scholar] [CrossRef]
- Schulz, A.; Januschowski, K.; Szurman, P. Novel vitreous substitutes: The next frontier in vitreoretinal surgery. Curr. Opin. Ophthalmol. 2021, 32, 288–293. [Google Scholar] [CrossRef]
- Son, H.S.; Yildirim, T.M.; Khoramnia, R.; Poompokawat, P.; Knorz, M.C.; Auffarth, G.U. Semi-fluorinated Alkane Eye Drops Reduce Signs and Symptoms of Evaporative Dry Eye Disease After Cataract Surgery. J. Refract. Surg. 2020, 36, 474–480. [Google Scholar] [CrossRef]
- Steven, P.; Augustin, A.J.; Geerling, G.; Kaercher, T.; Kretz, F.; Kunert, K.; Menzel-Severing, J.; Schrage, N.; Schrems, W.; Krosser, S.; et al. Semifluorinated Alkane Eye Drops for Treatment of Dry Eye Disease Due to Meibomian Gland Disease. J. Ocul. Pharm. Ther. 2017, 33, 678–685. [Google Scholar] [CrossRef]
- Steven, P.; Scherer, D.; Krosser, S.; Beckert, M.; Cursiefen, C.; Kaercher, T. Semifluorinated Alkane Eye Drops for Treatment of Dry Eye Disease—A Prospective, Multicenter Noninterventional Study. J. Ocul. Pharmacol. Ther. 2015, 31, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Eberwein, P.; Krosser, S.; Steven, P. Semifluorinated Alkane Eye Drops in Chronic Ocular Graft-versus-Host Disease: A Prospective, Multicenter, Noninterventional Study. Ophthalmic Res. 2020, 63, 50–58. [Google Scholar] [CrossRef]
- Krafft, M.P. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv. Drug Deliv. Rev. 2001, 47, 209–228. [Google Scholar] [CrossRef]
- Krafft, M.P.; Riess, J.G. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv. Colloid Interface Sci. 2021, 294, 102407. [Google Scholar] [CrossRef]
- Meinert, H.; Roy, T. Semifluorinated alkanes—A new class of compounds with outstanding properties for use in ophthalmology. Eur. J. Ophthalmol. 2000, 10, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Krafft, M.P.; Riess, J.G. Chemistry, physical chemistry, and uses of molecular fluorocarbon-hydrocarbon diblocks, triblocks, and related compounds-unique “apolar” components for self-assembled colloid and interface engineering. Chem. Rev. 2009, 109, 1714–1792. [Google Scholar] [CrossRef] [PubMed]
- Tsagogiorgas, C.; Jung, T.; Krebs, J.; Theisinger, B.; Beck, G.; Yard, B.A.; Quintel, M. Aerosolized semifluorinated alkanes as excipients are suitable for inhalative drug delivery—A pilot study. Int. J. Pharm. 2012, 422, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Tsagogiorgas, C.; Krebs, J.; Pukelsheim, M.; Beck, G.; Yard, B.; Theisinger, B.; Quintel, M.; Luecke, T. Semifluorinated alkanes—A new class of excipients suitable for pulmonary drug delivery. Eur. J. Pharm. Biopharm. 2010, 76, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Tsagogiorgas, C.; Theisinger, S.; Heesch, E.; Krebs, J.; Holm, R.; Beck, G.; Yard, B. Evaluation of pharmacokinetic properties and anaesthetic effects of propofol in a new perfluorohexyloctane (F6H8) emulsion in rats—A comparative study. Int. J. Pharm. 2015, 486, 69–76. [Google Scholar] [CrossRef]
- Dutescu, R.M.; Panfil, C.; Merkel, O.M.; Schrage, N. Semifluorinated alkanes as a liquid drug carrier system for topical ocular drug delivery. Eur. J. Pharm. Biopharm. 2014, 88, 123–128. [Google Scholar] [CrossRef]
- Binder, L.; Jatschka, J.; Kulovits, E.M.; Seeböck, S.; Kählig, H.; Valenta, C. Simultaneous penetration monitoring of oil component and active drug from fluorinated nanoemulsions. Int. J. Pharm. 2018, 552, 312–318. [Google Scholar] [CrossRef]
- Hardung, H. Semifluorinated and Perfluorinated Substances for Topical and Parenteral Application; Universitätsbibliothek Freiburg: Freiburg im Breisgau, Germany, 2008. [Google Scholar]
