Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability
Abstract
:1. Introduction
2. Definition of Ternary Solid Dispersion
3. Components of Ternary Solid Dispersion
3.1. ASD + Surfactant
3.2. ASD + Polymer
3.3. ASD + Excipient
3.4. Co-Amorphous/Cocrystal + Excipient
4. Characterization of Ternary Solid Dispersion in the Solid State
4.1. Fourier Transform Infrared (FTIR)
4.2. Differential Scanning Calorimetry (DSC)
4.3. Powder X-ray Diffractometry (PXRD)
4.4. Polarizing Light Microscopy
4.5. Thermogravimetric Analysis (TGA)
4.6. Solid-State Nuclear Magnetic Resonance (ssNMR)
4.7. Dielectric Spectroscopy
4.8. Scanning Electron Microscopy (SEM)
5. Characterization of Ternary Solid Dispersion after Being Dispersed in the Water
5.1. Dynamic Light Scattering (DLS) Measurement
5.2. TEM and Cryo-TEM Measurements
5.3. Atomic Force Microscopy (AFM) Measurements
5.4. 1H Solution-State NMR
5.5. Zeta Potential
6. Dissolution Study of Ternary Solid Dispersion Systems
6.1. Dissolution Mechanisms
6.2. Factors Affecting Dissolution
6.3. Effects of Physicochemical Properties of Drug
6.4. Effects of Preparation Method
6.5. Effect of Co-Formers
6.6. Effect of Polymers
6.7. Effect of Surfactants
7. Physical Stability
7.1. Factors Affecting Stability
7.2. Effects of Physicochemical Properties of Drugs
7.3. Effects of Preparation Method
8. Mechanism Drug Release of Ternary Solid Dispersion Systems
9. The Mechanism of Stability Enhancement of Ternary Solid Dispersion Systems
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APIs | Active pharmaceutical ingredients |
ASD | Amorphous solid dispersions |
TSD | Ternary solid dispersions |
NCE | New chemical entities |
HPMC AS | Hydroxypropyl methylcellulose acetate succinate |
PVP | Polyvinylpyrrolidone |
PHPMA | Poly[2-hydroxypropyl methacrylate] |
GF | Griseofulvin |
HP-β-CD | Hydroxypropyl-βcyclodextrin |
PEG | Polyethylene glycol |
CBM | Carbamazepine |
CA | Citric acid |
ARG | L-arginine |
SMZ | Sulfamethoxazole |
TMP | Trimethoprim |
EDE | Eudragit |
PAA | Polyacrylic acid |
AUC | Area under curve |
KZN | Ketoconazole |
OXA | Oxalic acid |
TAR | Tartaric acid |
CIT | Citric acid |
SUC | Succinic acid |
IMC | Indomethacin |
FTIR | Fourier transform infrared |
TEL | Telmisartan |
DSC | Differential scanning calorimetry |
Tg | Glass transition temperatures |
SIM | Simvastatin |
Myrj 52 | Polyoxyl 40 stearate |
PM | Physical mixtures |
PXRD | Powder X-ray diffractometry |
BDQN | Bedaquiline fumarate |
TPGS | Tocopheryl polyethylene glycol 1000 succinate |
PLM | Polarized light microscopy |
TGA | Thermogravimetric analysis |
FEB | Febuxostat |
EZ | Ezetimibe |
ssNMR | Solid-state nuclear magnetic resonance |
PBC | Probucol |
HME | Hot-melt extrusion |
P407 | Poloxamer P407 |
τα | α-relaxation time |
SEM | Scanning electron microscopy |
DLS | Dynamic light scattering |
SDS | Sodium dodecyl sulphate |
MV | Mean volume diameter |
PDI | Polydispersity index |
BSD | Binary solid dispersion |
cryo-TEM | Cryogenic transmission electron microscopy |
MN | Mean number diameter |
GM | Ground-mixture |
AFM | Atomic force microscopy |
SPD | Spray-dried sample |
North 2 | Indole2-carboxamide derivative |
OM | Olmesartan medoxomil |
MG | N-methyl-D-glucamine |
MDP | Manidipine hydrochloride |
ThSD | Thermal stress device |
IDR | Intrinsic dissolution rate |
SDs | Solid dispersions |
ITZ | Itraconazole |
HPC-SSL | Hydroxypropylcellulose |
References
- Skorupska, E.; Paluch, P.; Jeziorna, A.; Potrzebowski, M.J. NMR Study of BA/FBA Cocrystal Con Fi Ned Within Mesoporous Silica Nanoparticles Employing Thermal Solid Phase Transformation. J. Phys. Chem. C 2015, 119, 8652–8661. [Google Scholar] [CrossRef]
- Wu, W.; Löbmann, K.; Schnitzkewitz, J.; Knuhtsen, A.; Pedersen, D.S.; Grohganz, H.; Rades, T. Aspartame as a Co-Former in Co-Amorphous Systems. Int. J. Pharm. 2018, 549, 380–387. [Google Scholar] [CrossRef] [PubMed]
- DeBoyace, K. Modeling and Prediction of Amorphous Solid Dispersion Formation Using a Molecular Descriptor. Available online: https://dsc.duq.edu/etd/1783/ (accessed on 3 March 2023).
