Cinchonain Ia Shows Promising Antitumor Effects in Combination with L-Asparaginase-Loaded Nanoliposomes
Abstract
:1. Introduction
2. Results
2.1. Effects of Drug Combination and CI Determination
2.2. Physicochemical Characteristics of L-Asparaginase-Loaded Cinchonain Ia Liposomes
2.3. Cellular Uptake Capacity of CALs
2.4. CAL Anti-Proliferation Activity in NTERA-2 Cells in Two-(2D) and Three-Dimensional (3D) Cultures
2.5. In Vivo Antitumor Activity of CALs
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of L-Asparaginase Nanoliposome Loaded Cinconain Ia (CALs)
4.3. Encapsulation Efficiency of L-Asparaginase and Cinchonain Ia in Liposomes
4.4. Size Distribution and Particle Morphology Analysis
4.5. Cell Culture
4.6. Determination of Cellular Uptake
4.7. In Vitro Cytotoxicity Analysis
Evaluation of Inhibitive Efficacy of CALs in Tumorspherical Models
4.8. Antitumor Efficiency of CALs
4.9. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 3 February 2022).
- Skupin-Mrugalska, P. Liposome-based drug delivery for lung cancer. In Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123–160. [Google Scholar]
- Chung, K.; Ryan, R.; Louie, A. CPX-351 for the Treatment of Newly Diagnosed, Therapy-Related Acute Myeloid Leukemia (TAML) or AML with Myelodysplasia-Related Changes (AML-MRC): An Analysis of Clinical Benefit. Value Health 2018, 21, S15. [Google Scholar] [CrossRef]
- Egler, R.A.; Ahuja, S.P.; Matloub, Y. L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J. Pharmacol. Pharmacother. 2016, 7, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Khan, A.A.; Khurshid, M.; Kalam, M.A.; Jain, S.K.; Singhal, P.K. Recent developments in L-asparaginase discovery and its potential as anticancer agent. Crit. Rev. Oncol. Hematol. 2016, 100, 1–10. [Google Scholar] [CrossRef]
- Avramis, V.I.; Tiwari, P.N. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int. J. Nanomed. 2006, 1, 241. [Google Scholar]
- Oettgen, H.F.; Stephenson, P.A.; Schwartz, M.K.; Leeper, R.D.; Tallal, L.; Tan, C.C.; Clarkson, B.D.; Golbey, R.B.; Krakoff, I.H.; Karnofsky, D.A. Toxicity of E. coli L-asparaginase in man. Cancer 1970, 25, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Pieters, R.; Hunger, S.P.; Boos, J.; Rizzari, C.; Silverman, L.; Baruchel, A.; Goekbuget, N.; Schrappe, M.; Pui, C.H. L-asparaginase treatment in acute lymphoblastic leukemia: A focus on Erwinia asparaginase. Cancer 2011, 117, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.E.M.; Gaspar, M.M.; Lopes, F.; Jorge, J.S.; Perez-Soler, R. Liposomal l-asparaginase: In vitro evaluation. Int. J. Pharm. 1993, 96, 67–77. [Google Scholar] [CrossRef]
- Do, T.T.; Do, T.P.; Nguyen, T.N.; Nguyen, T.C.; Vu, T.T.P.; Nguyen, T.G.A. Nanoliposomal L-asparaginase and its antitumor activities in Lewis lung carcinoma tumor-induced BALB/c mice. Adv. Mater. Sci. Eng. 2019, 2019, 3534807. [Google Scholar] [CrossRef]
- Gaspar, M.; Perez-Soler, R.; Cruz, M. Biological characterization of L-asparginase liposomal formulations. Cancer Chemother. Pharmacol. 1996, 38, 373–377. [Google Scholar] [CrossRef]
- Mallesh, K.; Gorityala, S.; Basim, P.; Sun, M.; Mannem, C. Rationalizing Nanodeliverables for Effective L-Asparaginase Delivery in Chemotherapy: Update 2020. Cancer Sci. Res. 2021, 4, 1–7. [Google Scholar]
- Van Trimpont, M.; Peeters, E.; De Visser, Y.; Schalk, A.M.; Mondelaers, V.; De Moerloose, B.; Lavie, A.; Lammens, T.; Goossens, S.; Van Vlierberghe, P. Novel Insights on the Use of L-Asparaginase as an Efficient and Safe Anti-Cancer Therapy. Cancers 2022, 14, 902. [Google Scholar] [CrossRef] [PubMed]