- Krafft, M.P.; Riess, J.G. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability—Part one. Chemosphere 2014, 129, 4–19. [Google Scholar] [CrossRef]
- Carreira, A.R.; Rodrigues-Barros, S.; Silva, J.C.; de Almeida, M.F.; Machado, I.; Cardoso, J.N.; Campos, N. Tobacco effects on ocular surface, meibomian glands, and corneal epithelium and the benefits of treatment with a lipid-based lubricant. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 171–184. [Google Scholar] [CrossRef]
- Posner, S. Perfluorinated Compounds: Occurrence and Uses in Products. In Polyfluorinated Chemicals and Transformation Products; Knepper, T.P., Lange, F.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 25–39. [Google Scholar]
- Murphy, W.J. Fluorine Nomenclature. Ind. Eng. Chem. 1947, 39, 241–242. [Google Scholar]
- Müller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking Beyond Intuition. Science 2007, 317, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320–330. [Google Scholar] [CrossRef]
- Mees, G.; Dierckx, R.; Vangestel, C.; Van de Wiele, C. Molecular imaging of hypoxia with radiolabelled agents. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 1674–1686. [Google Scholar] [CrossRef] [Green Version]
- Ernsting, M.J.; Bonin, G.C.; Yang, M.; Labow, R.S.; Santerre, J.P. Generation of cell adhesive substrates using peptide fluoralkyl surface modifiers. Biomaterials 2005, 26, 6536–6546. [Google Scholar] [CrossRef]
- Larsen, C.C.; Kligman, F.; Kottke-Marchant, K.; Marchant, R.E. The effect of RGD fluorosurfactant polymer modification of ePTFE on endothelial cell adhesion, growth, and function. Biomaterials 2006, 27, 4846–4855. [Google Scholar] [CrossRef] [Green Version]
- Bastijanic, J.M.; Kligman, F.L.; Marchant, R.E.; Kottke-Marchant, K. Dual biofunctional polymer modifications to address endothelialization and smooth muscle cell integration of ePTFE vascular grafts. J. Biomed. Mater. Res. Part A 2016, 104, 71–81. [Google Scholar] [CrossRef]
- Tiers, G.V.D. Some Free Radical-Catalyzed Additions of Perfluoroalkyl Iodides to Olefins. J. Org. Chem. 1962, 27, 2261–2262. [Google Scholar] [CrossRef]
- Rabolt, J.F.; Russell, T.P.; Twieg, R.J. Structural studies of semifluorinated n-alkanes. 1. Synthesis and characterization of F(CF2)n(CH2)mH in the solid state. Macromolecules 1984, 17, 2786–2794. [Google Scholar] [CrossRef]
- Napoli, M.; Krotz, L.; Conte, L.; Seraglia, R.; Traldi, P. Mass spectrometric studies on some F(CF2)n(CH2)mH semifluorinated alkanes. Rapid Commun. Mass Spectrom. 1993, 7, 1012–1016. [Google Scholar] [CrossRef]
- Traverso, E.; Rinaldi, A. Agents Affording Sliding Characteristics. Patent EP0444752B1, 18 November 1998. [Google Scholar]
- Riess, J.G. Oxygen carriers (“blood substitutes”)-raison d’etre, chemistry, and some physiology. Chem. Rev. 2001, 101, 2797–2920. [Google Scholar] [CrossRef]
- Plassmann, M.M.; Denninger, A.; Berger, U. Environmental occurrence and fate of semifluorinated n-alkanes in snow and soil samples from a ski area. Chemosphere 2011, 85, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Riess, J.G. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif. Cells Blood Substitut. Biotechnol. 2005, 33, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Le, T.D.; Arlauskas, R.A.; Weers, J.G. Characterization of the lipophilicity of fluorocarbon derivatives containing halogens or hydrocarbon blocks. J. Fluor. Chem. 1996, 78, 155–163. [Google Scholar] [CrossRef]