- Jermain, S.V.; Brough, C.; Williams III, R.O. Amorphous Solid Dispersions and Nanocrystal Technologies for Poorly Water-Soluble Drug Delivery–an Update. Int. J. Pharm. 2018, 535, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Di, L.; Fish, P.V.; Mano, T. Bridging Solubility between Drug Discovery and Development. Drug Discov. Today 2012, 17, 486–495. [Google Scholar] [CrossRef]
- Shi, Q.; Moinuddin, S.M.; Cai, T. Advances in Co-amorphous Drug Delivery Systems. Acta Pharm. Sin. B 2019, 9, 19–35. [Google Scholar] [CrossRef]
- Pandi, P.; Bulusu, R.; Kommineni, N.; Khan, W.; Singh, M. Amorphous Solid Dispersions: An Update for Preparation, Characterization, Mechanism on Bioavailability, Stability, Regulatory Considerations and Marketed Products. Int. J. Pharm. 2020, 586, 119560. [Google Scholar] [CrossRef]
- Han, J.; Wei, Y.; Lu, Y.; Wang, R.; Zhang, J.; Gao, Y.; Qian, S. Co-amorphous Systems for the Delivery of Poorly Water-Soluble Drugs: Recent Advances and an Update. Expert Opin. Drug Deliv. 2020, 10, 1411–1435. [Google Scholar] [CrossRef]
- Al-Kassas, R.; Bansal, M.; Shaw, J. Nanosizing Techniques for Improving Bioavailability of Drugs. J. Control. Release 2017, 260, 202–212. [Google Scholar] [CrossRef]
- Johnson, J.L.H.; He, Y.; Yalkowsky, S.H. Prediction of Precipitation-Induced Phlebitis: A Statistical Validation of an In Vitro Model. J. Pharm. Sci. 2003, 92, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Brewster, M.E. Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. J. Pharm. Sci. 1996, 85, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Matloob, A.H.; Mourtas, S.; Klepetsanis, P.; Antimisiaris, S.G. Increasing the Stability of Curcumin in Serum with Liposomes or Hybrid Drug-in-Cyclodextrin-in-Liposome Systems: A Comparative Study. Int. J. Pharm. 2014, 476, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Tønnesen, H.H.; Masson, M.; Loftsson, T. Studies of Curcumin and Curcuminoids. XXVII. Cyclodextrin Complexation: Solubility, Chemical and Photochemical Stability. Int. J. Pharm. 2002, 244, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Holm, T.P.; Kokott, M.; Knopp, M.M.; Boyd, B.J.; Berthelsen, R.; Quodbach, J.; Löbmann, K. Development of a Multiparticulate Drug Delivery System for In Situ Amorphisation. Eur. J. Pharm. Biopharm. 2022, 180, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Herzer, G. Amorphous and Nanocrystalline Materials. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Bi, Y.; Xiao, D.; Ren, S.; Bi, S.; Wang, J.; Li, F. The Binary System of Ibuprofen- Nicotinamide Under Nanoscale Confinement: From Cocrystal to Coamorphous State. J. Pharm. Sci. 2017, 106, 3150–3155. [Google Scholar] [CrossRef]
- Azad, M.; Moreno, J.; Davé, R. Stable and Fast-Dissolving Amorphous Drug Composites Preparation via Impregnation of Neusilin® UFL2. J. Pharm. Sci. 2018, 107, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Kojima, T.; Karashima, M.; Ikeda, Y. Physicochemical Evaluation and Developability Assessment of Co-amorphouses of Low Soluble Drugs and Comparison to the Co-crystals. Chem. Pharm. Bull. 2016, 64, 1739–1746. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.; Knipp, G.; Zografi, G. Assessing the Performance of Amorphous Solid Dispersions. J. Pharm. Sci. 2012, 101, 1355–1377. [Google Scholar] [CrossRef]
