Improvement in Skin Penetration Capacity of Linalool by Using Microemulsion as a Delivery Carrier: Formulation Optimization and In Vitro Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Animals
2.2. Pseudoternary Phase Diagram Construction
2.3. Linalool-Loaded Formulations Preparations
2.4. Physicochemical Properties Determination
2.5. In Vitro Permeation Study
2.6. Chromatographic Condition
2.7. Skin Irritation Evaluation
2.8. Stability Study
2.9. Data Analysis
3. Results and Discussion
3.1. Phase Studies
3.2. Physicochemical Characteristics
3.3. In Vitro Permeation Study
3.4. Skin Irritation
3.5. Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Coelho, V.; Mazzardo-Martins, L.; Martins, D.F.; Santos, A.R.; da Silva Brum, L.F.; Picada, J.N.; Pereira, P. Neurobehavioral and genotoxic evaluation of (-)-linalool in mice. J. Nat. Med. 2013, 67, 876–880. [Google Scholar] [CrossRef]
- Dos Santos, E.R.Q.; Maia, C.S.F.; Fontes, E.A., Jr.; Melo, A.S.; Pinheiro, B.G.; Maia, J.G.S. Linalool-rich essential oils from the Amazon display antidepressant-type effect in rodents. J. Ethnopharmacol. 2017, 212, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Gunaseelan, S.; Balupillai, A.; Govindasamy, K.; Ramasamy, K.; Muthusamy, G.; Shanmugam, M.; Thangaiyan, R.; Robert, B.M.; Prasad Nagarajan, R.; Ponniresan, V.K.; et al. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells. PLoS ONE 2017, 12, e0176699. [Google Scholar] [CrossRef] [PubMed]
- Heuberger, E.; Redhammer, S.; Buchbauer, G. Transdermal absorption of (-)-linalool induces autonomic deactivation but has no impact on ratings of well-being in humans. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2004, 29, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Coelho, V.R.; Gianesini, J.; Von Borowski, R.; Mazzardo-Martins, L.; Martins, D.F.; Picada, J.N.; Santos, A.R.; Brum, L.F.; Pereira, P. (-)-Linalool, a naturally occurring monoterpene compound, impairs memory acquisition in the object recognition task, inhibitory avoidance test and habituation to a novel environment in rats. Phytomedicine Int. J. Phytother. Phytopharm. 2011, 18, 896–901. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Statti, G.A.; Menichini, F.; Lampronti, I.; Gambari, R.; Cinatl, J.; Doerr, H.W. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem. Biodivers. 2008, 5, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Paik, S.; Tang, G.; Shak, S.; Kim, C.; Baker, J.; Kim, W.; Cronin, M.; Baehner, F.L.; Watson, D.; Bryant, J.; et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 3726–3734. [Google Scholar] [CrossRef]
- Pourtaqi, N.; Imenshahidi, M.; Razavi, B.M.; Hosseinzadeh, H. Effect of linalool on the acquisition and reinstatement of morphine-induced conditioned place preference in mice. Avicenna J. Phytomedicine 2017, 7, 242–249. [Google Scholar]
- Rai, V.K.; Sinha, P.; Yadav, K.S.; Shukla, A.; Saxena, A.; Bawankule, D.U.; Tandon, S.; Khan, F.; Chanotiya, C.S.; Yadav, N.P. Anti-psoriatic effect of Lavandula angustifolia essential oil and its major components linalool and linalyl acetate. J. Ethnopharmacol. 2020, 261, 113127. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Imenshahidi, M.; Hosseini, M.; Razavi, B.M. Effect of linalool on morphine tolerance and dependence in mice. Phytother. Res. PTR 2012, 26, 1399–1404. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Kustrin, E.; Gegechkori, V.; Morton, D.W. Anxiolytic Terpenoids and Aromatherapy for Anxiety and Depression. Adv. Exp. Med. Biol. 2020, 1260, 283–296. [Google Scholar] [PubMed]
