Polymers and Bioactive Compounds with a Macrophage Modulation Effect for the Rational Design of Hydrogels for Skin Regeneration
Abstract
1. Introduction
2. Macrophages
2.1. Macrophage Polarization Role in Wound Healing
2.2. Novel Approaches in Immunomodulation
3. Hydrogels in Immunomodulation Strategies
4. Biomaterials and Macrophage Immunomodulation: A New Perspective for Wound Healing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Larouche, J.; Sheoran, S.; Maruyama, K.; Martino, M.M. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv. Wound Care 2018, 7, 209–231. [Google Scholar] [CrossRef] [PubMed]
- Uygun, B.E.; Christophe Helary, B.; Berthiaume, F.; Krzyszczyk, P.; Schloss, R.; Palmer, A. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-Wound Healing Phenotypes. Front. Physiol. 2018, 1, 419. [Google Scholar] [CrossRef]
- Okonkwo, U.A.; Dipietro, L.A. Diabetes and Wound Angiogenesis. Int. J. Mol. Sci. 2017, 18, 1419. [Google Scholar] [CrossRef] [PubMed]
- WHO. New WHA Resolution to Bring Much Needed Boost to Diabetes Prevention and Control Efforts. Available online: https://www.who.int/news/item/27-05-2021-new-wha-resolution-to-bring-much-needed-boost-to-diabetes-prevention-and-control-efforts (accessed on 5 May 2023).
- Christman, K.L. Regenerative Medicine: Biomaterials for Tissue Repair. Science 2019, 363, 340–341. [Google Scholar] [CrossRef]
- Schultz, G.S.; Wysocki, A. Interactions between Extracellular Matrix and Growth Factors in Wound Healing Wound Repair and Regeneration. Wound Repair Regen. 2009, 17, 153–162. [Google Scholar] [CrossRef]
- Varela, P.; Sartori, S.; Viebahn, R.; Salber, J.; Ciardelli, G. Macrophage Immunomodulation: An Indispensable Tool to Evaluate the Performance of Wound Dressing Biomaterials. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019830355. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hou, Q.; Zhong, L.; Zhao, Y.; Fu, X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front. Immunol. 2021, 12, 681710. [Google Scholar] [CrossRef]
- Ganesh, G.V.; Mohanram Ramkumar, K. Macrophage Mediation in Normal and Diabetic Wound Healing Responses. Inflamm. Res. 2020, 69, 347–363. [Google Scholar] [CrossRef]
- Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage Biology in Development, Homeostasis and Disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef]
- Akinrinmade, O.A.; Chetty, S.; Daramola, A.K.; Islam, M.-U.; Thepen, T.; Barth, S. CD64: An Attractive Immunotherapeutic Target for M1-Type Macrophage Mediated Chronic Inflammatory Diseases. Biomedicines 2017, 5, 56. [Google Scholar] [CrossRef]
- Versey, Z.; Stephanie Da Cruz Nizer, W.; Russell, E.; Zigic, S.; Dezeeuw, K.G.; Marek, J.E.; Overhage, J.; Cassol, E. Biofilm-Innate Immune Interface: Contribution to Chronic Wound Formation. Front. Immunol. 2021, 12, 648554. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, Y.; Chen, H.; Zhang, S.; Wang, J.; Liu, C. Construction of Cytokine Reservoirs Based on Sulfated Chitosan Hydrogels for the Capturing of VEGF in Situ. J. Mater. Chem. B 2019, 7, 1882. [Google Scholar] [CrossRef] [PubMed]
