Donepezil Brain and Blood Pharmacokinetic Modeling after Nasal Film and Oral Solution Administration in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.2. Data Handling
2.3. Pharmacokinetic Model Building
3. Results
3.1. Per Os Administration
3.2. Intranasal Administration
3.3. Combined Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gribkoff, V.K.; Kaczmarek, L.K. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017, 120, 11–19. [Google Scholar] [CrossRef]
- Gregory, S.; Saunders, S.; Ritchie, C.W. Science disconnected: The translational gap between basic science, clinical trials, and patient care in Alzheimer’s disease. Lancet Healthy Longev. 2022, 3, 797–803. [Google Scholar] [CrossRef]
- Lee, L.; Hossain, M.; Wang, Y.; Sedek, G. Absorption of rivastigmine from different regions of the gastrointestinal tract in humans. J. Clin. Pharmacol. 2004, 44, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Nagy, C.F.; Kumar, D.; Cullen, E.I.; Bolton, W.K.; Marbury, T.C.; Gutierrez, M.J.; Hutman, H.W.; Pratt, R.D. Steady-state pharmacokinetics and safety of donepezil HCl in subjects with moderately impaired renal function. Br. J. Clin. Pharmacol. 2004, 58 (Suppl. S1), 18–24. [Google Scholar] [CrossRef] [PubMed]
- Ovejero-Benito, M.C.; Ochoa, D.; Enrique-Benedito, T.; del Peso-Casado, M.; Zubiaur, P.; Navares, M.; Román, M.; Abad-Santos, F. Pharmacogenetics of Donepezil and Memantine in Healthy Subjects. J. Pers. Med. 2022, 12, 788. [Google Scholar] [CrossRef] [PubMed]
- Winblad, B.; Gauthier, S.; Scinto, L.; Feldman, H.; Wilcock, G.K.; Truyen, L.; Mayorga, A.J.; Wang, D.; Brashear, H.R.; Nye, J.S.; et al. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology 2008, 70, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.; Tucker, L.; Brown, K. The Intranasal Route as an Alternative Method of Medication Administration. Crit. Care Nurse 2018, 38, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Sharma, S.; Garg, S. Permeability issues in nasal drug delivery. Drug Discov. Today 2002, 7, 967–975. [Google Scholar] [CrossRef]
- Gänger, S.; Schindowski, K. Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics 2018, 10, 116. [Google Scholar] [CrossRef]
- Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018, 195, 44–52. [Google Scholar] [CrossRef]
- Rompicherla, S.K.L.; Arumugam, K.; Bojja, S.L.; Kumar, N.; Rao, C.M. Pharmacokinetic and pharmacodynamic evaluation of nasal liposome and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer’s disease. Naunyn. Schmiedebergs Arch. Pharmacol. 2021, 394, 1737–1755. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.; Ploeger, B.A.; van der Graaf, P.H.; Danhof, M.; de Lange, E.C. Systemic and direct nose-to-brain transport pharmacokinetic model for remoxipride after intravenous and intranasal administration. Drug Metab. Dispos. 2011, 39, 2275–2282. [Google Scholar] [CrossRef]