- Liang, Y.; Kociok, N.; Leszczuk, M.; Hiebl, W.; Theisinger, B.; Lux, A.; Joussen, A.M. A cleaning solution for silicone intraocular lenses: “Sticky silicone oil”. Br. J. Ophthalmol. 2008, 92, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Riess, J.G. Fluorous micro- and nanophases with a biomedical perspective. Tetrahedron 2002, 58, 4113–4131. [Google Scholar] [CrossRef]
- Tanford, C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed.; John and Wiley and Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Gelbart, W.M.; Ben-Shaul, A.; Roux, D. Micelles, Membranes, Microemulsions, and Monolayers; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Broniatowski, M.; Dynarowicz-Łątka, P. Semifluorinated alkanes—Primitive surfactants of fascinating properties. Adv. Colloid Interface Sci. 2008, 138, 63–83. [Google Scholar] [CrossRef]
- Turberg, M.P.; Brady, J.E. Semifluorinated hydrocarbons: Primitive surfactant molecules. J. Am. Chem. Soc. 1988, 110, 7797–7801. [Google Scholar] [CrossRef]
- Hildebrand, J.H.; Fisher, B.B.; Benesi, H.A. Solubility of Perfluoro-n-heptane with Benzene, Carbon Tetrachloride, Chloroform, n-Heptane and 2,2,4-Trimethylpentane. J. Am. Chem. Soc. 1950, 72, 4348–4351. [Google Scholar] [CrossRef]
- Scott, R.L. The Solubility of Fluorocarbons1. J. Am. Chem. Soc. 1948, 70, 4090–4093. [Google Scholar] [CrossRef]
- Hoffmann, H.; Würtz, J. Unusual phenomena in perfluorosurfactants. J. Mol. Liq. 1997, 72, 191–230. [Google Scholar] [CrossRef]
- Bunn, C.; Howells, E. Structures of molecules and crystals of fluorocarbons. Nature 1954, 174, 549–551. [Google Scholar]
- Metrangolo, P.; Pilati, T.; Resnati, G.; Stevenazzi, A. Halogen bonding driven self-assembly of fluorocarbons and hydrocarbons. Curr. Opin. Colloid Interface Sci. 2003, 8, 215–222. [Google Scholar] [CrossRef]
- Mahler, W.; Guillon, D.; Skoulios, A. Smectic liquid crystal from (perfluorodecyl) decane. Mol. Cryst. Liq. Cryst. Lett. 1985, 2, 111–119. [Google Scholar]
- Gaines, G.L., Jr. Surface activity of semifluorinated alkanes: F (CF2) m (CH2) nH. Langmuir 1991, 7, 3054–3056. [Google Scholar] [CrossRef]
- Riess, J.G.; Pace, S.; Zarif, L. Highly effective surfactants with low hemolytic activity. Adv. Mater. 1991, 3, 249–251. [Google Scholar] [CrossRef]
- Mackiewicz, J.; Muhling, B.; Hiebl, W.; Meinert, H.; Maaijwee, K.; Kociok, N.; Luke, C.; Zagorski, Z.; Kirchhof, B.; Joussen, A.M. In vivo retinal tolerance of various heavy silicone oils. Investig. Opthalmol.Vis. Sci. 2007, 48, 1873–1883. [Google Scholar] [CrossRef]
- Riess, J.G.; Cornelus, C.; Follana, R.; Krafft, M.P.; Mahe, A.M.; Postel, M.; Zarif, L. Novel fluorocarbon-based injectable oxygen-carrying formulations with long-term room-temperature storage stability. Adv. Exp. Med. Biol. 1994, 345, 227–234. [Google Scholar]
- Tsagogiorgas, C.; Anger, F.; Beck, G.; Breedijk, A.; Yard, B.; Hoeger, S. Impact of different emulsifiers on biocompatibility and inflammatory potential of Perfluorohexyloctane (F6H8) emulsions for new intravenous drug delivery systems. Drug Des. Dev. Ther. 2019, 13, 2097–2110. [Google Scholar] [CrossRef] [Green Version]
- Roider, J.; Hoerauf, H.; Kobuch, K.; Gabel, V.-P. Clinical findings on the use of long-term heavy tamponades (semifluorinated alkanes and their oligomers) in complicated retinal detachment surgery. Graefe’s Arch. Clin. Exp. Ophthalmol. 2002, 240, 965–971. [Google Scholar] [CrossRef]