- Baghel, S.; Cathcart, H.; O’Reilly, N.J. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016, 105, 2527–2544. [Google Scholar] [CrossRef] [Green Version]
- Ueda, K.; Higashi, K.; Yamamoto, K.; Moribe, K. The Effect of HPMCAS Functional Groups on Drug Crystallization from the Supersaturated State and Dissolution Improvement. Int. J. Pharm. 2014, 464, 205–213. [Google Scholar] [CrossRef]
- Okada, H.; Ueda, K.; Yasuda, Y.; Higashi, K.; Inoue, M.; Ito, M.; Noguchi, S.; Kawakami, K.; Moribe, K. Correlation between Drug Dissolution and Resistance to Water-Induced Phase Separation in Solid Dispersion Formulations Revealed by Solid-State NMR Spectroscopy. Int. J. Pharm. 2020, 577, 119086. [Google Scholar] [CrossRef]
- An, J.H.; Lim, C.; Kiyonga, A.N.; Chung, I.H.; Lee, I.K.; Mo, K.; Park, M.; Youn, W.; Choi, W.R.; Suh, Y.G.; et al. Co-amorphous Screening for the Solubility Enhancement of Poorly Water-Soluble Mirabegron and Investigation of their Intermolecular Interactions and Dissolution Behaviors. Pharmaceutics 2018, 10, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodagekar, A.; Chavan, R.B.; Chella, N.; Shastri, N.R. Role of Valsartan as an Antiplasticizer in Development of Therapeutically Viable Drug–Drug Coamorphous System. Cryst. Growth Des. 2018, 18, 1944–1950. [Google Scholar] [CrossRef]
- Skieneh, J.M.; Sathisaran, I.; Dalvi, S.; Rohani, S. Co-amorphous Form of Curcumin–Folic Acid Dihydrate with Increased Dissolution Rate. Cryst. Growth Des. 2017, 17, 6273–6280. [Google Scholar] [CrossRef]
- Tantishaiyakul, V.; Suknuntha, K.; Vao-Soongnern, V. Characterization of Cimetidine-Piroxicam Coprecipitate Interaction using Experimental Studies and Molecular Dynamic Simulations. AAPS PharmSciTech 2010, 11, 952–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allesø, M.; Chieng, N.; Rehder, S.; Rantanen, J.; Rades, T.; Aaltonen, J. Enhanced Dissolution Rate and Synchronized Release of Drugs in Binary Systems through Formulation: Amorphous Naproxen-Cimetidine Mixtures Prepared by Mechanical Activation. J Control. Release 2009, 136, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.T.; Larsen, F.H.; Cornett, C.; Löbmann, K.; Grohganz, H.; Rades, T. Formation Mechanism of Coamorphous Drug-Amino Acid Mixtures. Mol. Pharm. 2015, 12, 2484–2492. [Google Scholar] [CrossRef]
- Martinez-Jimenez, C.; Cruz-Angeles, J.; Videa, M.; Martinez, L.M. Co-amorphous Simvastatin-Nifedipine with Enhanced Solubility for Possible Use in Combination Therapy of Hypertension and Hypercholesterolemia. Molecules 2018, 23, 2161. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.; Engers, D.; Bates, S.; Ivanisevic, I.; Kelly, R.C.; Zografi, G. Characterization of Amorphous API: Polymer Mixtures using X-ray Powder Diffraction. J. Pharm. Sci. 2008, 97, 4840–4856. [Google Scholar] [CrossRef]
