Aluminum Adjuvants—‘Back to the Future’
Abstract
:1. Introduction
2. The Types of Aluminum Adjuvants
3. Physicochemical Characterization of Aluminum Adjuvants
3.1. Particle Size
3.2. Surface Charge
3.3. Surface Area
3.4. Adsorption
3.5. Elemental Composition
4. Biological Differences between AH and AP Adjuvant
5. Safety of Aluminum-Adjuvanted Vaccines
6. Analytical Characterization of Aluminum-Adsorbed Antigens
6.1. Analytical Tools to Assess Secondary Protein Structure
6.1.1. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy
6.1.2. Circular Dichroism (CD) Spectroscopy
6.2. Analytical Tools to Assess Tertiary Protein Structure
6.2.1. Fluorescence Spectroscopy
6.2.2. Differential Scanning Calorimetry (DSC)
6.2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy
6.3. Analytical Tools for Multivalent Vaccine Formulation
6.3.1. Imaging and Cytometry
6.3.2. Raman Spectroscopy and Liquid Chromatography–Mass Spectrometry (LC–MS)
6.3.3. ELISA-Based Approaches
7. Next Generation Aluminum-Based Adjuvants
7.1. Limitations of Aluminum Adjuvants
7.2. Aluminum–TLR Agonist Combination Adjuvants
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glenny, A.T.; Pope, C.G.; Waddington, H.; Wallace, U. Immunological notes. XVI1.-XXIV. J. Pathol. Bacteriol. 1926, 29, 31–40. [Google Scholar] [CrossRef]
- Hem, S.L.; HogenEsch, H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert. Rev. Vaccines 2007, 6, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Hem, S.L.; Johnston, C.T.; HogenEsch, H. Imject Alum is not aluminum hydroxide adjuvant or aluminum phosphate adjuvant. Vaccine 2007, 25, 4985–4986. [Google Scholar] [CrossRef] [PubMed]
- Cain, D.W.; Sanders, S.E.; Cunningham, M.M.; Kelsoe, G. Disparate adjuvant properties among three formulations of “alum”. Vaccine 2013, 31, 653–660. [Google Scholar] [CrossRef] [Green Version]
- HogenEsch, H.; O’Hagan, D.T.; Fox, C.B. Optimizing the utilization of aluminum adjuvants in vaccines: You might just get what you want. NPJ Vaccines 2018, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Del Giudice, G.; Rappuoli, R.; Didierlaurent, A.M. Correlates of adjuvanticity: A review on adjuvants in licensed vaccines. Semin. Immunol. 2018, 39, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.; Arunachalam, P.S.; O’Hagan, D.T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. [Google Scholar] [CrossRef]
- HogenEsch, H.; Orr, M.T.; Fox, C.B. Vaccine adjuvants: Mechanisms of action. In Vaccine Development: From Concept to Clinic; Prasad, A.K., Ed.; The Royal Society of Chemistry: London, UK, 2023; pp. 214–234. [Google Scholar]
- Shirodkar, S.; Hutchinson, R.L.; Perry, D.L.; White, J.L.; Hem, S.L. Aluminum compounds used as adjuvants in vaccines. Pharm. Res. 1990, 7, 1282–1288. [Google Scholar] [CrossRef]
- Gupta, R.K. Aluminum compounds as vaccine adjuvants. Adv. Drug. Deliv. Rev. 1998, 32, 155–172. [Google Scholar] [CrossRef]
- Hem, S.L.; Johnston, C.T. Production and characterization of aluminum-containing adjuvants. In Vaccine Development and Manufacturing; Wen, E.P., Ellis, R., Pujar, N.S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 319–346. [Google Scholar]
- Yau, K.P.; Schulze, D.G.; Johnston, C.T.; Hem, S.L. Aluminum hydroxide adjuvant produced under constant reactant concentration. J. Pharm. Sci. 2006, 95, 1822–1833. [Google Scholar] [CrossRef]
- Vrieling, H.; Kooijman, S.; de Ridder, J.W.; Thies-Weesie, D.M.E.; Soema, P.C.; Jiskoot, W.; van Riet, E.; Heck, A.J.R.; Philipse, A.P.; Kersten, G.F.A.; et al. Activation of Human Monocytes by Colloidal Aluminum Salts. J. Pharm. Sci. 2020, 109, 750–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Art, J.F.; Vander Straeten, A.; Dupont-Gillain, C.C. Immobilization of Aluminum Hydroxide Particles on Quartz Crystal Microbalance Sensors to Elucidate Antigen-Adjuvant Interaction Mechanisms in Vaccines. Anal. Chem. 2018, 90, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, M.J.; Shi, L.; Wang, S.; Wang, B.; Tobery, T.W.; Mach, H.; Ahl, P.L.; Cannon, J.L.; Cook, J.C.; Heinrichs, J.H.; et al. Effect of alternative aluminum adjuvants on the absorption and immunogenicity of HPV16 L1 VLPs in mice. Hum. Vaccines 2007, 3, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Al-Shakhshir, R.H.; Lee, A.L.; White, J.L.; Hem, S.L. Interactions in model vaccines composed of mixtures of aluminum-containing adjuvants. J. Colloid Interface Sci. 1995, 169, 197–203. [Google Scholar] [CrossRef]
- Yordanov, G. Ultrastructural analysis of vaccine adjuvants. Nanosci. Nanotechnol. 2019, 19, 35–39. [Google Scholar]
- Badran, G.; Angrand, L.; Masson, J.D.; Crepeaux, G.; David, M.O. Physico-chemical properties of aluminum adjuvants in vaccines: Implications for toxicological evaluation. Vaccine 2022, 40, 4881–4888. [Google Scholar] [CrossRef]
- Chang, M.F.; White, J.L.; Nail, S.L.; Hem, S.L. Role of the electrostatic attractive force in the adsorption of proteins by aluminum hydroxide adjuvant. PDA J. Pharm. Sci. Technol. 1997, 51, 25–29. [Google Scholar]