- Schatz, B.; El-Shabrawi, Y.; Haas, A.; Langmann, G. Adverse side effects with perfluorohexyloctane as a long-term tamponade agent in complicated vitreoretinal surgery. Retina 2004, 24, 567–573. [Google Scholar] [CrossRef]
- Heimann, H.; Stappler, T.; Wong, D. Heavy tamponade 1: A review of indications, use, and complications. Eye 2008, 22, 1342–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, D.; Van Meurs, J.; Stappler, T.; Groenewald, C.; Pearce, I.; McGalliard, J.; Manousakis, E.; Herbert, E. A pilot study on the use of a perfluorohexyloctane/silicone oil solution as a heavier than water internal tamponade agent. Br. J. Ophthalmol. 2005, 89, 662–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joussen, A.M.; Rizzo, S.; Kirchhof, B.; Schrage, N.; Li, X.; Lente, C.; Hilgers, R.D. Heavy silicone oil versus standard silicone oil in as vitreous tamponade in inferior PVR (HSO Study): Interim analysis. Acta Ophthalmol. 2011, 89, e483–e489. [Google Scholar] [CrossRef] [PubMed]
- Coppola, M.; Del Turco, C.; Querques, G.; Bandello, F. Perfluorobutylpentane (F4H5) Solvent-Assisted Silicon Oil Removal Technique. Retina 2017, 37, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Stalmans, P.; Pinxten, A.M.; Wong, D.S. Cohort Safety and Efficacy Study of Siluron2000 Emulsification-Resistant Silicone Oil and F4h5 in the Treatment of Full-Thickness Macular Hole. Retina 2015, 35, 2558–2566. [Google Scholar] [CrossRef] [Green Version]
- Tauber, J.; Berdy, G.J.; Wirta, D.L.; Krösser, S.; Vittitow, J.L. NOV03 for Dry Eye Disease Associated With Meibomian Gland Dysfunction: Results of the Randomized Phase 3 GOBI Study. Ophthalmology 2022, in press. [CrossRef]
- Riess, J.G. Perfluorocarbon-based oxygen delivery. Artif. Cells Blood Substit. Immobil. Biotechnol. 2006, 34, 567–580. [Google Scholar] [CrossRef]
- Riess, J.G.; Dalfors, J.L.; Hanna, G.K.; Klein, D.H.; Krafft, M.P.; Pelura, T.J.; Schutt, E.G. Development of highly fluid, concentrated and stable fluorocarbon emulsions for diagnosis and therapy. Biomater. Artif. Cells Immobil. Biotechnol. 1992, 20, 839–842. [Google Scholar] [CrossRef]
- Riess, J.G. The design and development of improved fluorocarbon-based products for use in medicine and biology. Artif. Cells Blood Substit. Immobil. Biotechnol. 1994, 22, 215–234. [Google Scholar] [CrossRef]
- Kim, H.Y.; Singhal, A.B.; Lo, E.H. Normobaric hyperoxia extends the reperfusion window in focal cerebral ischemia. Ann. Neurol. 2005, 57, 571–575. [Google Scholar] [CrossRef]
- Wolfson, M.R.; Shaffer, T.H. Liquid ventilation: An adjunct for respiratory management. Pediatr. Anesth. 2004, 14, 15–23. [Google Scholar] [CrossRef]
- Wolfson, M.R.; Shaffer, T.H. Pulmonary applications of perfluorochemical liquids: Ventilation and beyond. Paediatr. Respir. Rev. 2005, 6, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, J.P.; Quintel, M.; Hirschl, R.B. Development and application of a double-piston configured, total-liquid ventilatory support device. Crit. Care Med. 2000, 28, 1483–1488. [Google Scholar] [CrossRef]
- Robert, R.; Micheau, P.; Cyr, S.; Lesur, O.; Praud, J.P.; Walti, H. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps. ASAIO J. 2006, 52, 638–645. [Google Scholar] [CrossRef]
- Tsagogiorgas, C.; Alb, M.; Herrmann, P.; Quintel, M.; Meinhardt, J.P. Cardiopulmonary function and oxygen delivery during total liquid ventilation. Pediatr. Pulmonol. 2011, 46, 964–975. [Google Scholar] [CrossRef]