- Phuong, T.N.T.; Jang, S.H.; Rijal, S.; Jung, W.K.; Kim, J.; Park, S.J.; Han, S.K. GABA- and Glycine-Mimetic Responses of Linalool on the Substantia Gelatinosa of the Trigeminal Subnucleus Caudalis in Juvenile Mice: Pain Management through Linalool-Mediated Inhibitory Neurotransmission. Am. J. Chin. Med. 2021, 49, 1437–1448. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Zhao, Y.; Firempong, C.K.; Xu, X. Preparation, characterization and pharmacokinetic studies of linalool-loaded nanostructured lipid carriers. Pharm. Biol. 2016, 54, 2320–2328. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.J.; Lu, I.J.; Fu, Y.S.; Fang, Y.P.; Huang, Y.B.; Wu, P.C. Nanocarriers enhance the transdermal bioavailability of resveratrol: In-vitro and in-vivo study. Colloids Surf. B Biointerfaces 2016, 148, 650–656. [Google Scholar] [CrossRef]
- Shinde, U.A.; Modani, S.H.; Singh, K.H. Design and Development of Repaglinide Microemulsion Gel for Transdermal Delivery. AAPS PharmSciTech 2017, 19, 315–325. [Google Scholar] [CrossRef]
- Chen, L.; Annaji, M.; Kurapati, S.; Ravis, W.R.; Jayachandra Babu, R. Microemulsion and Microporation Effects on the Genistein Permeation Across Dermatomed Human Skin. AAPS PharmSciTech 2018, 19, 3481–3489. [Google Scholar] [CrossRef]
- Benigni, M.; Pescina, S.; Grimaudo, M.A.; Padula, C.; Santi, P.; Nicoli, S. Development of microemulsions of suitable viscosity for cyclosporine skin delivery. Int. J. Pharm. 2018, 545, 197–205. [Google Scholar] [CrossRef]
- Sahoo, S.; Pani, N.R.; Sahoo, S.K. Microemulsion based topical hydrogel of sertaconazole: Formulation, characterization and evaluation. Colloids Surf. B Biointerfaces 2014, 120, 193–199. [Google Scholar] [CrossRef]
- Lin, Y.H.; Tsai, M.J.; Fang, Y.P.; Fu, Y.S.; Huang, Y.B.; Wu, P.C. Microemulsion formulation design and evaluation for hydrophobic compound: Catechin topical application. Colloids Surf. B Biointerfaces 2018, 161, 121–128. [Google Scholar] [CrossRef]
- Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielinska, A.; Silva, A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering 2022, 9, 158. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, X.; Jia, Y.; Ho, C.T.; Huang, Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery—A review. Int. J. Pharm. 2020, 578, 119127. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Rodriguez, A.; Guardado-Felix, D.; Antunes-Ricardo, M. Challenges and Strategies for Topical and Transdermal Delivery of Bioactive Peptides. Crit. Rev. Ther. Drug Carr. Syst. 2022, 39, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Gambaro, R.; Mariani, E.; Dorato, S. High-performance liquid chromatographic method for the simultaneous determination of 24 fragrance allergens to study scented products. J. Pharm. Biomed. Anal. 2007, 44, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.Q.; Song, Y.; Ai, X.X.; Guo, Y.J.; Xu, X.R.; Li, H.B. A new high-performance liquid chromatographic method for the determination and distribution of linalool in Michelia alba. Molecules 2010, 15, 4890–4897. [Google Scholar] [CrossRef]
- Wang, H.; Liu, M.; Du, S. Optimization of madecassoside liposomes using response surface methodology and evaluation of its stability. Int. J. Pharm. 2014, 473, 280–285. [Google Scholar] [CrossRef]