- Davis, M.T.; Potter, C.B.; Mohammadpour, M.; Albadarin, A.B.; Walker, G.M. Design of Spray Dried Ternary Solid Dispersions Comprising Itraconazole, Soluplus and HPMCP: Effect of Constituent Compositions. Int. J. Pharm. 2017, 519, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Alshehri, S.; Imam, S.S.; Altamimi, M.A.; Hussain, A.; Shakeel, F.; Elzayat, E.; Mohsin, K.; Ibrahim, M.; Alanazi, F. Enhanced Dissolution of Luteolin by Solid Dispersion Prepared by Different Methods: Physicochemical Characterization and Antioxidant Activity. ACS Omega 2020, 5, 6461–6471. [Google Scholar] [CrossRef] [Green Version]
- Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal Engineering of Active Pharmaceutical Ingredients to Improve Solubility and Dissolution Rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Sohn, J.; Kim, E.; Park, J.; Choi, J. Piroxicam Ternary Solid Dispersion System for Improvement of Dissolution (%) and In Vitro Anti-inflammation Effects. Mater. Sci. Eng. B 2020, 261, 114651. [Google Scholar] [CrossRef]
- Borde, S.; Paul, S.K.; Chauhan, H. Ternary Solid Dispersions: Classification and Formulation Considerations. Drug Dev. Ind. Pharm. 2021, 47, 1011–1028. [Google Scholar] [CrossRef]
- Chamsai, B.; Limmatvapirat, S.; Sungthongjeen, S.; Sriamornsak, P. Enhancement of Solubility and Oral Bioavailability of Manidipine by Formation of Ternary Solid Dispersion with Da-Tocopherol Polyethylene Glycol 1000 Succinate and Copovidone. Drug Dev. Ind. Pharm. 2017, 43, 2064–2075. [Google Scholar] [CrossRef]
- Kakran, M.; Sahoo, N.G.; Tan, Y.W.; Lin, L. Ternary Dispersions to Enhance Solubility of Poorly Water Soluble Antioxidants. Colloids Surf. Physicochem. Eng. Asp. 2013, 433, 111–121. [Google Scholar] [CrossRef]
- Yan, Y.-D.; Sung, J.H.; Kim, K.K.; Kim, D.W.; Kim, J.O.; Lee, B.; Yong, C.S.; Choi, H. Novel Valsartan-Loaded Solid Dispersion with Enhanced Bioavailability and No Crystalline Changes. Int. J. Pharm. 2012, 422, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, E.; Beijnen, J.H.; Schellens, J.H.M.; Nuijen, B. Pharmaceutical Development of an Oral Tablet Formulation Containing a Spray Dried Amorphous Solid Dispersion of Docetaxel or Paclitaxel. Int. J. Pharm. 2016, 511, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Ha, E.; Baek, I.; Kim, M.; Cho, C.; Hwang, S. Enhanced Supersaturation and Oral Absorption of Sirolimus using an Amorphous Solid Dispersion Based on Eudragit® E. Molecules 2015, 20, 9496–9509. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Michoel, A.; Van den Mooter, G. Solid State Characteristics of Ternary Solid Dispersions Composed of PVP VA64, Myrj 52 and Itraconazole. Int. J. Pharm. 2005, 303, 54–61. [Google Scholar] [CrossRef]
- Solanki, N.G.; Lam, K.; Tahsin, M.; Gumaste, S.G.; Shah, A.V.; Serajuddin, A.T.M. Effects of Surfactants on Itraconazole-Hydroxypropyl Methylcellulose Acetate Succinate Solid Dispersion Prepared by Hot Melt Extrusion. II: Rheological Analysis and Extrudability Testing. J. Pharm. Sci. 2019, 108, 3063–3073. [Google Scholar] [CrossRef]
- Solanki, N.G.; Lam, K.; Tahsin, M.; Gumaste, S.G.; Shah, A.V.; Serajuddin, A.T.M. Effects of Surfactants on Itraconazole-HPMCAS Solid Dispersion Prepared by Hot-Melt Extrusion I: Miscibility and Drug Release. J. Pharm. Sci. 2019, 108, 1453–1465. [Google Scholar] [CrossRef]