- Bayat, A.; Ambler, C.; Wilgus, T.; Gallagher, K.A.; Kimball, A.S.; Joshi, A.D.; Boniakowski, A.E.; Schaller, M.; Chung, J.; Allen, R.; et al. Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing. Front. Immunol. 2017, 8, 635. [Google Scholar] [CrossRef]
- Hristodorov, D.; Mladenov, R.; Von Felbert, V.; Huhn, M.; Fischer, R.; Barth, S.; Thepen, T. Targeting CD64 Mediates Elimination of M1 but Not M2 Macrophages In Vitro and in Cutaneous Inflammation in Mice and Patient Biopsies. mAbs 2015, 7, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.-W.; Li, M.; Chen, J.; Fu, T.-T.; Lin, K.-Z.; Ye, G.-H.; Han, J.-G.; Feng, X.-P.; Li, X.-B.; Yu, L.-S.; et al. Activation of A7nAChR Promotes Diabetic Wound Healing by Suppressing AGE-Induced TNF-α Production. Inflammation 2016, 39, 687–699. [Google Scholar] [CrossRef]
- Li, J.-Y.; Jiang, S.-K.; Wang, L.-L.; Zhang, M.-Z.; Wang, S.; Jiang, Z.-F.; Liu, Y.-L.; Cheng, H.; Zhang, M.; Zhao, R.; et al. A7-NAChR Activation Has an Opposite Effect on Healing of Covered and Uncovered Wounds. Inflammation 2018, 47, 474–484. [Google Scholar] [CrossRef]
- Song, Y.; Cui, X.; Zhao, R.; Hu, L.; Li, Y.; Liu, C. Emodin Protects against Lipopolysaccharide-Induced Inflammatory Injury in HaCaT Cells through Upregulation of MiR-21 Emodin Protects against Lipopolysaccharide-Induced Inflammatory Injury in HaCaT Cells Th. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2654–2661. [Google Scholar] [CrossRef]
- Fu, J.; Huang, J.; Lin, M.; Xie, T.; You, T. Quercetin Promotes Diabetic Wound Healing via Switching Macrophages from M1 to M2 Polarization. J. Surg. Res. 2020, 246, 213–223. [Google Scholar] [CrossRef]
- Lee, J.M.; Rodero, P.; Patel, J.; Moi, D.; Mazzieri, R.; Khosrotehrani, K. Interleukin-23 Regulates Interleukin-17 Expression in Wounds, and Its Inhibition Accelerates Diabetic Wound Healing through the Alteration of Macrophage Polarization. FASEB J. 2018, 32, 2086–2094. [Google Scholar] [CrossRef]
- Wang, F.; Kong, L.; Wang, W.; Shi, L.; Wang, M.; Chai, Y.; Xu, J.; Kang, Q. Adrenomedullin 2 Improves Bone Regeneration in Type 1 Diabetic Rats by Restoring Imbalanced Macrophage Polarization and Impaired Osteogenesis. Stem Cell Res. Ther. 2021, 12, 288. [Google Scholar] [CrossRef]
- He, R.; Yin, H.; Yuan, B.; Liu, T.; Luo, L.; Huang, P.; Dai, L.; Zeng, K. IL-33 Improves Wound Healing through Enhanced M2 Macrophage Polarization in Diabetic Mice. Mol. Immunol. 2017, 90, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Gao, M.; Yang, P.; Liu, D.; Wang, D.; Song, F.; Zhang, X.; Liu, Y. Insulin Promotes Macrophage Phenotype Transition through PI3K/Akt and PPAR-γ Signaling during Diabetic Wound Healing. J. Cell. Physiol. 2018, 234, 4217–4231. [Google Scholar] [CrossRef]
- El Masry, M.S.; Chaffee, S.; Ghatak, P.D.; Mathew-Steiner, S.S.; Das, A.; Higuita-Castro, N.; Roy, S.; Anani, R.A.; Sen, C.K. Stabilized Collagen Matrix Dressing Improves Wound Macrophage Function and Epithelialization. FASEB J. 2019, 33, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Dai, K.; Yu, Y.; Wang, J.; Liu, C. Sulfated Chitosan Rescues Dysfunctional Macrophages and Accelerates Wound Healing in Diabetic Mice. Acta Biomater. 2020, 117, 192–203. [Google Scholar] [CrossRef]