- Mei, C.; Deshmukh, S.; Cronin, J.; Cong, S.; Chapman, D.; Lazaris, N.; Sampaleanu, L.; Schacht, U.; Drolet-Vives, K.; Ore, M.; et al. Aluminum Phosphate Vaccine Adjuvant: Analysis of Composition and Size Using Off-Line and In-Line Tools. Comput. Struct. Biotechnol. J. 2019, 17, 1184–1194. [Google Scholar] [CrossRef]
- Tabata, Y.; Ikada, Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 1988, 9, 356–362. [Google Scholar] [CrossRef]
- Champion, J.A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 2006, 103, 4930–4934. [Google Scholar] [CrossRef]
- Champion, J.A.; Walker, A.; Mitragotri, S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 2008, 25, 1815–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langford, A.; Horwitz, T.; Adu-Gyamfi, E.; Wiley, C.; Holding, E.; Zimmermann, D.; Ignatius, A.A.; Ohtake, S. Impact of Formulation and Suspension Properties on Redispersion of Aluminum-Adjuvanted Vaccines. J. Pharm. Sci. 2020, 109, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Art, J.F.; Vander Straeten, A.; Dupont-Gillain, C.C. NaCl strongly modifies the physicochemical properties of aluminum hydroxide vaccine adjuvants. Int. J. Pharm. 2017, 517, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Hem, S.L.; Klepak, P.B.; Lindblad, E.B. Aluminum hydroxide adjuvant. In Handbook of Pharmaceutical Excipients, 5th ed.; Rowe, R.C., Sheskey, P.J., Owen, S.C., Eds.; Pharmaceutical Press: London, UK, 2006; pp. 36–37. [Google Scholar]
- Hem, S.L.; Klepak, P.B.; Lindblad, E.B. Aluminum phosphate adjuvant. In Handbook of Pharmaceutical Excipients, 5th ed.; Rowe, R.C., Sheskey, P.J., Owen, S.C., Eds.; Pharmaceutical Press: London, UK, 2006; pp. 40–41. [Google Scholar]
- Wang, S.L.; Johnston, C.T.; Bish, D.L.; White, J.L.; Hem, S.L. Water-vapor adsorption and surface area measurement of poorly crystalline boehmite. J. Colloid Interface Sci. 2003, 260, 26–35. [Google Scholar] [CrossRef] [PubMed]
- al-Shakhshir, R.H.; Regnier, F.E.; White, J.L.; Hem, S.L. Contribution of electrostatic and hydrophobic interactions to the adsorption of proteins by aluminium-containing adjuvants. Vaccine 1995, 13, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Art, J.F.; Soumillion, P.; Dupont-Gillain, C.C. Use of a quartz crystal microbalance platform to study protein adsorption on aluminum hydroxide vaccine adjuvants: Focus on phosphate-hydroxide ligand exchanges. Int. J. Pharm. 2020, 573, 118834. [Google Scholar] [CrossRef]
- Van Ramshorst, J.D. The adsorption of diphtheria toxoid on aluminium phosphate. Recl. Trav. Chim. Des Pays-Bas 1949, 68, 169–180. [Google Scholar] [CrossRef]
- Barrett, B.S.; Markham, A.P.; Esfandiary, R.; Picking, W.L.; Picking, W.D.; Joshi, S.B.; Middaugh, C.R. Formulation and immunogenicity studies of type III secretion system needle antigens as vaccine candidates. J. Pharm. Sci. 2010, 99, 4488–4496. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, A.J.; Mar, K.D.; Huang, J.; Majumdar, S.; Ford, B.M.; Dyas, B.; Ulrich, R.G.; Sullivan, V.J. Rapid deamidation of recombinant protective antigen when adsorbed on aluminum hydroxide gel correlates with reduced potency of vaccine. J. Pharm. Sci. 2013, 102, 454–461. [Google Scholar] [CrossRef]
- Schlegl, R.; Weber, M.; Wruss, J.; Low, D.; Queen, K.; Stilwell, S.; Lindblad, E.B.; Mohlen, M. Influence of elemental impurities in aluminum hydroxide adjuvant on the stability of inactivated Japanese Encephalitis vaccine, IXIARO. Vaccine 2015, 33, 5989–5996. [Google Scholar] [CrossRef]
- Levine, L.; Stone, J.L.; Wyman, L. Factors affecting the efficiency of the aluminum adjuvant in diphtheria and tetanus toxoids. J. Immunol. 1955, 75, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Sadahiro, S.; Kondo, S.; Yamamoto, A. Effects of adjuvants on the immunogenicity of Habu-venom toxoid in the monkey and the guinea pig. Jpn. J. Med. Sci. Biol. 1981, 34, 169–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, P.W.; Gregory, T.; Crase, D.; Lasky, L.A. Protection from genital herpes simplex virus type 2 infection by vaccination with cloned type 1 glycoprotein D. Science 1985, 227, 1490–1492. [Google Scholar] [CrossRef]
- Berthold, I.; Pombo, M.L.; Wagner, L.; Arciniega, J.L. Immunogenicity in mice of anthrax recombinant protective antigen in the presence of aluminum adjuvants. Vaccine 2005, 23, 1993–1999. [Google Scholar] [CrossRef] [PubMed]
- Kanra, G.; Viviani, S.; Yurdakok, K.; Ozmert, E.; Anemona, A.; Yalcin, S.; Demiralp, O.; Bilgili, N.; Kara, A.; Cengiz, A.B.; et al. Effect of aluminum adjuvants on safety and immunogenicity of Haemophilus influenzae type b-CRM197 conjugate vaccine. Pediatr. Int. 2003, 45, 314–318. [Google Scholar] [CrossRef]
- Seeber, S.J.; White, J.L.; Hem, S.L. Solubilization of aluminum-containing adjuvants by constituents of interstitial fluid. J. Parenter. Sci. Technol. 1991, 45, 156–159. [Google Scholar]
- Flarend, R.E.; Hem, S.L.; White, J.L.; Elmore, D.; Suckow, M.A.; Rudy, A.C.; Dandashli, E.A. In vivo absorption of aluminium-containing vaccine adjuvants using 26Al. Vaccine 1997, 15, 1314–1318. [Google Scholar] [CrossRef]