- Brandhorst, H.; Muehling, B.; Yamaya, H.; Henriksnaes, J.; Carlsson, P.O.; Korsgren, O.; Brandhorst, D. New class of oxygen carriers improves islet isolation from long-term stored rat pancreata. Transpl. Proc. 2008, 40, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Brandhorst, H.; Iken, M.; Scott, W.; Papas, K.; Theisinger, B.; Johnson, P.; Korsgren, O.; Brandhorst, D. Quality of isolated pig islets is improved using perfluorohexyloctane for pancreas storage in a split lobe model. Cell Transplant. 2013, 22, 1477–1483. [Google Scholar] [CrossRef] [Green Version]
- Sthle, M.; Foss, A.; Gustafsson, B.; Lempinen, M.; Lundgren, T.; Rafael, E.; Tufveson, G.; Theisinger, B.; Brandhorst, D.; Korsgren, O.; et al. Evaluation of Perfluorohexyloctane/Polydimethylsiloxane for Pancreas Preservation for Clinical Islet Isolation and Transplantation. Cell Transplant. 2016, 25, 2269–2276. [Google Scholar] [CrossRef]
- Kegel, S.; Chacon-Caldera, J.; Tsagogiorgas, C.; Theisinger, B.; Glatting, G.; Schad, L.R. (19)F Oximetry with semifluorinated alkanes. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1861–1866. [Google Scholar] [CrossRef] [Green Version]
- Gehlsen, U.; Braun, T.; Notara, M.; Krösser, S.; Steven, P. A semifluorinated alkane (F4H5) as novel carrier for cyclosporine A: A promising therapeutic and prophylactic option for topical treatment of dry eye. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 767–775. [Google Scholar] [CrossRef] [Green Version]
- Wirta, D.L.; Torkildsen, G.L.; Moreira, H.R.; Lonsdale, J.D.; Ciolino, J.B.; Jentsch, G.; Beckert, M.; Ousler, G.W.; Steven, P.; Krosser, S. A Clinical Phase II Study to Assess Efficacy, Safety, and Tolerability of Waterfree Cyclosporine Formulation for Treatment of Dry Eye Disease. Ophthalmology 2019, 126, 792–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheppard, J.K.S. A Randomized, Double-Masked, Vehicle-Controlled Phase 2b/3 Trial to Evaluate Cyclosporine A for the Treatment of Dry-Eye Disease. In Proceedings of the ASCRS Annual Meeting, San Diego, CA, USA, 3–7 May 2019. [Google Scholar]
- GmbH, N. Novaliq Announces FDA Acceptance of the New Drug Application for CyclaSol for the Treatment of Dry Eye Disease. 2022. Available online: https://www.novaliq.com/press-releases/2022/10/24/novaliq-announces-fda-acceptance-of-the-new-drug-application-for-cyclasol-for-the-treatment-of-dry-eye-disease/ (accessed on 4 January 2023).
- Agarwal, P.; Scherer, D.; Gunther, B.; Rupenthal, I.D. Semifluorinated alkane based systems for enhanced corneal penetration of poorly soluble drugs. Int. J. Pharm. 2018, 538, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Yan, X. Emerging treatment options for meibomian gland dysfunction. Clin. Ophthalmol. 2013, 7, 1797–1803. [Google Scholar]
- Granet, D.; Lichtenstein, S.J.; Onofrey, B.; Katz, J.A. An assessment of the tolerability of moxifloxacin 0.5% compared to azithromycin 1.0% in DuraSite. Clin. Ophthalmol. 2007, 1, 519–525. [Google Scholar] [PubMed]
- Ness, P.J.; Mamalis, N.; Werner, L.; Maddula, S.; Davis, D.K.; Donnenfeld, E.D.; Olson, R.J. An anterior chamber toxicity study evaluating Besivance, AzaSite, and Ciprofloxacin. Am. J. Ophthalmol. 2010, 150, 498–504 e1. [Google Scholar] [CrossRef]
- Talamo, J.H.; Hatch, K.M.; Woodcock, E.C. Delayed Epithelial Closure After PRK Associated With Topical Besifloxacin Use. Cornea 2013, 32, 1365–1368. [Google Scholar] [CrossRef]
- Garnock-Jones, K.P. Azithromycin 1.5% ophthalmic solution: In purulent bacterial or trachomatous conjunctivitis. Drugs 2012, 72, 361–373. [Google Scholar] [CrossRef]