- Hubbell, J.A.; Thomas, S.N.; Swartz, M.A. Materials Engineering for Immunomodulation. Nature 2009, 462, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Bu, W.; Wu, Y.; Ghaemmaghami, A.M.; Sun, H.; Mata, A. Rational Design of Hydrogels for Immunomodulation. Regen. Biomater. 2022, 9, rbac009. [Google Scholar] [CrossRef]
- Gritsch, L.; Maqbool, A.M.; Mouriñ, V.; Ciraldo, F.E.; Cresswell, M.; Jackson, P.R.; Lovell, C.; Boccaccini, A.R. Chitosan/Hydroxyapatite Composite Bone Tissue Engineering Scaffolds with Dual and Decoupled Therapeutic Ion Delivery: Copper and Strontium. J. Mater. Chem. B 2019, 7, 6109. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Yu, J.; Shao, N.; Lu, H.; Guo, J.; Qiu, X.; Zhou, D.; Huang, Y.; Liu, S.; et al. Absorbable Thioether Grafted Hyaluronic Acid Nanofibrous Hydrogel for Synergistic Modulation of Inflammation Microenvironment to Accelerate Chronic Diabetic Wound Healing. Adv. Healthc. Mater. 2020, 9, 2000198. [Google Scholar] [CrossRef]
- Alexander, J.H.; Yeager, D.A.; Stern, D.S.; Messina, C.A.; Griffeth, B.J.; Pacocha, E.; Barakat, M. Equine Pericardium as a Biological Covering for the Treatment of Diabetic Foot Wounds: A Prospective Study. J. Am. Podiatr. Med. Assoc. 2012, 102, 352–358. [Google Scholar] [CrossRef]
- Zheng, J.; Xiao, J.; Wu, J.; He, H.; Xiao, Z.; Zhou, Y.; Chen, A.; Xuan, X.; Li, Y.; Guo, X. Zwitterionic Poly(Sulfobetaine Methacrylate) Hydrogels with Optimal Mechanical Properties for Improving Wound Healing in Vivo Materials Chemistry B Materials for Biology and Medicine Zwitterionic Poly(Sulfobetaine Methacrylate) Hydrogels with Optimal Mech. J. Mater. Chem. B 2019, 7, 1697. [Google Scholar] [CrossRef]
- Rivera-Hernández, G.; Antunes-Ricardo, M.; Martínez-Morales, P.; Sánchez, M.L. Polyvinyl Alcohol Based-Drug Delivery Systems for Cancer Treatment. Int. J. Pharm. 2021, 600, 120478. [Google Scholar] [CrossRef] [PubMed]
- Velnar, T.; Bailey, T.; Smrkolj, V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Tsai, T.H.; Yang, J.L.; Li, L.C. Therapeutic Strategies for Targeting IL-33/ST2 Signalling for the Treatment of Inflammatory Diseases. Cell. Physiol. Biochem. 2018, 49, 349–358. [Google Scholar] [CrossRef]
- Short, W.D.; Wang, X.; Keswani, S.G. The Role of T Lymphocytes in Cutaneous Scarring. Adv. Wound Care 2022, 11, 121–131. [Google Scholar] [CrossRef]
- Kotwal, G.J.; Chien, S. Macrophage Differentiation in Normal and Accelerated Wound Healing. Results Probl. Cell Differ. 2017, 62, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J. Macrophage Polarization. Annu. Rev. Physiol. 2017, 79, 541–566. [Google Scholar] [CrossRef]
- Novak, M.L.; Koh, T.J. Phenotypic Transitions of Macrophages Orchestrate Tissue Repair. Am. J. Pathol. 2013, 183, 1352–1363. [Google Scholar] [CrossRef]
- Wang, N.; Liang, H.; Zen, K.; Lenz, L.L. Molecular Mechanisms That Influence the Macrophage M1-M2 Polarization Balance. Front. Immunol. 2014, 5, 614. [Google Scholar] [CrossRef]
- Greenlee-Wacker, M.C. Clearance of Apoptotic Neutrophils and Resolution of Inflammation. Immunol. Rev. 2016, 273, 357–370. [Google Scholar] [CrossRef]