- Verdier, F.; Burnett, R.; Michelet-Habchi, C.; Moretto, P.; Fievet-Groyne, F.; Sauzeat, E. Aluminium assay and evaluation of the local reaction at several time points after intramuscular administration of aluminium containing vaccines in the Cynomolgus monkey. Vaccine 2005, 23, 1359–1367. [Google Scholar] [CrossRef]
- Weisser, K.; Goen, T.; Oduro, J.D.; Wangorsch, G.; Hanschmann, K.O.; Keller-Stanislawski, B. Aluminium in plasma and tissues after intramuscular injection of adjuvanted human vaccines in rats. Arch. Toxicol. 2019, 93, 2787–2796. [Google Scholar] [CrossRef]
- Hoffmann, S.S.; Thiesson, E.M.; Johansen, J.D.; Hviid, A. Risk factors for granulomas in children following immunization with aluminium-adsorbed vaccines: A Danish population-based cohort study. Contact Dermat. 2022, 87, 430–438. [Google Scholar] [CrossRef]
- HogenEsch, H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front. Immunol. 2013, 4, 406. [Google Scholar] [CrossRef] [Green Version]
- Oleszycka, E.; Lavelle, E.C. Immunomodulatory properties of the vaccine adjuvant alum. Current Opin. Immunol. 2014, 28, 1–5. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Zou, Y.; Hu, Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccines Immunother. 2015, 11, 477–488. [Google Scholar] [CrossRef]
- Sokolovska, A.; Hem, S.L.; HogenEsch, H. Activation of dendritic cells and induction of CD4(+) T cell differentiation by aluminum-containing adjuvants. Vaccine 2007, 25, 4575–4585. [Google Scholar] [CrossRef]
- Li, H.; Nookala, S.; Re, F. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1beta and IL-18 release. J. Immunol. 2007, 178, 5271–5276. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, T.R.; Benson, R.A.; Garside, P.; Brewer, J.M. Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro. Immunol. Lett. 2012, 147, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooijman, S.; Vrieling, H.; Verhagen, L.; de Ridder, J.; de Haan, A.; van Riet, E.; Heck, A.J.R.; Kersten, G.F.A.; Pennings, J.L.A.; Metz, B.; et al. Aluminum Hydroxide and Aluminum Phosphate Adjuvants Elicit A Different Innate Immune Response. J. Pharm. Sci. 2022, 111, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Mold, M.; Shardlow, E.; Exley, C. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations. Sci. Rep. 2016, 6, 31578. [Google Scholar] [CrossRef] [Green Version]
- Conklin, L.; Hviid, A.; Orenstein, W.A.; Pollard, A.J.; Wharton, M.; Zuber, P. Vaccine safety issues at the turn of the 21st century. BMJ Glob. Health 2021, 6, e004898. [Google Scholar] [CrossRef]
- Hoffmann, S.S.; Thyssen, J.P.; Elberling, J.; Hansen, K.S.; Johansen, J.D. Children with vaccination granulomas and aluminum contact allergy: Evaluation of predispositions, avoidance behavior, and quality of life. Contact Dermat. 2020, 83, 99–107. [Google Scholar] [CrossRef]
- Kullberg, S.A.; Ward, J.M.; Liou, Y.L.; Atwater, A.R.; Hylwa, S.; Neeley, A.B.; Warshaw, E.M. Cutaneous Reactions to Aluminum. Dermatitis 2020, 31, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Mitkus, R.J.; King, D.B.; Hess, M.A.; Forshee, R.A.; Walderhaug, M.O. Updated aluminum pharmacokinetics following infant exposures through diet and vaccination. Vaccine 2011, 29, 9538–9543. [Google Scholar] [CrossRef] [PubMed]
- Karwowski, M.P.; Stamoulis, C.; Wenren, L.M.; Faboyede, G.M.; Quinn, N.; Gura, K.M.; Bellinger, D.C.; Woolf, A.D. Blood and Hair Aluminum Levels, Vaccine History, and Early Infant Development: A Cross-Sectional Study. Acad. Pediatr. 2018, 18, 161–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameratunga, R.; Gillis, D.; Gold, M.; Linneberg, A.; Elwood, J.M. Evidence Refuting the Existence of Autoimmune/Autoinflammatory Syndrome Induced by Adjuvants (ASIA). J. Allergy Clin. Immunol. Pract. 2017, 5, 1551–1555.E1. [Google Scholar] [CrossRef] [PubMed]
- Jensen-Jarolim, E.; Roth-Walter, F.; Jordakieva, G.; Pali-Scholl, I. Allergens and Adjuvants in Allergen Immunotherapy for Immune Activation, Tolerance, and Resilience. J. Allergy Clin. Immunol. Pract. 2021, 9, 1780–1789. [Google Scholar] [CrossRef] [PubMed]
- Linneberg, A.; Jacobsen, R.K.; Jespersen, L.; Abildstrom, S.Z. Association of subcutaneous allergen-specific immunotherapy with incidence of autoimmune disease, ischemic heart disease, and mortality. J. Allergy Clin. Immunol. 2012, 129, 413–419. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [Green Version]
- Dong, A.; Jones, L.S.; Kerwin, B.A.; Krishnan, S.; Carpenter, J.F. Secondary structures of proteins adsorbed onto aluminum hydroxide: Infrared spectroscopic analysis of proteins from low solution concentrations. Anal. Biochem. 2006, 351, 282–289. [Google Scholar] [CrossRef]
- Capelle, M.A.; Brugger, P.; Arvinte, T. Spectroscopic characterization of antibodies adsorbed to aluminium adjuvants: Correlation with antibody vaccine immunogenicity. Vaccine 2005, 23, 1686–1694. [Google Scholar] [CrossRef]
- Jones, L.S.; Peek, L.J.; Power, J.; Markham, A.; Yazzie, B.; Middaugh, C.R. Effects of adsorption to aluminum salt adjuvants on the structure and stability of model protein antigens. J. Biol. Chem. 2005, 280, 13406–13414. [Google Scholar] [CrossRef] [Green Version]