- Serravalle, S.; Bertuccio, S.N.; Astolfi, A.; Melchionda, F.; Pession, A. Synergistic cytotoxic effect of L-asparaginase combined with decitabine as a demethylating agent in pediatric T-ALL, with specific epigenetic signature. Biomed Res. Int. 2016, 2016, 1985750. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Kaur, J.; Walia, S.; Pathak, T.; Aggarwal, D. L-asparaginase: An effective agent in the treatment of acute lymphoblastic leukemia. Leuk. Lymphoma 2014, 55, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Hioki, H.; Harada, K.; Kubo, M.; Fukuyama, Y. Antioxidant phenylpropanoid-substituted epicatechins from Trichilia catigua. J. Nat. Prod. 2007, 70, 2010–2013. [Google Scholar] [CrossRef] [PubMed]
- Abouelela, M.E.; Orabi, M.A.; Abdelhamid, R.A.; Abdelkader, M.S.; Darwish, F.M.; Hotsumi, M.; Konno, H.J.F. Anti-Alzheimer’s flavanolignans from Ceiba pentandra aerial parts. Fitoterapia 2020, 143, 104541. [Google Scholar] [CrossRef]
- Zhong, C.; Hu, D.; Hou, L.B.; Song, L.Y.; Zhang, Y.J.; Xie, Y.; Tian, L.W. Phenolic Compounds from the Rhizomes of Smilax china L. and Their Anti-Inflammatory Activity. Molecules 2017, 22, 515. [Google Scholar] [CrossRef]
- Gilad, Y.; Gellerman, G.; Lonard, D.M.; O’Malley, B.W. Drug combination in cancer treatment—From cocktails to conjugated combinations. Cancers 2021, 13, 669. [Google Scholar] [CrossRef]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget 2017, 8, 38022. [Google Scholar] [CrossRef]
- Radadiya, A.; Zhu, W.; Coricello, A.; Alcaro, S.; Richards, N.G. Improving the treatment of acute lymphoblastic leukemia. Biochemistry 2020, 59, 3193–3200. [Google Scholar] [CrossRef]
- Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006, 1, 297. [Google Scholar]
- Jain, A.; Tiwari, A.; Verma, A.; Saraf, S.; Jain, S.K. Combination cancer therapy using multifunctional liposomes. Crit. Rev. Ther. Drug Carr. Syst. 2020, 37, 105–134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tan, S.; Feng, S.-S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012, 33, 4889–4906. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Luo, J.; Tan, S.; Otieno, B.O.; Zhang, Z. The applications of Vitamin E TPGS in drug delivery. Eur. J. Pharm. Sci. 2013, 49, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Kumbhar, P.S.; Nadaf, S.; Manjappa, A.S.; Jha, N.K.; Shinde, S.S.; Chopade, S.S.; Shete, A.S.; Disouza, J.I.; Sambamoorthy, U.; Kumar, S.A. D-ɑ-tocopheryl polyethylene glycol succinate: A review of multifarious applications in nanomedicines. OpenNano 2022, 6, 100036. [Google Scholar] [CrossRef]
- Yang, C.; Wu, T.; Qi, Y.; Zhang, Z. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics 2018, 8, 464. [Google Scholar] [CrossRef]
- Chou, T.-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Do, T.P.; Anh, N.M.; Nga, N.T.; Huyen, V.T.T.; Cuc, N.T.; Phuong, T.H.; Minh, L.H.; Thao, D.T. Extracellular l-asparaginase productive potential of the Priestia megaterium bacteria strain GB911 from Khanh-Hoa sea of Vietnam. Vietnam. J. Sci. Technol. 2023. [Google Scholar]
- Cham, B.T.; Linh, N.T.T.; Anh, N.T.H.; Quan, T.D.; Tam, N.T.; Thien, D.D.; Nhung, L.T.H.; Van Sung, T.; Son, N.T.; Delfino, D.V.; et al. Chemical constituents of Peltophorum pterocarpum stems. Vietnam. J. Chem. 2020, 58, 569–574. [Google Scholar]