- Li, A.; Yuen, V.M.; Goulay-Dufaÿ, S.; Sheng, Y.; Standing, J.F.; Kwok, P.C.L.; Leung, M.K.M.; Leung, A.S.; Wong, I.C.K.; Irwin, M.G. Pharmacokinetic and pharmacodynamic study of intranasal and intravenous dexmedetomidine. Br. J. Anaesth. 2018, 120, 960–968. [Google Scholar] [CrossRef]
- Kadakia, E.; Bottino, D.; Amiji, M. Mathematical Modeling and Simulation to Investigate the CNS Transport Characteristics of Nanoemulsion-Based Drug Delivery Following Intranasal Administration. Pharm. Res. 2019, 36, 75. [Google Scholar] [CrossRef] [PubMed]
- Trevino, J.T.; Quispe, R.C.; Khan, F.; Novak, V. Non-Invasive Strategies for Nose-to-Brain Drug Delivery. J. Clin. Trials 2020, 10, 439. [Google Scholar] [PubMed]
- Sozio, P.; Cerasa, L.S.; Marinelli, L.; Di Stefano, A. Transdermal donepezil on the treatment of Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 2012, 8, 361–368. [Google Scholar] [CrossRef]
- Seltzer, B. Donepezil: A review. Expert Opin. Drug Metab. Toxicol. 2005, 1, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Tiseo, P.J.; Rogers, S.L.; Friedhoff, L.T. Pharmacokinetic and pharmacodynamic profile of donepezil HCl following evening administration. Br. J. Clin. Pharmacol. 1998, 46 (Suppl. S1), 13–18. [Google Scholar] [CrossRef] [PubMed]
- Tiseo, P.J.; Perdomo, C.A.; Friedhoff, L.T. Metabolism and elimination of 14C-donepezil in healthy volunteers: A single-dose study. Br. J. Clin. Pharmacol. 1998, 46 (Suppl. S1), 19–24. [Google Scholar] [CrossRef]
- Md, S.; Ali, M.; Ali, R.; Bhatnagar, A.; Baboota, S.; Ali, J. Donepezil nanosuspension intended for nose to brain targeting: In vitro and in vivo safety evaluation. Int. J. Biol. Macromol. 2014, 67, 418–425. [Google Scholar] [CrossRef]
- Kaur, A.; Nigam, K.; Bhatnagar, I.; Sukhpal, H.; Awasthy, S.; Shankar, S.; Tyagi, A.; Dang, S. Treatment of Alzheimer’s diseases using donepezil nanoemulsion: An intranasal approach. Drug Deliv. Transl. Res. 2020, 10, 1862–1875. [Google Scholar] [CrossRef]
- Gu, F.; Fan, H.; Cong, Z.; Li, S.; Wang, Y.; Wu, C. Preparation, characterization, and in vivo pharmacokinetics of thermosensitive in situ nasal gel of donepezil hydrochloride. Acta Pharm. 2020, 70, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Papakyriakopoulou, P.; Balafas, E.; Colombo, C.; Rekkas, D.M.; Kostomitsopoulos, N.; Valsami, G. Nose-to-Brain delivery of donepezil hydrochloride following administration of an HPMC-Me-β-CD-PEG400 nasal film in mice. J. Drug Deliv. Sci. Technol. 2023, 84, 104463. [Google Scholar] [CrossRef]
- Balafas, E.; Papakyriakopoulou, P.; Kostomitsopoulos, N.; Valsami, G. Intranasal administration of polymeric biodegradable films in C57BL/6 mice. J. Am. Assoc. Lab. Anim. Sci. 2022, 62, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Gage, G.J.; Kipke, D.R.; Shain, W. Whole Animal Perfusion Fixation for Rodents. J. Vis. Exp. 2012, 65, e3564. [Google Scholar] [CrossRef]
- Available online: https://www.certara.com/knowledge-base/what-to-do-with-those-blqs/ (accessed on 23 February 2022).