- Peek, L.J.; Martin, T.T.; Elk Nation, C.; Pegram, S.A.; Middaugh, C.R. Effects of stabilizers on the destabilization of proteins upon adsorption to aluminum salt adjuvants. J. Pharm. Sci. 2007, 96, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Lai, X.; Ipsen, H.; Larsen, J.N.; Lowenstein, H.; Sondergaard, I.; Jacobsen, S. The structural stability of protein antigens adsorbed by aluminium hydroxide in comparison to the antigens in solutions. Spectroscopy 2007, 21, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Lai, X.; Zheng, Y.; Jacobsen, S.; Larsen, J.N.; Ipsen, H.; Lowenstein, H.; Sondergaard, I. Determination of adsorbed protein concentration in aluminum hydroxide suspensions by near-infrared transmittance spectroscopy. Appl. Spectrosc. 2008, 62, 784–790. [Google Scholar] [CrossRef]
- Regnier, M.; Metz, B.; Tilstra, W.; Hendriksen, C.; Jiskoot, W.; Norde, W.; Kersten, G. Structural perturbation of diphtheria toxoid upon adsorption to aluminium hydroxide adjuvant. Vaccine 2012, 30, 6783–6788. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 2005, 1751, 119–139. [Google Scholar] [CrossRef] [PubMed]
- Greiner, V.J.; Ronzon, F.; Larquet, E.; Desbat, B.; Esteves, C.; Bonvin, J.; Greco, F.; Manin, C.; Klymchenko, A.S.; Mely, Y. The structure of HBsAg particles is not modified upon their adsorption on aluminium hydroxide gel. Vaccine 2012, 30, 5240–5245. [Google Scholar] [CrossRef]
- Eftink, M.R. Intrinsic fluorescence of proteins. In Topics in Fluorescence Spectroscopy, Volume 6: Protein Fluorescence; Lakowicz, J.R., Ed.; Springer: Boston, MA, USA, 2000; pp. 1–15. [Google Scholar]
- Soliakov, A.; Kelly, I.F.; Lakey, J.H.; Watkinson, A. Anthrax sub-unit vaccine: The structural consequences of binding rPA83 to Alhydrogel(R). Eur. J. Pharm. Biopharm. 2012, 80, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Nouchikian, L.; Roque, C.; Song, J.Y.; Rahman, N.; Ausar, S.F. An intrinsic fluorescence method for the determination of protein concentration in vaccines containing aluminum salt adjuvants. Vaccine 2018, 36, 5738–5746. [Google Scholar] [CrossRef]
- Ranade, D.; Jena, R.; Sancheti, S.; Deore, V.; Dogar, V.; Gairola, S. Rapid, high throughput protein estimation method for saponin and alhydrogel adjuvanted R21 VLP Malaria vaccine based on intrinsic fluorescence. Vaccine 2022, 40, 601–611. [Google Scholar] [CrossRef]
- Niesen, F.H.; Berglund, H.; Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2007, 2, 2212–2221. [Google Scholar] [CrossRef]
- Ausar, S.F.; Chan, J.; Hoque, W.; James, O.; Jayasundara, K.; Harper, K. Application of extrinsic fluorescence spectroscopy for the high throughput formulation screening of aluminum-adjuvanted vaccines. J. Pharm. Sci. 2011, 100, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Durowoju, I.B.; Bhandal, K.S.; Hu, J.; Carpick, B.; Kirkitadze, M. Differential Scanning Calorimetry—A Method for Assessing the Thermal Stability and Conformation of Protein Antigen. J. Vis. Exp. 2017, 121, e55262. [Google Scholar] [CrossRef] [Green Version]
- Vessely, C.; Estey, T.; Randolph, T.W.; Henderson, I.; Cooper, J.; Nayar, R.; Braun, L.J.; Carpenter, J.F. Stability of a trivalent recombinant protein vaccine formulation against botulinum neurotoxin during storage in aqueous solution. J. Pharm. Sci. 2009, 98, 2970–2993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duprez, J.; Kalbfleisch, K.; Deshmukh, S.; Payne, J.; Haer, M.; Williams, W.; Durowoju, I.; Kirkitadze, M. Structure and compositional analysis of aluminum oxyhydroxide adsorbed pertussis vaccine. Comput. Struct. Biotechnol. J. 2021, 19, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Braun, L.J.; Eldridge, A.M.; Cummiskey, J.; Arthur, K.K.; Wuttke, D.S. The role of adjuvant in mediating antigen structure and stability. J. Pharm. Sci. 2012, 101, 1391–1399. [Google Scholar] [CrossRef]
- Cerofolini, L.; Giuntini, S.; Ravera, E.; Luchinat, C.; Berti, F.; Fragai, M. Structural characterization of a protein adsorbed on aluminum hydroxide adjuvant in vaccine formulation. NPJ Vaccines 2019, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Morefield, G.L.; HogenEsch, H.; Robinson, J.P.; Hem, S.L. Distribution of adsorbed antigen in mono-valent and combination vaccines. Vaccine 2004, 22, 1973–1984. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Cao, L.; Lin, Z.; Wei, M.; Fang, M.; Li, S.; Zhang, J.; Xia, N.; Zhao, Q. Quantitative and epitope-specific antigenicity analysis of the human papillomavirus 6 capsid protein in aqueous solution or when adsorbed on particulate adjuvants. Vaccine 2016, 34, 4422–4428. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, T.; Cao, L.; Wang, X.; Cao, J.; Huang, X.; Cai, Y.; Lin, Z.; Pan, H.; Yuan, Q.; et al. Simultaneous in situ visualization and quantitation of dual antigens adsorbed on adjuvants using high content analysis. Nanomedicine 2019, 14, 2535–2548. [Google Scholar] [CrossRef]
- Ugozzoli, M.; Laera, D.; Nuti, S.; Skibinski, D.A.; Bufali, S.; Sammicheli, C.; Tavarini, S.; Singh, M.; O’Hagan, D.T. Flow cytometry: An alternative method for direct quantification of antigens adsorbed to aluminum hydroxide adjuvant. Anal. Biochem. 2011, 418, 224–230. [Google Scholar] [CrossRef]