- Meers, P.; Neville, M.; Malinin, V.; Scotto, A.; Sardaryan, G.; Kurumunda, R.; Mackinson, C.; James, G.; Fisher, S.; Perkins, W. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 2008, 61, 859–868. [Google Scholar] [CrossRef]
- Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988, 48, 4827–4833. [Google Scholar]
- Jensen, M.M.; Jørgensen, J.T.; Binderup, T.; Kjær, A. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med. Imaging 2008, 8, 16. [Google Scholar] [CrossRef] [PubMed]
Ratio of ASNase (IU):Cinchonain Ia (µg) | A549 Cells | NTERA-2 Cells | ||||
---|---|---|---|---|---|---|
IC50 of ASNase (mIU/mL) | IC50 of Cinchonain Ia (µg/mL) | CI | IC50 of ASNase (IU/mL) | IC50 of Cinchonain Ia (µg/mL) | CI | |
1:0 | 30.3 ± 5.9 | - | - | 10.3 ± 0.6 | - | |
0:1 | - | 100.73 ± 12.88 | - | - | 24.99 ± 4.25 | - |
1:12.5 | 21.5 ± 4.3 * | 0.27 ± 0.05 | 0.71 ± 0.14 | 11.4 ± 0.5 | 0.15 ± 0.01 | 1.11 ± 0.05 |
1:25 | 22.3 ± 5.0 * | 0.56 ± 0.12 | 0.74 ± 0.17 | 7.8 ± 1.6 * | 0.19 ± 0.04 | 0.76 ± 0.16 |
1:50 | 21.3 ± 2.3 * | 1.06 ±0.12 | 0.71 ± 0.077 | 5.8 ± 0.8 ** | 0.29 ± 0.04 | 0.57 ± 0.08 |
1:100 | 23.7 ± 2.2 * | 2.37 ± 0.22 | 0.81 ± 0.08 | 6.1 ± 0.2 ** | 1.22 ± 0.05 | 0.64 ± 0.03 |
1:200 | 25.8 ± 1.9 | 5.15 ± 0.38 | 0.90 ± 0.07 | 12.3 ± 2.0 | 1.23 ± 0.20 | 1.24 ± 0.19 |
Liposome Complex | Size (nm) | PDI | Zeta Potential (mV) | EE (%) |
---|---|---|---|---|
Blank | 122.3 | 0.160 | −25.8 | - |
CLs | 127.9 | 0.190 | −23.1 | 98.53 |
ALs | 122.4 | 0.189 | −30.5 | 93.75 |
CALs | 118.7 | 0.120 | −47.00 | 92.81 (ASNase) 99.97 (Cinchonain Ia) |
Groups | Body Weight (g) | |||||
---|---|---|---|---|---|---|
Day 0 | Day 7 | Day 14 | Day 21 | Day 28 | ||
CLs | Mean | 30.14 | 31.50 | 31.16 | 31.10 | 32.84 |
SD | 2.66 | 1.79 | 1.56 | 2.16 | 2.29 | |
ALs | Mean | 30.20 | 30.70 | 32.30 | 34.00 | 34.60 |
SD | 3.06 | 2.98 | 3.17 | 3.81 | 3.62 | |
CALs | Mean | 30.48 | 33.00 | 33.38 | 34.05 | 31.38 |
SD | 0.54 | 0.54 | 0.77 | 1.28 | 1.33 | |
Control | Mean | 29.98 | 32.44 | 32.98 | 33.42 | 32.81 |
SD | 1.57 | 1.15 | 1.29 | 1.61 | 1.29 |
Time | Percentage of Tumor Growth Inhibition (%) | ||
---|---|---|---|
CLs | ALs | CALs | |
Day 0 | - | - | - |
Day 7 | 10.37 | 19.14 | 40.62 |
Day 14 | 32.93 | 48.34 | 43.67 |
Day 21 | 16.47 | 29.48 | 56.46 **, ## |
Day 28 | 16.24 | 27.21 | 62.49 ***, ### |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.N.; Do, T.P.; Nguyen, T.C.; Trieu, H.P.; Nguyen, T.G.A.; Do, T.T. Cinchonain Ia Shows Promising Antitumor Effects in Combination with L-Asparaginase-Loaded Nanoliposomes. Pharmaceutics 2023, 15, 1537. https://doi.org/10.3390/pharmaceutics15051537
Nguyen TN, Do TP, Nguyen TC, Trieu HP, Nguyen TGA, Do TT. Cinchonain Ia Shows Promising Antitumor Effects in Combination with L-Asparaginase-Loaded Nanoliposomes. Pharmaceutics. 2023; 15(5):1537. https://doi.org/10.3390/pharmaceutics15051537
Chicago/Turabian StyleNguyen, Thi Nga, Thi Phuong Do, Thi Cuc Nguyen, Ha Phuong Trieu, Thi Giang An Nguyen, and Thi Thao Do. 2023. "Cinchonain Ia Shows Promising Antitumor Effects in Combination with L-Asparaginase-Loaded Nanoliposomes" Pharmaceutics 15, no. 5: 1537. https://doi.org/10.3390/pharmaceutics15051537
APA StyleNguyen, T. N., Do, T. P., Nguyen, T. C., Trieu, H. P., Nguyen, T. G. A., & Do, T. T. (2023). Cinchonain Ia Shows Promising Antitumor Effects in Combination with L-Asparaginase-Loaded Nanoliposomes. Pharmaceutics, 15(5), 1537. https://doi.org/10.3390/pharmaceutics15051537