A Promising Approach to Treat Psoriasis: Inhibiting Cytochrome P450 3A4 Metabolism to Enhance Desoximetasone Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microemulsion Preparation
2.3. Animals
2.3.1. Imiquimod-Induced Psoriasis-like Animal Model of Skin
2.3.2. CYP3A4 Protein Expression Study
2.3.3. Drug Dose Selection Study
2.3.4. Drug Comparison Study
2.3.5. Drug Crossover Study
2.3.6. Permeation Studies
2.4. Assessment of Barrier Function
2.5. Collection of Skin Specimens
2.6. Determination of Inflammatory Cytokine Proteins
2.7. Immunohistochemical Staining for CYP3A4
Immuno-Intensity Counting
2.8. Permeation Study
2.8.1. In Vitro Skin Permeation Study
2.8.2. Permeation Data Analysis
2.8.3. Skin Deposition Study
2.9. High-Performance Liquid Chromatography System
2.10. Safety Evaluation Study
2.10.1. Skin Irritation Study
2.10.2. Blood Desoximetasone Concentration Detection Study
2.11. Statistical Analysis
3. Results
3.1. The Designed Formulation Exhibited a Significant Inhibition of CYP3A4 Protein Expression
3.2. The 0.05% DXM Formulation Was Selected as the Optimal Dose for Further Studies
3.3. DXM Was More Effective Than Esperson and Clobetasol
3.4. DXM, ESP, and CLO Inhibited IL-23/IL-17/TNF-α Axis Protein Expression in Psoriasis-like Skin
3.5. In the Crossover Study, 0.05% DXM Demonstrated Superior Therapeutic Effects to Esperson
3.6. The DXM-Loaded Formulation Represented a Safe Topical Formulation
3.7. Skin Penetration Parameters and Deposition Amounts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waring, R.H. Cytochrome P450: Genotype to phenotype. Xenobiotica 2020, 50, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.M.; Holler, D.; Schiffer, R.; Frankenberg, S.; Neis, M.; Merk, H.F.; Jugert, F.K. Expression of multiple cytochrome p450 enzymes and multidrug resistance-associated transport proteins in human skin keratinocytes. J. Investig. Dermatol. 2001, 116, 541–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Hotchkiss, S.A.; Boobis, A.R.; Edwards, R.J. Expression of P450 enzymes in rat whole skin and cultured epidermal keratinocytes. Biochem. Biophys. Res. Commun. 2002, 297, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Saeki, M.; Saito, Y.; Nagano, M.; Teshima, R.; Ozawa, S.; Sawada, J. mRNA expression of multiple cytochrome p450 isozymes in four types of cultured skin cells. Int. Arch. Allergy Immunol. 2002, 127, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Vyas, P.M.; Roychowdhury, S.; Khan, F.D.; Prisinzano, T.E.; Lamba, J.; Schuetz, E.G.; Blaisdell, J.; Goldstein, J.A.; Munson, K.L.; Hines, R.N.; et al. Enzyme-mediated protein haptenation of dapsone and sulfamethoxazole in human keratinocytes: I. Expression and role of cytochromes P450. J. Pharmacol. Exp. Ther. 2006, 319, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Neis, M.M.; Ladd, P.A.; Keeney, D.S. Differentiation-specific factors modulate epidermal CYP1-4 gene expression in human skin in response to retinoic acid and classic aryl hydrocarbon receptor ligands. J. Pharmacol. Exp. Ther. 2006, 319, 1162–1171. [Google Scholar] [CrossRef] [Green Version]