- Ostergaard, E.; Frandsen, P.L.; Sandberg, E. Determination of freeze damage on HPV vaccines by use of flow cytometry. Biologicals 2015, 43, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Laera, D.; Scarpellini, C.; Tavarini, S.; Baudner, B.; Marcelli, A.; Pergola, C.; Meppen, M.; O’Hagan, D.T. Maturation of Aluminium Adsorbed Antigens Contributes to the Creation of Homogeneous Vaccine Formulations. Vaccines 2023, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Choy, C.H.; He, L.; Tulumello, D.; Gajewska, B.; Terebiznik, M.R.; Botelho, R.J.; Azizi, A. Aggregation and Size Attributes Analysis of Unadsorbed and Adjuvant-adsorbed Antigens using a Multispectral Imaging Flow Cytometer Platform. J. Pharm. Sci. 2022, 111, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.B.; Hanson, S.K.; Patterson, P.A.; Stoll, I.R. In vitro assessment of viral antigen content in inactivated aluminum hydroxide adjuvanted vaccines. J. Virol. Methods 1989, 25, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Huang, S.; Gebregeorgis, E.; McClellan, H.; Dai, W.; Miller, L.; Saul, A. Development of a Direct Alhydrogel Formulation Immunoassay (DAFIA). J. Immunol. Methods 2009, 344, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Westdijk, J.; Metz, B.; Spruit, N.; Tilstra, W.; van der Gun, J.; Hendriksen, C.; Kersten, G. Antigenic fingerprinting of diphtheria toxoid adsorbed to aluminium phosphate. Biologicals 2017, 47, 69–75. [Google Scholar] [CrossRef]
- Agnolon, V.; Bruno, C.; Galletti, B.; Mori, E.; Ugozzoli, M.; Pergola, C.; O’Hagan, D.T.; Baudner, B.C. Multiplex immunoassay for in vitro characterization of acellular pertussis antigens in combination vaccines. Vaccine 2016, 34, 1040–1046. [Google Scholar] [CrossRef]
- Graham, H.; Chandler, D.J.; Dunbar, S.A. The genesis and evolution of bead-based multiplexing. Methods 2019, 158, 2–11. [Google Scholar] [CrossRef]
- Silge, A.; Bocklitz, T.; Becker, B.; Matheis, W.; Popp, J.; Bekeredjian-Ding, I. Raman spectroscopy-based identification of toxoid vaccine products. NPJ Vaccines 2018, 3, 50. [Google Scholar] [CrossRef]
- van der Maas, L.; Danial, M.; Kersten, G.F.A.; Metz, B.; Meiring, H.D. Mass Spectrometry-Based Quantification of the Antigens in Aluminum Hydroxide-Adjuvanted Diphtheria-Tetanus-Acellular-Pertussis Combination Vaccines. Vaccines 2022, 10, 78. [Google Scholar] [CrossRef]
- Rappuoli, R. Towards animal free and science based measures of critical quality attributes for vaccine quality control and release. Vaccine 2019, 37, 3745–3746. [Google Scholar] [CrossRef]
- Clapp, T.; Munks, M.W.; Trivedi, R.; Kompella, U.B.; Braun, L.J. Freeze-thaw stress of Alhydrogel (R) alone is sufficient to reduce the immunogenicity of a recombinant hepatitis B vaccine containing native antigen. Vaccine 2014, 32, 3765–3771. [Google Scholar] [CrossRef]
- Kurzatkowski, W.; Kartoglu, U.; Gorska, P.; Glowka, M.; Woznica, K.; Zasada, A.A.; Szczepanska, G.; Trykowski, G.; Gniadek, M.; Donten, M. Physical and chemical changes in Alhydrogel damaged by freezing. Vaccine 2018, 36, 6902–6910. [Google Scholar] [CrossRef]
- Braun, L.J.; Jezek, J.; Peterson, S.; Tyagi, A.; Perkins, S.; Sylvester, D.; Guy, M.; Lal, M.; Priddy, S.; Plzak, H.; et al. Characterization of a thermostable hepatitis B vaccine formulation. Vaccine 2009, 27, 4609–4614. [Google Scholar] [CrossRef] [PubMed]
- Clapp, T.; Siebert, P.; Chen, D.; Jones Braun, L. Vaccines with aluminum-containing adjuvants: Optimizing vaccine efficacy and thermal stability. J. Pharm. Sci. 2011, 100, 388–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atmar, R.L.; Keitel, W.A. Adjuvants for pandemic influenza vaccines. Curr. Top. Microbiol. Immunol. 2009, 333, 323–344. [Google Scholar] [CrossRef] [PubMed]
- Mosley, Y.C.; Radder, J.E.; HogenEsch, H. Genetic Variation in the Magnitude and Longevity of the IgG Subclass Response to a Diphtheria-Tetanus-Acellular Pertussis (DTaP) Vaccine in Mice. Vaccines 2019, 7, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, M.; Nourishirazi, E.; Guinet, E.; Nouri-Shirazi, M. The genetic background influences the cellular and humoral immune responses to vaccines. Clin. Exp. Immunol. 2016, 186, 190–204. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, S.; Brummelman, J.; van Els, C.; Marino, F.; Heck, A.J.R.; van Riet, E.; Metz, B.; Kersten, G.F.A.; Pennings, J.L.A.; Meiring, H.D. Vaccine antigens modulate the innate response of monocytes to Al(OH)3. PLoS ONE 2018, 13, e0197885. [Google Scholar] [CrossRef]
- Fadugba, O.O.; Wang, L.; Chen, Q.; Halasa, N.B. Immune responses to pertussis antigens in infants and toddlers after immunization with multicomponent acellular pertussis vaccine. Clin. Vaccine Immunol. 2014, 21, 1613–1619. [Google Scholar] [CrossRef]
- O’Hagan, D.T.; Lodaya, R.N.; Lofano, G. The continued advance of vaccine adjuvants—‘We can work it out’. Semin. Immunol. 2020, 50, 101426. [Google Scholar] [CrossRef]