- Davis, F.M.; Kimball, A.; Boniakowski, A.; Gallagher, K. Dysfunctional Wound Healing in Diabetic Foot Ulcers: New Crossroads. Curr. Diab. Rep. 2018, 18, 2. [Google Scholar] [CrossRef]
- Azevedo, M.M.; Lisboa, C.; Cobrado, L.; Pina-Vaz, C.; Rodrigues, A. Hard-to-Heal Wounds, Biofilm and Wound Healing: An Intricate Interrelationship. Br. J. Nurs. 2020, 29, S6–S13. [Google Scholar] [CrossRef] [PubMed]
- Falanga, V. Wound Healing and Its Impairment in the Diabetic Foot. Lancet 2005, 366, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Biswas, S.; Shang, Y.; Collard, E.; Azad, A.; Kauh, C.; Bhasker, V.; Gordillo, G.M.; Sen, C.K.; Roy, S. Macrophage Dysfunction Impairs Resolution of Inflammation in the Wounds of Diabetic Mice. PLoS ONE 2010, 5, e9539. [Google Scholar] [CrossRef] [PubMed]
- Mirza, R.; DiPietro, L.A.; Koh, T.J. Selective and Specific Macrophage Ablation Is Detrimental to Wound Healing in Mice. Am. J. Pathol. 2009, 175, 2454–2462. [Google Scholar] [CrossRef]
- Boniakowski, A.E.; Kimball, A.S.; Jacobs, B.N.; Kunkel, S.L.; Gallagher, K.A. Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing. J. Immunol. 2017, 199, 17–24. [Google Scholar] [CrossRef]
- Aitcheson, S.M.; Frentiu, F.D.; Hurn, S.E.; Edwards, K.; Murray, R.Z.; Hamaguchi, M. Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds Academic. Molecules 2021, 26, 4917. [Google Scholar] [CrossRef]
- Geng, K.; Ma, X.; Jiang, Z.; Huang, W.; Gao, C.; Pu, Y.; Luo, L.; Xu, Y.; Xu, Y. Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Front. Pharmacol. 2021, 12, 653940. [Google Scholar] [CrossRef]
- Francesko, A.; Petkova, P.; Tzanov, T. Hydrogel Dressings for Advanced Wound Management. Curr. Med. Chem. 2018, 25, 5782–5797. [Google Scholar] [CrossRef]
- Feng, Z.; Su, Q.; Zhang, C.; Huang, P.; Song, H.; Dong, A.; Kong, D.; Wang, W. Bioinspired Nanofibrous Glycopeptide Hydrogel Dressing for Accelerating Wound Healing: A Cytokine-Free, M2-Type Macrophage Polarization Approach. Adv. Funct. Mater. 2020, 30, 2006454. [Google Scholar] [CrossRef]
- Kotwal, G.J.; Sarojini, H.; Chien, S. Pivotal Role of ATP in Macrophages Fast Tracking Wound Repair and Regeneration. Wound Repair Regen. 2015, 23, 724–727. [Google Scholar] [CrossRef]
- Maalik, A.; Khan, F.A.; Mumtaz, A.; Mehmood, A.; Azhar, S.; Atif, M.; Karim, S.; Altaf, Y.; Tariq, I. Pharmacological Applications of Quercetin and Its Derivatives: A Short Review. Trop. J. Pharm. Res. 2014, 13, 1561–1566. [Google Scholar] [CrossRef]
- Baghel, S.S.; Shrivastava, N.; Baghel, R.S.; Agrawal, P.; Rajput, S. A Review of Quercetin: Antioxidant and Anticancer Properties. World J. Pharm. Pharm. Sci. 2012, 1, 146–160. [Google Scholar]
- Maciel, R.M.; Costa, M.M.; Martins, D.B.; França, R.T.; Schmatz, R.; Graça, D.L.; Duarte, M.M.M.F.; Danesi, C.C.; Mazzanti, C.M.; Schetinger, M.R.C.; et al. Antioxidant and Anti-Inflammatory Effects of Quercetin in Functional and Morphological Alterations in Streptozotocin-Induced Diabetic Rats. Res. Vet. Sci. 2013, 95, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yu, M.; Xie, D.; Wang, L.; Ye, C.; Zhu, Q.; Liu, F.; Yang, L. Melatonin-Stimulated MSC-Derived Exosomes Improve Diabetic Wound Healing through Regulating Macrophage M1 and M2 Polarization by Targeting the PTEN/AKT Pathway. Stem Cell Res. Ther. 2020, 11, 259. [Google Scholar] [CrossRef]