- Janmohamed, A.; Dolphin, C.T.; Phillips, I.R.; Shephard, E.A. Quantification and cellular localization of expression in human skin of genes encoding flavin-containing monooxygenases and cytochromes P450. Biochem. Pharmacol. 2001, 62, 777–786. [Google Scholar] [CrossRef]
- Borelli, C.; Gassmueller, J.; Fluhr, J.W.; Nietsch, K.H.; Schinzel, S.; Korting, H.C. Activity of different desoximetasone preparations compared to other topical corticosteroids in the vasoconstriction assay. Skin. Pharmacol. Physiol. 2008, 21, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.; Barker, J.; ElShaer, A. Pharmaceutical Excipients and Drug Metabolism: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 8224. [Google Scholar] [CrossRef]
- Bravo Gonzalez, R.C.; Huwyler, J.; Boess, F.; Walter, I.; Bittner, B. In vitro investigation on the impact of the surface-active excipients Cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam. Biopharm. Drug Dispos. 2004, 25, 37–49. [Google Scholar] [CrossRef]
- Mountfield, R.J.; Senepin, S.; Schleimer, M.; Walter, I.; Bittner, B. Potential inhibitory effects of formulation ingredients on intestinal cytochrome P450. Int. J. Pharm. 2000, 211, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Mao, X.; Cao, L.; Xue, K.; Si, L.; Qiu, J.; Schimmer, A.D.; Li, G. Nonionic surfactants are strong inhibitors of cytochrome P450 3A biotransformation activity in vitro and in vivo. Eur. J. Pharm. Sci. 2009, 36, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.; Si, L.; Guan, Y.; Pan, H.; Qiu, J.; Li, G. Inhibitive effect of cremophor RH40 or tween 80-based self-microemulsiflying drug delivery system on cytochrome P450 3A enzymes in murine hepatocytes. J. Huazhong Univ. Sci. Technol. Med. Sci. 2010, 30, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Huang, J.; Xue, K.; Si, L.; Li, G. Enhanced intestinal absorption of etoposide by self-microemulsifying drug delivery systems: Roles of P-glycoprotein and cytochrome P450 3A inhibition. Eur. J. Pharm. Sci. 2013, 50, 429–439. [Google Scholar] [CrossRef]
- Kwon, M.; Lim, D.Y.; Lee, C.H.; Jeon, J.H.; Choi, M.K.; Song, I.S. Enhanced Intestinal Absorption and Pharmacokinetic Modulation of Berberine and Its Metabolites through the Inhibition of P-Glycoprotein and Intestinal Metabolism in Rats Using a Berberine Mixed Micelle Formulation. Pharmaceutics 2020, 12, 882. [Google Scholar] [CrossRef]
- Guo, J.W.; Chien, C.C.; Chen, J.H. CYP3A Excipient-Based Microemulsion Prolongs the Effect of Magnolol on Ischemia Stroke Rats. Pharmaceutics 2020, 12, 737. [Google Scholar] [CrossRef]
- Chen, L.C.; Cheng, Y.P.; Liu, C.Y.; Guo, J.W. Lithosepermic Acid Restored the Skin Barrier Functions in the Imiquimod-Induced Psoriasis-like Animal Model. Int. J. Mol. Sci. 2022, 23, 6172. [Google Scholar] [CrossRef]
- Guo, J.W.; Cheng, Y.P.; Liu, C.Y.; Thong, H.Y.; Huang, C.J.; Lo, Y.; Wu, C.Y.; Jee, S.H. Salvianolic Acid B in Microemulsion Formulation Provided Sufficient Hydration for Dry Skin and Ameliorated the Severity of Imiquimod-Induced Psoriasis-Like Dermatitis in Mice. Pharmaceutics 2020, 12, 457. [Google Scholar] [CrossRef]
- Gorle, A.; Mahajan, J.; Bhave, P. Development and Validation of RP-HPLC Method for Desoximetasone in Bulk and Cream Formulation. J. Drug Deliv. Ther. 2019, 9, 154–159. [Google Scholar] [CrossRef]