- Li, X.; Aldayel, A.M.; Cui, Z. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J. Control. Release 2014, 173, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Ji, Z.; Liao, Y.P.; Wang, M.; Wang, X.; Dong, J.; Chang, C.H.; Li, R.; Zhang, H.; Nel, A.E.; et al. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano 2013, 7, 10834–10849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruwona, T.B.; Xu, H.; Li, X.; Taylor, A.N.; Shi, Y.C.; Cui, Z. Toward understanding the mechanism underlying the strong adjuvant activity of aluminum salt nanoparticles. Vaccine 2016, 34, 3059–3067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandhar, A.P.; Liang, H.; Simpson, A.C.; Reed, S.G.; Carter, D.; Fox, C.B.; Orr, M.T. Physicochemical structure of a polyacrylic acid stabilized nanoparticle alum (nanoalum) adjuvant governs TH1 differentiation of CD4+ T cells. Nanoscale 2020, 12, 2515–2523. [Google Scholar] [CrossRef]
- Orr, M.T.; Khandhar, A.P.; Seydoux, E.; Liang, H.; Gage, E.; Mikasa, T.; Beebe, E.L.; Rintala, N.D.; Persson, K.H.; Ahniyaz, A.; et al. Reprogramming the adjuvant properties of aluminum oxyhydroxide with nanoparticle technology. NPJ Vaccines 2019, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Yang, Y.; Yu, G.; Zhu, H.; Xia, X.; Chen, C.; Fu, D.; Li, M.; Cheng, G.; Xue, C.; et al. Engineering aluminum hydroxyphosphate nanoparticles with well-controlled surface property to enhance humoral immune responses as vaccine adjuvants. Biomaterials 2021, 275, 120960. [Google Scholar] [CrossRef]
- Lu, F.; Mosley, Y.C.; Carmichael, B.; Brown, D.D.; HogenEsch, H. Formulation of aluminum hydroxide adjuvant with TLR agonists poly(I:C) and CpG enhances the magnitude and avidity of the humoral immune response. Vaccine 2019, 37, 1945–1953. [Google Scholar] [CrossRef]
- Didierlaurent, A.M.; Morel, S.; Lockman, L.; Giannini, S.L.; Bisteau, M.; Carlsen, H.; Kielland, A.; Vosters, O.; Vanderheyde, N.; Schiavetti, F.; et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol. 2009, 183, 6186–6197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casella, C.R.; Mitchell, T.C. Putting endotoxin to work for us: Monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol. Life Sci. 2008, 65, 3231–3240. [Google Scholar] [CrossRef] [Green Version]
- Garcon, N. Preclinical development of AS04. Methods Mol. Biol. 2010, 626, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Bobbala, S.; McDowell, A.; Hook, S. Quantitation of the immunological adjuvants, monophosphoryl lipid A and Quil A in poly (lactic-co-glycolic acid) nanoparticles using high performance liquid chromatography with evaporative light scattering detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 975, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Jung, S.H.; Bak, J.P.; Lee, S.S.; Rhee, D.K. Comparison of the rabbit pyrogen test and Limulus amoebocyte lysate (LAL) assay for endotoxin in hepatitis B vaccines and the effect of aluminum hydroxide. Biologicals 2005, 33, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; HogenEsch, H.; Regnier, F.E.; Hem, S.L. Detoxification of endotoxin by aluminum hydroxide adjuvant. Vaccine 2001, 19, 1747–1752. [Google Scholar] [CrossRef] [PubMed]
- Garcon, N.; Morel, S.; Didierlaurent, A.; Descamps, D.; Wettendorff, M.; Van Mechelen, M. Development of an AS04-adjuvanted HPV vaccine with the adjuvant system approach. BioDrugs 2011, 25, 217–226. [Google Scholar] [CrossRef]
- Tong, N.K.; Beran, J.; Kee, S.A.; Miguel, J.L.; Sanchez, C.; Bayas, J.M.; Vilella, A.; de Juanes, J.R.; Arrazola, P.; Calbo-Torrecillas, F.; et al. Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients. Kidney Int. 2005, 68, 2298–2303. [Google Scholar] [CrossRef] [Green Version]
- Giannini, S.L.; Hanon, E.; Moris, P.; Van Mechelen, M.; Morel, S.; Dessy, F.; Fourneau, M.A.; Colau, B.; Suzich, J.; Losonksy, G.; et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 2006, 24, 5937–5949. [Google Scholar] [CrossRef]
- Wu, T.Y.; Singh, M.; Miller, A.T.; De Gregorio, E.; Doro, F.; D’Oro, U.; Skibinski, D.A.; Mbow, M.L.; Bufali, S.; Herman, A.E.; et al. Rational design of small molecules as vaccine adjuvants. Sci. Transl. Med. 2014, 6, 263ra160. [Google Scholar] [CrossRef]
- Cortez, A.; Li, Y.; Miller, A.T.; Zhang, X.; Yue, K.; Maginnis, J.; Hampton, J.; Hall, D.S.; Shapiro, M.; Nayak, B.; et al. Incorporation of Phosphonate into Benzonaphthyridine Toll-like Receptor 7 Agonists for Adsorption to Aluminum Hydroxide. J. Med. Chem. 2016, 59, 5868–5878. [Google Scholar] [CrossRef]
- Weeratna, R.D.; Makinen, S.R.; McCluskie, M.J.; Davis, H.L. TLR agonists as vaccine adjuvants: Comparison of CpG ODN and Resiquimod (R-848). Vaccine 2005, 23, 5263–5270. [Google Scholar] [CrossRef]
- Bauza, A.; Del Pozo, L.J.; Saus, C.; Martin, A. Pemphigus-like lesions induced by imiquimod. Clin. Exp. Dermatol. 2009, 34, e60–e62. [Google Scholar] [CrossRef]
- Malyala, P.; Laera, D.; Cianetti, S.; Bufali, S.; Aggravi, M.; Ianni, E.; Judge, C.; Otten, G.; Singh, M.; O’Hagan, D.T. The Preparation and Physicochemical Characterization of Aluminum Hydroxide/TLR7a, a Novel Vaccine Adjuvant Comprising a Small Molecule Adsorbed to Aluminum Hydroxide. J. Pharm. Sci. 2018, 107, 1577–1585. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Walls, A.C.; Golden, N.; Atyeo, C.; Fischinger, S.; Li, C.; Aye, P.; Navarro, M.J.; Lai, L.; Edara, V.V.; et al. Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature 2021, 594, 253–258. [Google Scholar] [CrossRef]