- Qiu, G.; Zheng, G.; Ge, M.; Wang, J.; Huang, R.; Shu, Q.; Xu, J. Functional Proteins of Mesenchymal Stem Cell-Derived Extracellular Vesicles. Stem Cell Res. Ther. 2019, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- El-Bahy, A.A.Z.; Aboulmagd, Y.M.; Zaki, M. Diabetex: A Novel Approach for Diabetic Wound Healing. Life Sci. 2018, 207, 332–339. [Google Scholar] [CrossRef]
- Yang, F.; Qin, Y.; Wang, Y.; Meng, S.; Xian, H.; Che, H.; Lv, J.; Li, Y.; Yu, Y.; Bai, Y.; et al. Metformin Inhibits the NLRP3 Inflammasome via AMPK/MTOR-Dependent Effects in Diabetic Cardiomyopathy. Int. J. Biol. Sci. 2019, 15, 1010–1019. [Google Scholar] [CrossRef]
- Fujii, S.; Miura, Y.; Fujishiro, A.; Shindo, T.; Shimazu, Y.; Hirai, H.; Tahara, H.; Takaori-Kondo, A.; Ichinohe, T.; Maekawa, T. Graft-Versus-Host Disease Amelioration by Human Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Is Associated with Peripheral Preservation of Naive T Cell Populations. Stem Cells 2017, 36, 434–445. [Google Scholar] [CrossRef]
- Xia, M.Z.; Liang, Y.L.; Wang, H.; Chen, X.; Huang, Y.Y.; Zhang, Z.H.; Song, L.H. Melatonin Modulates TLR4-Mediated Inflammatory Genes through MyD88-and TRIF-Dependent Signaling Pathways in Lipopolysaccharide-Stimulated RAW264.7 Cells. J. Pineal Res. 2012, 53, 325–334. [Google Scholar] [CrossRef]
- Moghadasi, S.; Elveny, M.; Rahman, H.S.; Suksatan, W.; Jalil, A.T.; Abdelbasset, W.K.; Yumashev, A.V.; Shariatzadeh, S.; Motavalli, R.; Behzad, F.; et al. A Paradigm Shift in Cell-Free Approach: The Emerging Role of MSCs-Derived Exosomes in Regenerative Medicine. J. Transl. Med. 2021, 19, 302. [Google Scholar] [CrossRef]
- Xiao, M.; Li, L.; Li, C.; Liu, L.; Yu, Y.; Ma, L. 3,4-Methylenedioxy-β-Nitrostyrene Ameliorates Experimental Burn Wound Progression by Inhibiting the NLRP3 Inflammasome Activation. Plast. Reconstr. Surg. 2016, 137, 566e–575e. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Zhang, X.; Wang, Y.; Chen, H.; Chai, Y. ROS-Activated NLRP3 Inflammasome Initiates Inflammation in Delayed Wound Healing in Diabetic Rats. Int. J. Clin. Exp. Pathol. 2017, 10, 9902. [Google Scholar]
- Qing, L.; Fu, J.; Wu, P.; Zhou, Z.; Tang, J. MTOR/NLRP3 Inflammasome Singling Pathway. Am. J. Transl. Res. 2019, 11, 655–668. [Google Scholar] [PubMed]
- Morel, L.; Teng, X.; Perl, A.; Ursini, F.; Russo, E.; Pellino, G.; D’angelo, S.; Chiaravalloti, A.; De Sarro, G.; Manfredini, R.; et al. Metformin and Autoimmunity: A “New Deal” of an Old Drug. Front. Immunol. 2018, 9, 1236. [Google Scholar] [CrossRef]
- Tsuji, G.; Hashimoto-Hachiya, A.; Yen, V.H.; Takemura, M.; Yumine, A.; Furue, K.; Furue, M.; Nakahara, T. Metformin inhibits IL-1β secretion via impairment of NLRP3 inflammasome in keratinocytes: Implications for preventing the development of psoria-sis. Cell Death Discov. 2020, 6, 11. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, X.; Jiang, L.; Hu, L.; Kong, H.; Han, Y.; Qian, C.; Song, C.; Qian, Y.; Liu, W. Metformin Reduces Morphine Tolerance by Inhibiting Microglial-Mediated Neuroinflammation. J. Neuroinflammation 2016, 13, 294. [Google Scholar] [CrossRef]