- Maghraby, G.M.E.; Alomrani, A.H. Synergistic Enhancement of Itraconazole Dissolution by Ternary System Formation with Pluronic F68 and Hydroxypropylmethylcellulose. Sci. Pharm. 2009, 77, 401–418. [Google Scholar] [CrossRef] [Green Version]
- Szuts, A.; Lang, P.; Ambrus, R.; Kiss, L.; Deli, M.A.; Szabo-Revesz, P. Applicability of Sucrose Laurate as Surfactant in Solid Dispersions Prepared by Melt Technology. Int. J. Pharm. 2011, 410, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Moes, J.; Koolen, S.; Huitema, A.; Schellens, J.; Beijnen, J.; Nuijen, B. Development of an Oral Solid Dispersion Formulation for Use in Low-Dose Metronomic Chemotherapy of Paclitaxel. Eur. J. Pharm. Biopharm. 2013, 83, 87–94. [Google Scholar] [CrossRef]
- Janssens, S.; Humbeeck, J.V.; den Mooter, G.V. Evaluation of the Formulation of Solid Dispersions by Co-Spray Drying Itraconazole with Inutec SP1, a Polymeric Surfactant, in Combination with PVPVA 64. Eur. J. Pharm. Biopharm. 2008, 70, 500–505. [Google Scholar] [CrossRef]
- Yin, X.; Daintree, L.S.; Ding, S.; Ledger, D.M.; Wang, B.; Zhao, W.; Qi, J.; Wu, W. Itraconazole Solid Dispersion Prepared by a Supercritical Fluid Technique: Preparation, In Vitro Characterization, and Bioavailability in Beagle Dogs. Drug Des. Devel. Ther. 2015, 9, 2801–2810. [Google Scholar] [PubMed] [Green Version]
- Qi, S.; Roser, S.; Edler, K.J.; Pigliacelli, C.; Rogerson, M.; Weuts, I.; Dycke, F.V.; Stokborekx, S. Insights into the Role of Polymer-Surfactant Complexes in Drug Solubilisation/Stabilisation during Drug Release from Solid Dispersions. Pharm. Res. 2013, 30, 290–302. [Google Scholar] [CrossRef]
- Feng, D.; Peng, T.; Huang, Z.; Singh, V.; Shi, Y.; Wen, T.; Lu, M.; Quan, G.; Pan, X.; Wu, C. Polymer—Surfactant System Based Amorphous Solid Dispersion: Precipitation Inhibition and Bioavailability Enhancement of Itraconazole. Pharmaceutics 2018, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Baghel, S.; Cathcart, H.; O’Reilly, N.J. Investigation into the Solid-State Properties and Dissolution Profile of Spray-Dried Ternary Amorphous Solid Dispersions: A Rational Step toward the Design and Development of a Multicomponent Amorphous System. Mol. Pharm. 2018, 15, 3796–3812. [Google Scholar] [CrossRef]
- Rashid, R.; Kim, D.W.; Ud Din, F.; Mustapha, O.; Yousaf, A.M.; Park, J.H.; Kim, J.O.; Yong, C.S.; Choi, H.-G. Effect of Hydroxypropyl-cellulose and Tween 80 on Physicochemical Properties and Bioavailability of Ezetimibe-Loaded Solid Dispersion. Carbohydr. Polym. 2015, 130, 26–31. [Google Scholar] [CrossRef]
- Censi, R.; Gigliobianco, M.R.; Casadidio, C.; Martino, P.D. Hot Melt Extrusion: Highlighting Physicochemical Factors to be Investigated While Designing and Optimizing a Hot Melt Extrusion Process. Pharmaceutics 2018, 10, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghebremeskel, A.N.; Vemavarapu, C.; Lodaya, M. Use of Surfactants as Plasticizers in Preparing Solid Dispersions of Poorly Soluble API: Selection of Polymer-Surfactant Combinations using Solubility Parameters and Testing the Processability. Int. J. Pharm. 2007, 328, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Shuai, S.; Yue, S.; Huang, Q.; Wang, W.; Yang, J.; Lan, K.; Ye, L. Preparation, Characterization and In Vitro/Vivo Evaluation of Tectorigenin Solid Dispersion with Improved Dissolution and Bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 413–422. [Google Scholar] [CrossRef]