- Stacey, S.K.; McEleney, M. Topical Corticosteroids: Choice and Application. Am. Fam. Physician 2021, 103, 337–343. [Google Scholar]
- Sun, L.; Xiang, H.; Ge, C.; Chen, X.; Zhang, Q.; Zhang, Y.; Miao, X. A Nanocrystals-Based Topical Drug Delivery System with Improved Dermal Penetration and Enhanced Treatment of Skin Diseases. J. Biomed. Nanotechnol. 2021, 17, 2319–2337. [Google Scholar] [CrossRef] [PubMed]
- Nastiti, C.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical Nano and Microemulsions for Skin Delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Dong, Z.; Liu, W.; Wu, X.; He, H.; Lu, Y.; Wu, W.; Qi, J. Novel Pharmaceutical Strategies for Enhancing Skin Penetration of Biomacromolecules. Pharmaceuticals 2022, 15, 877. [Google Scholar] [CrossRef] [PubMed]
- Alkilani, A.Z.; Nasereddin, J.; Hamed, R.; Nimrawi, S.; Hussein, G.; Abo-Zour, H.; Donnelly, R.F. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022, 14, 1152. [Google Scholar] [CrossRef] [PubMed]
- Phatale, V.; Vaiphei, K.K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control Release 2022, 351, 361–380. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Smith, S.A.; Colley, H.E.; Sharma, P.; Slowik, K.M.; Sison-Young, R.; Sneddon, A.; Webb, S.D.; Murdoch, C. Expression and enzyme activity of cytochrome P450 enzymes CYP3A4 and CYP3A5 in human skin and tissue-engineered skin equivalents. Exp. Dermatol. 2018, 27, 473–475. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef]
- Walter, K. Psoriasis. JAMA 2022, 327, 1936. [Google Scholar] [CrossRef]
- Amat-Samaranch, V.; Puig, L. Safety of calcipotriene and betamethasone dipropionate foam for the treatment of psoriasis. Expert. Opin. Drug Saf. 2020, 19, 423–432. [Google Scholar] [CrossRef]
Parameter (Unit) | DXM | ESP |
---|---|---|
Js (ng/cm2·h) | 1.46 ± 0.56 | 3.05 ± 0.90 * |
tlag (h) | 1.24 ± 0.24 * | 1.57 ± 0.11 |
Q (ng/cm2) | 6.89 ± 2.66 | 13.88 ± 4.71 * |
Kp (×10−3 cm/h) | 14.63 ± 5.64 | 7.95 ± 2.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.-W.; Cheng, Y.-P.; Lim, C.-J.; Liu, C.-Y.; Jee, S.-H. A Promising Approach to Treat Psoriasis: Inhibiting Cytochrome P450 3A4 Metabolism to Enhance Desoximetasone Therapy. Pharmaceutics 2023, 15, 2016. https://doi.org/10.3390/pharmaceutics15082016
Guo J-W, Cheng Y-P, Lim C-J, Liu C-Y, Jee S-H. A Promising Approach to Treat Psoriasis: Inhibiting Cytochrome P450 3A4 Metabolism to Enhance Desoximetasone Therapy. Pharmaceutics. 2023; 15(8):2016. https://doi.org/10.3390/pharmaceutics15082016
Chicago/Turabian StyleGuo, Jiun-Wen, Yu-Pin Cheng, Cherng-Jyr Lim, Chih-Yi Liu, and Shiou-Hwa Jee. 2023. "A Promising Approach to Treat Psoriasis: Inhibiting Cytochrome P450 3A4 Metabolism to Enhance Desoximetasone Therapy" Pharmaceutics 15, no. 8: 2016. https://doi.org/10.3390/pharmaceutics15082016
APA StyleGuo, J. -W., Cheng, Y. -P., Lim, C. -J., Liu, C. -Y., & Jee, S. -H. (2023). A Promising Approach to Treat Psoriasis: Inhibiting Cytochrome P450 3A4 Metabolism to Enhance Desoximetasone Therapy. Pharmaceutics, 15(8), 2016. https://doi.org/10.3390/pharmaceutics15082016