- Temiz-Resitoglu, M.; Kucukkavruk, S.P.; Guden, D.S.; Cecen, P.; Sari, A.N.; Tunctan, B.; Gorur, A.; Tamer-Gumus, L.; Buharalioglu, C.K.; Malik, K.U.; et al. Activation of MTOR/IκB-α/NF-ΚB Pathway Contributes to LPS-Induced Hypotension and Inflammation in Rats. Eur. J. Pharmacol. 2017, 802, 7–19. [Google Scholar] [CrossRef]
- Zhong, Z.; Umemura, A.; Sanchez-Lopez, E.; Liang, S.; Shalapour, S.; Wong, J.; He, F.; Boassa, D.; Perkins, G.; Ali, S.R.; et al. NF-ΚB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell 2016, 164, 896–910. [Google Scholar] [CrossRef]
- Bolego, C.; Escobedo, G.; General de México, H.; Nazir Khan, M.M.; Chen, H.; Chai, Y.; Dai, J.; Jiang, C. Rapamycin Attenuates High Glucose-Induced Inflammation Through Modulation of MTOR/NF-ΚB Pathways in Macrophages. Front. Pharmacol. 2019, 10, 1292. [Google Scholar] [CrossRef]
- Lu, H.; Wu, L.; Liu, L.; Ruan, Q.; Zhang, X.; Hong, W.; Wu, S.; Jin, G.; Bai, Y. Quercetin Ameliorates Kidney Injury and Fibrosis by Modulating M1/M2 Macrophage Polarization. Biochem. Pharmacol. 2018, 154, 203–212. [Google Scholar] [CrossRef]
- Hassanshahi, A.; Moradzad, M.; Ghalamkari, S.; Fadaei, M.; Cowin, A.J.; Hassanshahi, M. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells 2022, 11, 2953. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.F.; Hanif, M.; Ranjha, N.M. Methods of Synthesis of Hydrogels … A Review. Saudi Pharm. J. 2016, 24, 554–559. [Google Scholar] [CrossRef]
- Mishra, B.; Upadhyay, M.; Reddy Adena, S.; Vasant, B.G.M.M.; Muthu, M. Hydrogels: An Introduction to a Controlled Drug Delivery Device, Synthesis and Application in Drug Delivery and Tissue Engineering. Austin J. Biomed. Eng. 2017, 4, 1037. [Google Scholar]
- Blöhbaum, J.; Paulus, I.; Pöppler, A.C.; Tessmar, J.; Groll, J. Influence of Charged Groups on the Cross-Linking Efficiency and Release of Guest Molecules from Thiol-Ene Cross-Linked Poly(2-Oxazoline) Hydrogels. J. Mater. Chem. B 2019, 7, 1782–1794. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Saha, S.; Hanjaya-Putra, D. Biomimetic Hydrogels to Promote Wound Healing. Front. Bioeng. Biotechnol. 2021, 9, 718377. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, H.; Pan, X.; Zhang, C.; Zhang, K.; Chen, Z.; Dong, W.; Xie, A.; Qi, X. Dendritic Hydrogels with Robust Inherent Antibacterial Properties for Promoting Bacteria-Infected Wound Healing. ACS Appl. Mater. Interfaces 2022, 14, 11144–11155. [Google Scholar] [CrossRef]
- Suleiman, M.; Abdulrahman, N.; Yalcin, H.; Mraiche, F. The Role of CD44, Hyaluronan and NHE1 in Cardiac Remodeling. Life Sci. 2018, 209, 197–201. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, S.; Karnad, A.; Freeman, J.W. The Biology and Role of CD44 in Cancer Progression: Therapeutic Implications. J. Hematol. Oncol. 2018, 11, 64. [Google Scholar] [CrossRef]
- Collins, M.N.; Birkinshaw, C. Hyaluronic Acid Based Scaffolds for Tissue Engineering—A Review. Carbohydr. Polym. 2013, 92, 1262–1279. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Fang, Y.; Shi, W.; Li, X.; Chen, W.; Xian, M.; Ma, H. Reactive Oxygen Species-Triggered off-on Fluorescence Donor for Imaging Hydrogen Sulfide Delivery in Living Cells. Chem. Sci. 2019, 10, 7661–7824. [Google Scholar] [CrossRef]