- Vu, Q.L.; Fang, C.W.; Suhail, M.; Wu, P.C. Enhancement of the Topical Bioavailability and Skin Whitening Effect of Genistein by Using Microemulsions as Drug Delivery Carriers. Pharmaceuticals 2021, 14, 1233. [Google Scholar] [CrossRef]
- Baboota, S.; Shakeel, F.; Ahuja, A.; Ali, J.; Shafiq, S. Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. Acta Pharm. 2007, 57, 315–332. [Google Scholar] [CrossRef]
- Kamairudin, N.; Gani, S.S.; Masoumi, H.R.; Hashim, P. Optimization of natural lipstick formulation based on pitaya (Hylocereus polyrhizus) seed oil using D-optimal mixture experimental design. Molecules 2014, 19, 16672–16683. [Google Scholar] [CrossRef]
- Chen, Y.C.; Tsai, P.J.; Huang, Y.B.; Wu, P.C. Optimization and validation of high-performance chromatographic condition for simultaneous determination of adapalene and benzoyl peroxide by response surface methodology. PLoS ONE 2015, 10, e0120171. [Google Scholar] [CrossRef]
- Trotta, M.; Ugazio, E.; Gasco, M.R. Pseudo-ternary phase diagrams of lecithin-based microemulsions: Influence of monoalkylphosphates. J. Pharm. Pharmacol. 1995, 47, 451–454. [Google Scholar] [CrossRef]
- Ali, F.R.; Shoaib, M.H.; Yousuf, R.I.; Ali, S.A.; Imtiaz, M.S.; Bashir, L.; Naz, S. Design, Development, and Optimization of Dexibuprofen Microemulsion Based Transdermal Reservoir Patches for Controlled Drug Delivery. BioMed Res. Int. 2017, 2017, 4654958. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tan, F.; Wang, J.; Liu, F. Assessment of the percutaneous penetration of indomethacin from soybean oil microemulsion: Effects of the HLB value of mixed surfactants. Die Pharm. 2012, 67, 31–36. [Google Scholar]
- Tavano, L.; Alfano, P.; Muzzalupo, R.; de Cindio, B. Niosomes vs microemulsions: New carriers for topical delivery of Capsaicin. Colloids Surf. B Biointerfaces 2011, 87, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Kohli, A.K.; Alpar, H.O. Potential use of nanoparticles for transcutaneous vaccine delivery: Effect of particle size and charge. Int. J. Pharm. 2004, 275, 13–17. [Google Scholar] [CrossRef]
- Chuacharoen, T.; Prasongsuk, S.; Sabliov, C.M. Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions under Conditions Relevant to Commercial Utilization. Molecules 2019, 24, 2744. [Google Scholar] [CrossRef]
- Joung, H.J.; Choi, M.J.; Kim, J.T.; Park, S.H.; Park, H.J.; Shin, G.H. Development of Food-Grade Curcumin Nanoemulsion and its Potential Application to Food Beverage System: Antioxidant Property and In Vitro Digestion. J. Food Sci. 2016, 81, N745–N753. [Google Scholar] [CrossRef]
- El Maghraby, G.M. Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: Effects of cosurfactants. Int. J. Pharm. 2008, 355, 285–292. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Chang, J.T.; Chang, J.S.; Huang, C.T.; Huang, Y.B.; Wu, P.C. The effect of component of microemulsions on transdermal delivery of buspirone hydrochloride. J. Pharm. Sci. 2011, 100, 2358–2365. [Google Scholar] [CrossRef]
- Fang, C.W.; Tsai, L.C.; Fu, Y.S.; Cheng, T.Y.; Wu, P.C. Gel-Based Microemulsion Design and Evaluation for Topical Application of Rivastigmine. Curr. Pharm. Biotechnol. 2020, 21, 298–304. [Google Scholar] [CrossRef]
- Mutalik, S.; Udupa, N. Glibenclamide transdermal patches: Physicochemical, pharmacodynamic, and pharmacokinetic evaluations. J. Pharm. Sci. 2004, 93, 1577–1594. [Google Scholar] [CrossRef]