- Beal, S.L.; Sheiner, B.L. NONMEM User’s Guide, Part 1; University of California at San Francisco: San Francisco, CA, USA, 1992. [Google Scholar]
- Bertrand, J.; Laffont, C.M.; Mentré, F.; Chenel, M.; Comets, E. Development of a complex parent-metabolite joint population pharmacokinetic model. AAPS J. 2011, 13, 390–404. [Google Scholar] [CrossRef]
- Papakyriakopoulou, P.; Rekkas, D.M.; Colombo, G.; Valsami, G. Development and In Vitro-Ex Vivo Evaluation of Novel Polymeric Nasal Donepezil Films for Potential Use in Alzheimer’s Disease Using Experimental Design. Pharmaceutics 2022, 14, 1742. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, S.; Pardhi, D.M.; Rautio, J.; Rosenholm, J.M.; Pathak, K. Intranasal Nanoemulsions for Direct Nose-to-Brain Delivery of Actives for CNS Disorders. Pharmaceutics 2020, 12, 1230. [Google Scholar] [CrossRef]
- Trippier, P.C. Selecting Good ‘Drug-Like’ Properties to Optimize Small Molecule Blood-Brain Barrier Penetration. Curr. Med. Chem. 2016, 23, 1392–1407. [Google Scholar] [CrossRef] [PubMed]
- Lochhead, J.J.; Thorne, R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012, 64, 614–628. [Google Scholar] [CrossRef] [PubMed]
- Dingle, A.; Zeng, W.; Ness, J.P.; Albano, N.; Minor, R.L.; Feldman, C.; Austin, M.; Brodnick, S.K.; Shulzhenko, N.; Sanchez, R.; et al. Strategies for interfacing with the trigeminal nerves in rodents for bioelectric medicine. J. Neurosci. Methods 2019, 324, 108321. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.K.; Bae, K.S.; Hong, D.H.; Kim, S.S.; Choi, Y.K.; Lim, H.S. Pharmacokinetic Evaluation by Modeling and Simulation Analysis of a Donepezil Patch Formulation in Healthy Male Volunteers. Drug Des. Devel. Ther. 2020, 14, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
Per Os Blood Data | |||
---|---|---|---|
Parameter | Estimated Value | SE | %RSE |
k12 (1/min) | 0.064 | 0.004 | 6.43% |
k23 (1/min) | 0.032 | 0.003 | 9.78% |
K32 (1/min) | 0.012 | 0.003 | 23.64% |
k20 (1/min) | 0.024 | 0.001 | 5.61% |
Vblood (L) | 0.279 | 0.014 | 5.16% |
Per Os—Mean Data | |||
---|---|---|---|
Parameter | Estimated value | SE | %RSE |
k12 (1/min) | 0.059 | 0.002 | 3.33% |
k20 (1/min) | 0.012 | 0.001 | 6.88% |
k23 (1/min) | 0.014 | 0.001 | 5.99% |
k24 (1/min) | 0.034 | 0.005 | 13.24% |
k42 (1/min) | 0.011 | 0.002 | 20.93% |
k30 (1/min) | 0.325 | 0.068 | 21.02% |
Vbrain (L) | 0.018 | 0.003 | 16.57% |
Per Os—Raw Data | |||
Parameter | Estimated value | SE | %RSE |
k12 (1/min) | 0.065 | 0.013 | 20.37% |
k20 (1/min) | 0.017 | 0.004 | 22.64% |
k23 (1/min) | 0.008 | 0.002 | 19.24% |
k24 (1/min) | 0.036 | 0.01 | 28.30% |
k42 (1/min) | 0.01 | 0.006 | 61.73% |
k30 (1/min) | 0.369 | 0.219 | 59.35% |
Vbrain (L) | 0.009 | 0.004 | 45.94% |
Per Os—Mean Data | |||
Parameter | Estimated value | SE | %RSE |
b1 | 0.012 | 0.004 | 32.02% |
b2 | 0.062 | 0.039 | 62.93% |
Per Os—RawData | |||
Parameter | Estimated Value | SE | %RSE |
a1 | 0.016 | 0.005 | 28.48% |
a2 | 0.004 | 0.001 | 31.09% |
IN—Mean Data | |||
---|---|---|---|
Parameter | Estimated Value | SE | %RSE |