- Doan, S.; Gabison, E.; Chiambaretta, F.; Touati, M.; Cochereau, I. Efficacy of azithromycin 1.5% eye drops in childhood ocular rosacea with phlyctenular blepharokeratoconjunctivitis. J. Ophthalmic Inflamm. Infect. 2013, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Baudouin, C.; Daull, P.; Garrigue, J.S.; Brignole-Baudouin, F. Ocular safety of cationic emulsion of cyclosporine in an in vitro corneal wound-healing model and an acute in vivo rabbit model. Mol. Vis. 2012, 18, 2195–2204. [Google Scholar]
- Sekine, M.; Maeda, E.; Sasahara, K.; Okada, R.; Kimura, K.; Fukami, M.; Awazu, S. Improvement of bioavailability of poorly absorbed drugs. III. Oral acute toxicity and local irritation of medium chain glyceride. J. Pharm. 1985, 8, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, P.; Craig, J.P.; Krosser, S.; Eickhoff, K.; Swift, S.; Rupenthal, I.D. Topical semifluorinated alkane-based azithromycin suspension for the management of ocular infections. Eur. J. Pharm. Biopharm. 2019, 142, 83–91. [Google Scholar] [CrossRef]
- Hadgraft, J. Skin, the final frontier. Int. J. Pharm. 2001, 224, 1–18. [Google Scholar] [CrossRef]
- Roberts, M.S.; Mohammed, Y.; Pastore, M.N.; Namjoshi, S.; Yousef, S.; Alinaghi, A.; Haridass, I.N.; Abd, E.; Leite-Silva, V.R.; Benson, H.; et al. Topical and cutaneous delivery using nanosystems. J. Control. Release 2017, 247, 86–105. [Google Scholar] [CrossRef] [Green Version]
- Wissing, S.; Müller, R. The influence of the crystallinity of lipid nanoparticles on their occlusive properties. Int. J. Pharm. 2002, 242, 377–379. [Google Scholar] [CrossRef]
- Hughes-Formella, B. Safety and Efficacy Study of Topical DLQ01 in the Treatment of Androgenetic Alopecia (AGA) in Men. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT05636904?term=dermaliq&draw=1&rank=1 (accessed on 5 December 2022).
- Tsagogiorgas, C.; Theisinger, S.; Holm, P.; Thiel, M.; Quintel, M.; Holm, R. Buccal absorption of propofol when dosed in 1-perfluorobutylpentane to anaesthetised and conscious Wistar rats and Gottingen mini-pigs. Eur. J. Pharm. Biopharm. 2013, 85 Pt B, 1310–1316. [Google Scholar] [CrossRef]
- Van Eyk, A.D.; van der Bijl, P. Comparative permeability of various chemical markers through human vaginal and buccal mucosa as well as porcine buccal and mouth floor mucosa. Arch. Oral. Biol. 2004, 49, 387–392. [Google Scholar] [CrossRef]
- Holm, R.; Jorgensen, E.B.; Harborg, M.; Larsen, R.; Holm, P.; Mullertz, A.; Jacobsen, J. A novel excipient, 1-perfluorohexyloctane shows limited utility for the oral delivery of poorly water-soluble drugs. Eur. J. Pharm. Sci. 2011, 42, 416–422. [Google Scholar] [CrossRef]
- Krafft, M.P.; Chittofrati, A.; Riess, J.G. Emulsions and microemulsions with a fluorocarbon phase. Curr. Opin. Colloid Interface Sci. 2003, 8, 251–258. [Google Scholar] [CrossRef]
- Riess, J.G. Highly fluorinated systems for oxygen transport, diagnosis and drug delivery. Colloids Surf. A Physicochem. Eng. Asp. 1994, 84, 33–48. [Google Scholar] [CrossRef]
- Ferro, Y.; Krafft, M.P. Incorporation of semi-fluorinated alkanes in the bilayer of small unilamellar vesicles of phosphatidylserine: Impact on fusion kinetics. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2002, 1581, 11–20. [Google Scholar] [CrossRef]
- Lehmler, H.J. Perfluorocarbon compounds as vehicles for pulmonary drug delivery. Expert Opin. Drug Deliv. 2007, 4, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Otto, M.; Krebs, J.; Welker, P.; Holm, R.; Thiel, M.; Gattinoni, L.; Quintel, M.; Tsagogiorgas, C. Inhalationally Administered Semifluorinated Alkanes (SFAs) as Drug Carriers in an Experimental Model of Acute Respiratory Distress Syndrome. Pharmaceutics 2021, 13, 431. [Google Scholar] [CrossRef] [PubMed]