- Hu, H.; Xu, F.-J. Rational Design and Latest Advances of Polysaccharide-Based Hydrogels for Wound Healing. Biomater. Sci. 2020, 8, 2084–2101. [Google Scholar] [CrossRef] [PubMed]
- Fleischli, J.G.; Laughlin, T.J.; Fleischli, J.W. Equine Pericardium Collagen Wound Dressing in the Treatment of the Neuropathic Diabetic Foot Wound: A Pilot Study. J. Am. Podiatr. Med. Assoc. 2009, 99, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xiao, Z.; Chen, A.; He, H.; He, C.; Shuai, X.; Li, X.; Chen, S.; Zhang, Y.; Ren, B.; et al. Sulfated Zwitterionic Poly(Sulfobetaine Methacrylate) Hydrogels Promote Complete Skin Regeneration. Acta Biomater. 2018, 71, 293–305. [Google Scholar] [CrossRef]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef]
- Wong, V.W.; Gurtner, G.C.; Longaker, M.T. Wound Healing: A Paradigm for Regeneration. Mayo Clin. Proc. 2013, 88, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.A.; Thomas, S. Recent Advances on Herb-Derived Constituents-Incorporated Wound-Dressing Materials: A Review. Polym. Adv. Technol. 2019, 30, 823–838. [Google Scholar] [CrossRef]
Immunomodulation Strategy | Pathway Alteration in Macrophage Phenotype | Effects on Wound Healing | Reference |
---|---|---|---|
ENDOGENOUS M1 ATTENUATION | |||
Quercetin | Inhibits the activation of TLR4/MyD88 signal transduction pathway, leading to the down-regulation of the activity of NF-kB and IRF-5, thus inhibiting the polarization of macrophages to the M1 phenotype, reducing the synthesis and release of inflammatory factors. | Reduce the infiltration of inflammatory cells. Increase fibroblast activity and collagen deposition. Promote angiogenesis. | [19,71] |
ENDOGENOUS MACROPHAGE MODULATION/M2 PROMOTION | |||
IL-33 | The binding of IL-33 to cells that express ST2 results in the activation of NF-kB and MAP kinases. | Accelerates re-epithelialization. Increases the proliferation of fibroblasts and ECM deposition. | [22,34] |
HG plus insulin | Both the PI3K-Akt-Rac1 and PPAR-γ signaling pathways. Activates Akt-Rac-1 signaling. | Can decrease neutrophil infiltration. Accelerates vessel maturation. | [23] |
Metformin | Regulates the AMPK/mTOR signaling pathway to inhibit NLRP3 inflammasome activation. | Improves angiogenesis. Inhibits the expression of pro-inflammatory cytokines. Accelerates collagen deposition. Re-vascularization, fibroblast regeneration and myofibroblast differentiation. | [64,66] |
Melatonin | Upregulates the expression of PTEN, inhibiting the phosphorylation of AKT. | Facilitates angiogenesis and collagen synthesis. Suppresses the pro-inflammatory factors. Promotes the anti-inflammatory factor IL-10, along with increasing the relative expression of IL-10 and Arg-1. | [55,61] |
Rapamycin | Reduces the NLRP3 inflammasome activation by inhibiting mTOR phosphorylation and NF-κB activation. | Enhances autophagy. Wound closure. Reduces the activation of the inflammatory cascade. | [70] |