- Hirasawa, N.; Ishise, S.; Miyata, H.; Danjo, K. An Attempt to Stabilize Nilvadipine Solid Dispersion by the Use of Ternary Systems. Drug Dev. Ind. Pharm. 2003, 29, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Yamazoe, C.; Yasuda, Y.; Higashi, K.; Kawakami, K.; Moribe, K. Mechanism of Enhanced Nifedipine Dissolution by Polymer-Blended Solid Dispersion Through Molecular-Level Characterization. Mol. Pharm. 2018, 15, 4099–4109. [Google Scholar] [CrossRef]
- Park, G.B.; Yoon, H.; Bae, J.W.; Kim, Y.U.; Jeon, D.Y.; Song, J.E.; Lee, D.; Khang, G. Release Behavior of Cilostazol According to the Fabrication Methods and Ratio of HPMC/PVP. Macromol. Res. 2013, 21, 971–976. [Google Scholar] [CrossRef]
- Prasad, D.; Chauhan, H.; Atef, E. Role of Molecular Interactions for Synergistic Precipitation Inhibition of Poorly Soluble Drug in Supersaturated Drug-Polymer-Polymer Ternary Solution. Mol. Pharm. 2016, 13, 756–765. [Google Scholar] [CrossRef]
- Prasad, D.; Chauhan, H.; Atef, E. Amorphous Stabilization and Dissolution Enhancement of Amorphous Ternary Solid Dispersions: Combination of Polymers Showing Drug-Polymer Interaction for Synergistic Effects. J. Pharm. Sci. 2014, 103, 3511–3523. [Google Scholar] [CrossRef]
- Zoeller, T.; Dressman, J.B.; Klein, S. Application of a Ternary HP-b-CD-complex Approach to Improve the Dissolution Performance of a Poorly Soluble Weak Acid Under Biorelevant Conditions. Int. J. Pharm. 2012, 430, 176–183. [Google Scholar] [CrossRef]
- Cirri, M.; Mura, P.; Rabasco, A.M.; Gines, J.M.; Moyano, J.R.; Gonzalez-Rodriguez, M.L. Characterization of Ibuproxam Binary and Ternary Dispersions with Hydrophilic Carriers. Drug Dev. Ind. Pharm. 2004, 30, 65–74. [Google Scholar] [CrossRef]
- Al-Obaidi, H.; Buckton, G. Evaluation of Griseofulvin Binary and Ternary Solid Dispersions with HPMCAS. AAPS PharmSciTech 2009, 10, 1172–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssens, S.; Roberts, C.; Smith, E.F.; Mooter, G.V. Physical Stability of Ternary Solid Dispersions of Itraconazole in Polyethyleneglycol 6000/Hydroxypropylmethylcellulose 2910 E5 Blends. Int. J. Pharm. 2008, 355, 100–107. [Google Scholar] [CrossRef]
- Al-Obaidi, H.; Ke, P.; Brocchini, S.; Buckton, G. Characterization and Stability of Ternary Solid Dispersions with PVP and PHPMA. Int. J. Pharm. 2011, 419, 20–27. [Google Scholar] [CrossRef]
- Nair, R.; Nyamweya, N.; Gonen, S.; Martinez-Miranda, L.J.; Hoag, S.W. Influence of Various Drugs on the Glass Transition Temperature of Poly(vinylpyrrolidone): A Thermodynamic and Spectroscopic Investigation. Int. J. Pharm. 2001, 225, 83–96. [Google Scholar] [CrossRef]
- Dong, L.; Mai, Y.; Liu, Q.; Zhang, W.; Yang, J. Mechanism and Improved Dissolution of Glycyrrhetinic Acid Solid Dispersion by Alkalizers. Pharmaceutics 2020, 12, 82. [Google Scholar] [CrossRef] [Green Version]