- Buonsanti, C.; Balocchi, C.; Harfouche, C.; Corrente, F.; Galli Stampino, L.; Mancini, F.; Tontini, M.; Malyala, P.; Bufali, S.; Baudner, B.; et al. Novel adjuvant Alum-TLR7 significantly potentiates immune response to glycoconjugate vaccines. Sci. Rep. 2016, 6, 29063. [Google Scholar] [CrossRef] [Green Version]
- Grigoryan, L.; Lee, A.; Walls, A.C.; Lai, L.; Franco, B.; Arunachalam, P.S.; Feng, Y.; Luo, W.; Vanderheiden, A.; Floyd, K.; et al. Adjuvanting a subunit SARS-CoV-2 vaccine with clinically relevant adjuvants induces durable protection in mice. NPJ Vaccines 2022, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Mancini, F.; Monaci, E.; Lofano, G.; Torre, A.; Bacconi, M.; Tavarini, S.; Sammicheli, C.; Arcidiacono, L.; Galletti, B.; Laera, D.; et al. One Dose of Staphylococcus aureus 4C-Staph Vaccine Formulated with a Novel TLR7-Dependent Adjuvant Rapidly Protects Mice through Antibodies, Effector CD4+ T Cells, and IL-17A. PLoS ONE 2016, 11, e0147767. [Google Scholar] [CrossRef] [PubMed]
- Bagnoli, F.; Fontana, M.R.; Soldaini, E.; Mishra, R.P.; Fiaschi, L.; Cartocci, E.; Nardi-Dei, V.; Ruggiero, P.; Nosari, S.; De Falco, M.G.; et al. Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2015, 112, 3680–3685. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Lopez, A.; Oostendorp, J.; Koernicke, T.; Fadini, T.; D’Oro, U.; Baker, S.; O’Hagan, D.T.; Del Giudice, G.; Siena, E.; Finco, O.; et al. Adjuvant effect of TLR7 agonist adsorbed on aluminum hydroxide (AS37): A phase I randomized, dose escalation study of an AS37-adjuvanted meningococcal C conjugated vaccine. Clin. Immunol. 2019, 209, 108275. [Google Scholar] [CrossRef] [PubMed]
- Siena, E.; Schiavetti, F.; Borgogni, E.; Taccone, M.; Faenzi, E.; Brazzoli, M.; Aprea, S.; Bardelli, M.; Volpini, G.; Buricchi, F.; et al. Systems analysis of human responses to an aluminium hydroxide-adsorbed TLR7 agonist (AS37) adjuvanted vaccine reveals a dose-dependent and specific activation of the interferon-mediated antiviral response. Vaccine 2023, 41, 724–734. [Google Scholar] [CrossRef]
- Smirnov, D.; Schmidt, J.J.; Capecchi, J.T.; Wightman, P.D. Vaccine adjuvant activity of 3M-052: An imidazoquinoline designed for local activity without systemic cytokine induction. Vaccine 2011, 29, 5434–5442. [Google Scholar] [CrossRef]
- Kasturi, S.P.; Rasheed, M.A.U.; Havenar-Daughton, C.; Pham, M.; Legere, T.; Sher, Z.J.; Kovalenkov, Y.; Gumber, S.; Huang, J.Y.; Gottardo, R.; et al. 3M-052, a synthetic TLR-7/8 agonist, induces durable HIV-1 envelope-specific plasma cells and humoral immunity in nonhuman primates. Sci. Immunol. 2020, 5, eabb1025. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Martinez, D.R.; Schafer, A.; Chen, H.; Barr, M.; Sutherland, L.L.; Lee, E.; Parks, R.; Mielke, D.; Edwards, W.; et al. Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine. Nat. Commun. 2022, 13, 6309. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.B.; Orr, M.T.; Van Hoeven, N.; Parker, S.C.; Mikasa, T.J.; Phan, T.; Beebe, E.A.; Nana, G.I.; Joshi, S.W.; Tomai, M.A.; et al. Adsorption of a synthetic TLR7/8 ligand to aluminum oxyhydroxide for enhanced vaccine adjuvant activity: A formulation approach. J. Control Release 2016, 244, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowling, D.J.; Barman, S.; Smith, A.J.; Borriello, F.; Chaney, D.; Brightman, S.E.; Melhem, G.; Brook, B.; Menon, M.; Soni, D.; et al. Development of a TLR7/8 agonist adjuvant formulation to overcome early life hyporesponsiveness to DTaP vaccination. Sci. Rep. 2022, 12, 16860. [Google Scholar] [CrossRef] [PubMed]
- Misiak, A.; Leuzzi, R.; Allen, A.C.; Galletti, B.; Baudner, B.C.; D’Oro, U.; O’Hagan, D.T.; Pizza, M.; Seubert, A.; Mills, K.H.G. Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and protective immunity in a mouse model. Vaccine 2017, 35, 5256–5263. [Google Scholar] [CrossRef] [PubMed]
- Ganneru, B.; Jogdand, H.; Daram, V.K.; Das, D.; Molugu, N.R.; Prasad, S.D.; Kannappa, S.V.; Ella, K.M.; Ravikrishnan, R.; Awasthi, A.; et al. Th1 skewed immune response of whole virion inactivated SARS CoV 2 vaccine and its safety evaluation. iScience 2021, 24, 102298. [Google Scholar] [CrossRef] [PubMed]
- Steinhagen, F.; Kinjo, T.; Bode, C.; Klinman, D.M. TLR-based immune adjuvants. Vaccine 2011, 29, 3341–3355. [Google Scholar] [CrossRef] [Green Version]
- Aebig, J.A.; Mullen, G.E.; Dobrescu, G.; Rausch, K.; Lambert, L.; Ajose-Popoola, O.; Long, C.A.; Saul, A.; Miles, A.P. Formulation of vaccines containing CpG oligonucleotides and alum. J. Immunol. Methods 2007, 323, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Mirotti, L.; Alberca Custodio, R.W.; Gomes, E.; Rammauro, F.; de Araujo, E.F.; Garcia Calich, V.L.; Russo, M. CpG-ODN Shapes Alum Adjuvant Activity Signaling via MyD88 and IL-10. Front. Immunol. 2017, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Pollet, J.; Strych, U.; Chen, W.H.; Versteeg, L.; Keegan, B.; Zhan, B.; Wei, J.; Liu, Z.; Lee, J.; Kundu, R.; et al. Receptor-binding domain recombinant protein on alum-CpG induces broad protection against SARS-CoV-2 variants of concern. Vaccine 2022, 40, 3655–3663. [Google Scholar] [CrossRef]