Polymer | Type of Biomaterial | Main Alterations of Macrophages Phenotype | Effects on Wound Healing | References |
---|---|---|---|---|
Thioether grafted hyaluronic acid | Electro-spun nanofibers | Promotes the transformation of macrophages from a pro-inflammatory M1 to a reparative M2 phenotype. | Accelerates the healing phase transition from inflammation to proliferation and remodeling. | [29,80] |
Sulfated chitosan (SCS)-doped collagen type I (Col I/SCS). | Porous hydrogel scaffolds | Reduces the polarization of M1-like macrophages. | Increases collagen deposition, re-epithelialization and neovascularization. Reduces the production of pro-inflammatory interleukin (IL)-6 and increases the production of anti-inflammatory cytokines, including IL-4 and transforming growth factor-beta 1 (TGF-β1). | [25] |
Equine pericardial collagen matrix | Wound dressing | Change in macrophage polarization toward the M2 phenotype. | Accelerates wound re-epithelialization. Increases collagen deposition and maturation. | [25,30,83] |
Sulfated poly (sulfobetaine methacrylate) | Wound dressing hydrogel | The polarization of macrophages from M1 to M2 through enhanced anti-inflammatory proteins. | Facilitates cell proliferation, granulation formation, collagen aggregation, chondrogenic ECM deposition, and neovascularization. | [84] |
Biomaterials | |||||
---|---|---|---|---|---|
Equine Pericardial Collagen [25] | Hyaluronic Acid [31] | Sulfated Chitosan [26] | Sulfobetaine Methacrylate [78] | ||
Immunomodulator | Wound Closure Period (Days) | 13–15 | 13–15 | 16–18 | 19–21 |
Metformin [63] | 10–12 | M1 M2++ | M1 M2++ | M1 M2++ | M1 M2++ |
Melatonin [56] | 13–15 | M1− M2++ | M1−− M2++ | M1− M2++ | M1− M2++ |
Quercetin [54] | 13–15 | M1− M2++ | M1−− M2++ | M1− M2++ | M1− M2++ |
IL-33 [55] | 16–18 | M1 M2++ | M1− M2++ | M1 M2++ | M1 M2++ |
High glucose pus insulin [24] | ND | M1 M2++ | M1− M2++ | M1 M2++ | M1 M2++ |
Rapamycin [70] | 19–21 | M1 M2++ | M1− M2++ | M1 M2++ | M1 M2++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, M.L.; Valdez, H.; Conde, M.; Viaña-Mendieta, P.; Boccaccini, A.R. Polymers and Bioactive Compounds with a Macrophage Modulation Effect for the Rational Design of Hydrogels for Skin Regeneration. Pharmaceutics 2023, 15, 1655. https://doi.org/10.3390/pharmaceutics15061655
Sánchez ML, Valdez H, Conde M, Viaña-Mendieta P, Boccaccini AR. Polymers and Bioactive Compounds with a Macrophage Modulation Effect for the Rational Design of Hydrogels for Skin Regeneration. Pharmaceutics. 2023; 15(6):1655. https://doi.org/10.3390/pharmaceutics15061655
Chicago/Turabian StyleSánchez, Mirna L., Hugo Valdez, Micaela Conde, Pamela Viaña-Mendieta, and Aldo R. Boccaccini. 2023. "Polymers and Bioactive Compounds with a Macrophage Modulation Effect for the Rational Design of Hydrogels for Skin Regeneration" Pharmaceutics 15, no. 6: 1655. https://doi.org/10.3390/pharmaceutics15061655
APA StyleSánchez, M. L., Valdez, H., Conde, M., Viaña-Mendieta, P., & Boccaccini, A. R. (2023). Polymers and Bioactive Compounds with a Macrophage Modulation Effect for the Rational Design of Hydrogels for Skin Regeneration. Pharmaceutics, 15(6), 1655. https://doi.org/10.3390/pharmaceutics15061655