- Hanada, M.; Jermain, S.V.; Williams, R.O. Enhanced Dissolution of a Porous Carrier-Containing Ternary Amorphous Solid Dispersion System Prepared by a Hot Melt Method. J. Pharm. Sci. 2018, 107, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Kim, J.H.; Park, C.; Oh, E.; Park, J.; Cui, J.; Cao, Q.; Lee, B. Design of Fixed Dose Combination and Physicochemical Characterization of Entericcoated Bilayer Tablet with Circadian Rhythmic Variations Containing Telmisartan and Pravastatin Sodium. Int. J. Pharm. 2017, 523, 343–356. [Google Scholar] [CrossRef]
- Papadimitriou, S.; Bikiaris, D. Dissolution Rate Enhancement of the Poorly Water-Soluble Drug Tibolone Using PVP, SiO2, and their Nanocomposites as Appropriate Drug Carriers. Drug Dev. Ind. Pharm. 2009, 35, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Park, C.W.; Tung, N.T.; Rhee, Y.S.; Kim, J.Y.; Oh, T.O.; Ha, J.M.; Chi, S.C.; Park, E.S. Physicochemical, Pharmacokinetic and Pharmacodynamic Evaluations of Novel Ternary Solid Dispersion of Rebamipide with Poloxamer 407. Drug Dev. Ind. Pharm. 2013, 39, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Nakahashi, T.; Matsumoto, T.; Wakiyama, N.; Moribe, K.; Yamamoto, K. The Role of Light Anhydrous Silicic Acid on Physical Stability of Troglitazone Solid Dispersion Under Humidified Conditions. Adv. Powder Technol. 2014, 25, 716–721. [Google Scholar] [CrossRef]
- Ghanavati, R.; Taheri, A.; Homayouni, A. Anomalous Dissolution Behavior of Celecoxib in PVP/Isomalt Solid Dispersions Prepared Using Spray Drier. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 72, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Ju, X.; Yang, D.; Kong, Y.; Tang, X. Effect of the Third Component on the Aging and Crystallization of Cinnarizine-Soluplusvr Binary Solid Dispersion. Int. J. Pharm. 2020, 580, 119240. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, R.; Tran, T.H.; Choi, J.Y.; Choi, I.S.; Choi, H.G.; Yong, C.S.; Kim, J.O. Development of a Rebamipide Solid Dispersion System with Improved Dissolution and Oral Bioavailability. Arch. Pharm. Res. 2015, 38, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Higashi, K.; Seo, A.; Egami, K.; Otsuka, N.; Limwikrant, W.; Yamamoto, K.; Moribe, K. Mechanistic Insight Into the Dramatic Improvement of Probucol Dissolution in Neutral Solutions by Solid Dispersion in Eudragit E PO with Saccharin. J. Pharm. Pharmacol. 2016, 68, 655–664. [Google Scholar] [CrossRef]
- Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Ueda, H.; Wu, W.; Loebmann, K.; Grohganz, H.; Müllertz, A.; Rades, T. Application of a Salt Co-Former in a Co-amorphous Drug System Dramatically Enhances the Glass Transition Temperature: A Case Study of the Ternary System Carbamazepine, Citric Acid and L-Arginine. Mol. Pharm. 2018, 15, 2036–2044. [Google Scholar] [CrossRef]
- Li, J.; Duggirala, N.K.; Kumar, N.S.K.; Su, Y.; Suryanarayanan, R. Design of Ternary Amorphous Solid Dispersions for Enhanced Dissolution of Drug Combinations. Mol. Pharm. 2022, 19, 2950–2961. [Google Scholar] [CrossRef]
- Fung, M.H.; Suryanarayanan, R. Effect of Organic Acids on Molecular Mobility, Physical Stability, and Dissolution of Ternary Ketoconazole Spray-Dried Dispersions. Mol. Pharm. 2018, 16, 41–48. [Google Scholar] [CrossRef]