- Hirschl, R.B.; Parent, A.; Tooley, R.; McCracken, M.; Johnson, K.; Shaffer, T.H.; Wolfson, M.R.; Bartlett, R.H. Liquid ventilation improves pulmonary function, gas exchange, and lung injury in a model of respiratory failure. Ann. Surg. 1995, 221, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Günther, B.; Theisinger, B.; Theisinger, S.; Scherer, D.; Wilson, C.; Pettigrew, A.; Hüttig, A. Stabilised Protein Compositions Based on Semifluorinated Alkanes. U.S. Patent No. 9,757,460, 12 September 2017. [Google Scholar]
- Günther, B.; Scherer, D.; Pettigrew, A.; Gesche, G. Stabilized antibody compositions. U.S. Patent No. 20210340248A1, 4 November 2018. [Google Scholar]
- Marschall, C.; Witt, M.; Hauptmeier, B.; Friess, W. Drug Product Characterization of High Concentration Non-Aqueous Protein Powder Suspensions. J. Pharm. Sci. 2023, 112, 61–75. [Google Scholar] [CrossRef]
- Le, V.N.H.; Hos, D.; Hou, Y.; Witt, M.; Barkovskiy, M.; Bock, F.; Cursiefen, C. VEGF Trap(R1R2) Suspended in the Semifluorinated Alkane F6H8 Inhibits Inflammatory Corneal Hem- and Lymphangiogenesis. Transl. Vis. Sci. Technol. 2020, 9, 15. [Google Scholar] [CrossRef]
Substance | Molecular Weight [g/mol] | Density [g/cm3] | Boiling Point [°C] | Viscosity [mPas] at 25 °C | Vapor Pressure [Torr] | CSTH [°C] | CST in Olive Oil [°C] | Surface Tension [mN/m] | Interface Tension [mN/m] |
---|---|---|---|---|---|---|---|---|---|
F4H4 | 114 | ||||||||
F4H5 | 290 | 1.284 | 134 | 1.05 | 25.1 (37 °C) | <−30 | 68 | 17.43 | 43.0 |
F4H6 | 304 | 1.26 (20 °C) | 124 | 45.1 | |||||
F4H8 | <0 | ||||||||
F6H6 | 404 | 1.386 | 187 | 2.38 | 1.85 (37 °C) | 121 | 20.0 | 49.6 | |
F6H8 | 432 | 1.331 | 223 | 3.44 | <1 (25 °C) | −31 | 70 | 19.65 | 45.3 |
F6H12 | 488 | 1.25 | 290 | 6.99 | 14 | 21.1 | |||
PFD | 462 | 1.930 | 142 | 5.1 | 12.5 (37 °C) | 123 | 19 | 57.8 | |
PFO | 438 | 1.760 | 105 | 1.4 | 57.0 (37 °C) | 158 | 14 | 55.0 | |
PFOB | 499 | 1.930 | 143 | 1.93 | 10.5 (37 °C) | 68 | 18 | 51.3 | |
H2O | 18 | 0.970 | 100 | 0.89 | 46.9 (37 °C) | --- | 72 | n/a |
Compound | Solubility % (vol/vol) | |
---|---|---|
O2 | CO2 | |
SFA | ||
F6H2 | 46.1 | |
3.6 × 10−3 (27 °C) a | 17 × 10−3 a | |
F6H4 | 44.8 | |
F6H6 | 43.4 | |
4.0 × 10−3 (27 °C) a | 22 × 10−3 a | |
F6H8 | 40.3 | |
F6H10 | 35.0 | |
F8H2 | 45.6 | |
F8H8 | 52.2 (28 °C) | |
F10H2 | 43.4 | |
PFC | ||
C8F17Br (Perfluoroyctyl-bromide) | 52 | 210 |
F-decalin | 41.1–43 | 140–145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsagogiorgas, C.; Otto, M. Semifluorinated Alkanes as New Drug Carriers—An Overview of Potential Medical and Clinical Applications. Pharmaceutics 2023, 15, 1211. https://doi.org/10.3390/pharmaceutics15041211
Tsagogiorgas C, Otto M. Semifluorinated Alkanes as New Drug Carriers—An Overview of Potential Medical and Clinical Applications. Pharmaceutics. 2023; 15(4):1211. https://doi.org/10.3390/pharmaceutics15041211
Chicago/Turabian StyleTsagogiorgas, Charalambos, and Matthias Otto. 2023. "Semifluorinated Alkanes as New Drug Carriers—An Overview of Potential Medical and Clinical Applications" Pharmaceutics 15, no. 4: 1211. https://doi.org/10.3390/pharmaceutics15041211
APA StyleTsagogiorgas, C., & Otto, M. (2023). Semifluorinated Alkanes as New Drug Carriers—An Overview of Potential Medical and Clinical Applications. Pharmaceutics, 15(4), 1211. https://doi.org/10.3390/pharmaceutics15041211