- Azeem, A.; Ahmad, F.J.; Khar, R.K.; Talegaonkar, S. Nanocarrier for the transdermal delivery of an antiparkinsonian drug. AAPS PharmSciTech 2009, 10, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2000, 45, 89–121. [Google Scholar] [CrossRef] [PubMed]
Code Formulae | X1 0~0.20 | X2 0~0.35 | X3 0~0.75 | X4 0~1.00 |
---|---|---|---|---|
M1 | 0.108 | 0.000 | 0.325 | 0.566 |
M2 | 0.069 | 0.330 | 0.000 | 0.601 |
M3 | 0.112 | 0.195 | 0.689 | 0.004 |
M4 | 0.000 | 0.179 | 0.323 | 0.498 |
M5 | 0.200 | 0.000 | 0.750 | 0.050 |
M6 | 0.000 | 0.350 | 0.650 | 0.000 |
M7 | 0.000 | 0.000 | 0.750 | 0.250 |
M8 | 0.200 | 0.062 | 0.480 | 0.258 |
M9 | 0.200 | 0.106 | 0.000 | 0.694 |
M10 | 0.112 | 0.195 | 0.689 | 0.004 |
M11 | 0.200 | 0.350 | 0.362 | 0.088 |
M12 | 0.000 | 0.000 | 0.000 | 1.000 |
Formulae | Size (nm) | Viscosity (mPa·s) | Flux (μg/cm2/h) | D24h (μg/cm2) |
---|---|---|---|---|
M1 | 38.6 ± 0.1 | 41.60 ± 0.99 | 58.61 ± 10.83 | 149.4 ± 28.0 |
M2 | 48.9 ± 0.4 | 27.57 ± 0.21 | 100.30 ± 16.45 | 243.6 ± 18.0 |
M3 | 38.8 ± 0.3 | 25.33 ± 0.39 | 68.37 ± 17.45 | 159.9 ± 23.7 |
M4 | 57.3 ± 0.6 | 36.93 ± 0.53 | 121.79 ± 18.63 | 313.3 ± 21.9 |
M5 | 19.5 ± 0.2 | 26.73 ± 0.97 | 14.34 ± 1.71 | 60.9 ± 33.4 |
M6 | 36.0 ± 0.1 | 18.93 ± 0.66 | 119.18 ± 11.44 | 443.4 ± 53.5 |
M7 | 92.2 ± 4.9 | 41.37 ± 1.11 | 119.78 ± 7.88 | 299.9 ± 24.5 |
M8 | 35.2 ± 0.8 | 20.30 ± 0.22 | 21.08 ± 2.48 | 45.7 ± 4.0 |
M9 | 75.5 ± 2.1 | 24.33 ± 1.26 | 19.57 ± 4.12 | 41.2 ± 5.9 |
M10 | 235.8 ± 6.7 | 17.83 ± 1.18 | 73.74 ± 7.72 | 112.5 ± 58.1 |
M11 | 26.9 ± 0.4 | 10.93 ± 0.39 | 28.02 ± 4.93 | 92.6 ± 56.2 |
M12 | 151.1 ± 1.3 | 48.33 ± 0.40 | 109.69 ± 28.35 | 294.3 ± 87.0 |
Ln (Flux) | D24h | Ln (Size) | |
---|---|---|---|
Regression Coefficient | Coefficient Estimate | Coefficient Estimate | Coefficient Estimate |
b1 (X1) | −35.75 | 1770.79 | −17.96 |
b2 (X2) | 3.24 | 1595.15 | −13.28 |
b3 (X3) | 4.67 | 296.99 | 5.39 |
b4 (X4) | 4.64 | 294.25 | 4.95 |
b12 (X1X2) | 48.52 | −6269.82 | 65.17 |
b13 (X1X3) | 38.13 | −3333.48 | 15.63 |
b14 (X1X4) | 38.67 | −3122.24 | 21.96 |
b23 (X2X3) | 2.62 | −1353.82 | 20.76 |
b23 (X2X4) | 2.35 | −1561.60 | 20.48 |
b34 (X3X4) | 0.51 | 18.79 | −4.31 |
Model (p value) | <0.0001 | <0.0001 | <0.001 |
R-Squared | 0.9460 | 0.9257 | 0.6953 |
Adj R-Squared | 0.9273 | 0.8999 | 0.5898 |
Lack of Fit (p value) | 0.2259 | 0.9832 | 0.1917 |
Droplet Size nm | Viscosity mPa·s | |
---|---|---|
Before test | 46.52 ± 1.23 | 24.07 ± 0.43 |
Centrifugation test | 43.70 ± 0.33 | 23.36 ± 0.44 |
Freeze–thawing cycle test | 79.31 ± 5.82 | 25.02 ± 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, M.-J.; Chang, W.-Y.; Chiu, I.-H.; Lin, I.-L.; Wu, P.-C. Improvement in Skin Penetration Capacity of Linalool by Using Microemulsion as a Delivery Carrier: Formulation Optimization and In Vitro Evaluation. Pharmaceutics 2023, 15, 1446. https://doi.org/10.3390/pharmaceutics15051446
Tsai M-J, Chang W-Y, Chiu I-H, Lin I-L, Wu P-C. Improvement in Skin Penetration Capacity of Linalool by Using Microemulsion as a Delivery Carrier: Formulation Optimization and In Vitro Evaluation. Pharmaceutics. 2023; 15(5):1446. https://doi.org/10.3390/pharmaceutics15051446
Chicago/Turabian StyleTsai, Ming-Jun, Wen-Yu Chang, I-Hui Chiu, I-Ling Lin, and Pao-Chu Wu. 2023. "Improvement in Skin Penetration Capacity of Linalool by Using Microemulsion as a Delivery Carrier: Formulation Optimization and In Vitro Evaluation" Pharmaceutics 15, no. 5: 1446. https://doi.org/10.3390/pharmaceutics15051446