Tlag (min) | 4.06 | 0.465 | 11.45% |
Tk0 (min) | 11.3 | 3.54 | 31.33% |
Mtt (min) | 56 | 1.01 | 1.80% |
ktr (1/min) | 0.171 | 0.0176 | 10.29% |
V1 | 0.021 | 0.0119 | 56.40% |
V2 | 0.005 | 0.0008 | 16.33% |
P1 | 0.543 | 0.131 | 24.13% |
P2 | 0.3 | 0.115 | 38.33% |
ka (1/min) | 0.173 | 0.0146 | 8.44% |
k20 (1/min) | 0.046 | 0.0229 | 49.78% |
IN—Raw Data | |||
Parameter | Estimated Value | SE | %RSE |
Tlag (min) | 3.72 | 0.371 | 9.97% |
Tk0 (min) | 11.6 | 4.47 | 38.53% |
Mtt (min) | 60.9 | 2.4 | 3.94% |
ktr (1/min) | 0.183 | 0.025 | 13.50% |
V1 | 0.027 | 0.015 | 55.15% |
V2 | 0.003 | 0.001 | 19.28% |
P1 | 0.683 | 0.074 | 10.85% |
P2 | 0.276 | 0.108 | 39.13% |
ka (1/min) | 0.566 | 0.128 | 22.61% |
k20 (1/min) | 0.05 | 0.021 | 42.69% |
Per Os—Mean Data | |||
Parameter | Estimated Value | SE | %RSE |
a1 | 0.016 | 0.006 | 39.81% |
b2 | 0.043 | 0.035 | 80.47% |
Per Os—Raw Data | |||
Parameter | Estimated Value | SE | %RSE |
a1 | 0.082 | 0.022 | 26.09% |
b2 | 0.238 | 0.058 | 24.41% |
Total Fit—Per Os and IN Raw Data | |||
---|---|---|---|
Parameter | Estimated Value | SE | % RSE |
k12 (1/min) | 0.065 | 0.013 | 19.79% |
k20 (1/min) | 0.039 | 0.009 | 23.66% |
k23 (1/min) | 0.011 | 0.008 | 70.55% |
k24 (1/min) | 0.018 | 0.022 | 119.67% |
k42 (1/min) | 0.031 | 0.018 | 59.03% |
k30 (1/min) | 0.276 | 0.093 | 33.80% |
Vbrain_PO (L) | 0.015 | 0.008 | 51.43% |
Tlag (min) | 3.59 | 0.004 | 0.11% |
Tk0 (min) | 11.4 | 0.007 | 0.06% |
Mtt (min) | 53.8 | 8.51 | 15.82% |
ktr (1/min) | 0.205 | 0.088 | 43.12% |
Vblood_IN (L) | 0.024 | 0.003 | 12.46% |
Vbrain_IN (L) | 0.005 | 0.001 | 22.85% |
P1 | 0.557 | 0.055 | 9.95% |
P2 | 0.306 | 0.057 | 18.59% |
ka (1/min) | 0.127 | 0.131 | 103.15% |
Total Fit—Per Os and IN Raw data | |||
Parameter | Estimated Value | SE | % RSE |
a1 | 0.017 | 0.005 | 28.32% |
a2 | 0.004 | 0.001 | 30.50% |
a3 | 0.084 | 0.022 | 25.66% |
b1 | 0.236 | 0.057 | 24.24% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaikousidis, C.; Papakyriakopoulou, P.; Dokoumetzidis, A.; Valsami, G. Donepezil Brain and Blood Pharmacokinetic Modeling after Nasal Film and Oral Solution Administration in Mice. Pharmaceutics 2023, 15, 1409. https://doi.org/10.3390/pharmaceutics15051409
Kaikousidis C, Papakyriakopoulou P, Dokoumetzidis A, Valsami G. Donepezil Brain and Blood Pharmacokinetic Modeling after Nasal Film and Oral Solution Administration in Mice. Pharmaceutics. 2023; 15(5):1409. https://doi.org/10.3390/pharmaceutics15051409
Chicago/Turabian StyleKaikousidis, Christos, Paraskevi Papakyriakopoulou, Aristides Dokoumetzidis, and Georgia Valsami. 2023. "Donepezil Brain and Blood Pharmacokinetic Modeling after Nasal Film and Oral Solution Administration in Mice" Pharmaceutics 15, no. 5: 1409. https://doi.org/10.3390/pharmaceutics15051409
APA StyleKaikousidis, C., Papakyriakopoulou, P., Dokoumetzidis, A., & Valsami, G. (2023). Donepezil Brain and Blood Pharmacokinetic Modeling after Nasal Film and Oral Solution Administration in Mice. Pharmaceutics, 15(5), 1409. https://doi.org/10.3390/pharmaceutics15051409