- Khayyati Kohnehshahri, M.; Delirezh, N.; Aghebati Maleki, L. CpG-Containing Oligodeoxynucleotides and Freund Adjuvant in Combination with Alum Augment the Production of Monoclonal Antibodies Against Recombinant HBsAg. Avicenna J. Med. Biotechnol. 2022, 14, 125–131. [Google Scholar] [CrossRef] [PubMed]
Vaccine | Approval Date | Tradename | Manufacturer | Aluminum Used | Dose (Al3+) |
---|---|---|---|---|---|
Anthrax | 1970 | Biothrax | Emergent BioDefense Operations Lansing (Lansing, MI, USA) | AH | 0.6 mg |
Diphtheria and tetanus | 1997 | None | Sanofi Pasteur (North York, ON, Canada) | AP | 0.33 mg |
2003 | TENIVAC | Sanofi Pasteur | AP | 0.33 mg | |
2018 | TDVAX | MassBiologics (Mattapan, MA, USA) | AP | 0.53 mg | |
Diphtheria, tetanus, and acellular pertussis (DTaP) | 1997 | INFANRIX | GSK (Rockville, MD, USA) | AH | 0.5 mg |
2002 | DAPTACEL | Sanofi Pasteur | AP | 0.33 mg | |
DTaP, hepatitis B, and poliovirus | 2002 | PEDIARIX | GSK | AH/AP | 0.85mg |
DTaP, Haemophilus b, and poliovirus | 2008 | Pentacel | Sanofi Pasteur | AP | 0.33 mg |
DTaP, Haemophilus b, hepatitis B, and poliovirus | 2018 | VAXELIS | MSP Vaccine Company (Swiftwater, PA, USA) | AAHS | 0.32 mg |
DTaP and poliovirus | 2008 | KINRIX | GSK | AH | 0.5 mg |
2015 | Quadracel | Sanofi Pasteur | AP | 0.33 mg | |
Tetanus, reduced diphtheria, and acellular pertussis (TdaP) | 2005 | ADACEL | Sanofi Pasteur | AP | 0.33 mg |
2005 | BOOSTRIX | GSK | AH | 0.3 mg | |
Haemophilus B | 1989 | PedvaxHIB | MSD (Cincinnati, OH, USA) | AAHS | 0.23 mg |
Hepatitis A | 1995 | HAVRIX | GSK | AH | 0.25 *–0.5 ° mg |
1996 | VAQTA | MSD | AAHS | 0.23 *–0.45 ° mg | |
Hepatitis B | 1986 | RECOMBIVAX HB | MSD | AAHS | 0.25 *–0.5 ° mg |
1989 | ENGERIX-B | GSK | AH | 0.25 *–0.5 ° mg | |
2021 | PreHevbrio | VBI (Cambridge, MA, USA) | AH | 0.5 mg | |
Hepatitis A and B | 2001 | Twinrix | GSK | AH/AP | 0.45 mg |
Human papillomavirus | 2006 | Gardasil | MSD | AAHS | 0.23 mg |
2009 | CERVARIX | GSK | AH | 0.5 mg (plus 50 µg of MPLA) | |
2014 | Gardasil 9 | MSD | AAHS | 0.5 mg | |
Japanese encephalitis | 2009 | IXIARO | Valneva (Saint-Herblain, France) | AH | 0.25 mg |
Meningococcal group B | 2014 | TRUMENBA | PFIZER (Kalamazoo, MI, USA) | AP | 0.25 mg |
2015 | BEXSERO | GSK | AH | 0.52 mg | |
Pneumococcal | 2010 | Prevnar 13 | PFIZER | AP | 0.13 mg |
2021 | PREVNAR 20 | PFIZER | AP | 0.13 mg | |
2021 | VAXNEUVANCE | MSD | AP | 0.13 mg | |
Tick-borne encephalitis | 2021 | TICOVAC | PFIZER | AH | 0.18 *–0.35 ° mg |
Analytical Tool | Type of Information | Application | Type of Vaccine | References |
---|---|---|---|---|
ATR-FTIR | Secondary protein structure: focus on β-strand conformation | Routinely implemented: challenging data interpretation | Only monovalent | [61,62,63,64,65,66] |
NIR | Determination of the adsorbed protein content | Exploratory | Only monovalent | [67] |
CD | Secondary protein structure: focus on α-helix conformation | Routinely implemented: challenging data interpretation and execution | Only monovalent | [68,69,70] |
IF | Tertiary protein structure: focus on conformational changes; Determination of the adsorbed protein content: useful for inline process monitoring and HTP analysis. | Routinely implemented | Only monovalent | [63,64,65,71,72,73,74] |
EF | Tertiary protein structure: focus on conformational changes. | Routinely implemented | Only monovalent | [68,75,76] |
DSC | Tertiary protein structure: focus on thermal stability. | Routinely implemented | Only monovalent | [77,78,79] |
NMR | Atomic structural analysis: solid state analysis performed on adsorbed antigen. | Exploratory | Only monovalent | [80,81] |
Imaging | Determination of the adsorbed protein content; Antigen distribution/orientation on aluminum adjuvants. | Exploratory | Mono- and multivalent | [82,83,84] |
FC | Determination of the adsorbed protein content; Antigen distribution on aluminum adjuvants; Focus on freeze/thaw damage. | Exploratory | Mono- and multivalent | [85,86,87,88] |
ELISA/DAFIA | Determination of the adsorbed protein content; Useful for QC analysis: focus on antigenicity, potency, and product consistency. | Routinely implemented | Mono- and multivalent | [89,90,91,92,93] |
Raman | Structural fingerprint of complex vaccine products: high specificity and sensitivity. | Exploratory | Mono- and multivalent | [94] |
LC–MS | Determination of the adsorbed protein content. | Exploratory | Mono- and multivalent | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laera, D.; HogenEsch, H.; O’Hagan, D.T. Aluminum Adjuvants—‘Back to the Future’. Pharmaceutics 2023, 15, 1884. https://doi.org/10.3390/pharmaceutics15071884
Laera D, HogenEsch H, O’Hagan DT. Aluminum Adjuvants—‘Back to the Future’. Pharmaceutics. 2023; 15(7):1884. https://doi.org/10.3390/pharmaceutics15071884
Chicago/Turabian StyleLaera, Donatello, Harm HogenEsch, and Derek T. O’Hagan. 2023. "Aluminum Adjuvants—‘Back to the Future’" Pharmaceutics 15, no. 7: 1884. https://doi.org/10.3390/pharmaceutics15071884