- Kosaka, M.; Higashi, K.; Nishimura, M.; Ueda, K.; Moribe, K. Clarification of the Dissolution Mechanism of an Indomethacin/Saccharin/Polyvinylpyrrolidone Ternary Solid Dispersion by NMR Spectroscopy. J. Pharm. Sci. 2020, 109, 3617–3624. [Google Scholar] [CrossRef]
- Trasi, N.S.; Taylor, L.S. Dissolution Performance of Binary Amorphous Drug Combinations-Impact of a Second Drug on the Maximum Achievable Supersaturation. Int. J. Pharm. 2015, 496, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.; Binod, P.; Pandey, A. Chapter 17—Microbial Poly3-Hydroxybutyrate and Related Copolymers. In Industrial Biorefineries White Biotechnol; Pandey, A., Hofer, R., Taherzadeh, M., Nampoothiri, K.M., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 575–605. [Google Scholar]
- Ma, X.; Williams, R.O. Characterization of Amorphous Solid Dispersions: An Update. J. Drug Deliv. Sci. Technol. 2019, 50, 113–124. [Google Scholar] [CrossRef]
- Riekes, M.K.; Engelen, A.; Appeltans, B.; Rombaut, P.; Stulzer, H.K.; Van der Mooter, G. New Perspectives for Fixed Dose Combinations of Poorly Water-Soluble Compounds: A Case Study with Ezetimibe and Lovastatin. Pharm. Res. 2016, 33, 1259–1275. [Google Scholar] [CrossRef] [PubMed]
- Chasse, T.; Conway, S.L.; Danzer, G.D.; Feng, L.; Leone, A.M.; McNevin, M.; Smoliga, J.; Stroud, P.A.; van Lishaut, H. Industry White Paper: Contemporary Opportunities and Challenges in Characterizing Crystallinity in Amorphous Solid Dispersions. J. Pharm. Sci. 2022, 111, 1543–1555. [Google Scholar] [CrossRef] [PubMed]
- Vojinović, T.; Medarević, D.; Vranić, E.; Potpara, Z.; Krstić, M.; Djuriš, J.; Ibrić, S. Development of Ternary Solid Dispersions with Hydrophilic Polymer and Surface Adsorbent for Improving Dissolution Rate of Carbamazepine. Saudi Pharm. J. 2018, 26, 725–732. [Google Scholar] [CrossRef]
- Shi, X.; Xu, T.; Huang, W.; Fan, B.; Sheng, X. Stability and Bioavailability Enhancement of Telmisartan Ternary Solid Dispersions: The Synergistic Effect of Polymers and Drug-Polymer(s) Interactions. AAPS PharmSciTech 2019, 20, 143. [Google Scholar] [CrossRef]
- Pungor, E.; Horvai, G. A Practical Guide to Instrumental Analysis; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Tian, B.; Tang, X.; Taylor, L.S. Investigating the correlation Between Miscibility and Physical Stability of Amorphous Solid Dispersions Using Fluorescence-Based Techniques. Mol. Pharm. 2016, 13, 3988–4000. [Google Scholar] [CrossRef]
- Mahboobian, M.M.; Dadashzadeh, S.; Rezaei, M.; Mohammadi, M.; Bolourchian, N. Simvastatin in Ternary Solid Dispersion Formulations: Improved In Vitro Dissolution and Anti-Hyperlipidemia Efficiency. J. Drug Deliv. Sci. Technol. 2022, 74, 103571. [Google Scholar] [CrossRef]
- Fan, W.; Zhu, W.; Zhang, X.; Xu, Y.; Di, L. Application of the Combination of Ball-Milling and Hot-Melt Extrusion in The Development of an Amorphous Solid Dispersion of a Poorly Water-Soluble Drug with High Melting Point. RSC Adv. 2019, 9, 22263–22273. [Google Scholar] [CrossRef]
- Kim, S.-J.; Lee, H.-K.; Na, Y.-G.; Bang, K.-H.; Lee, H.-J.; Wang, M.; Huh, H.-W.; Cho, C.W. A Novel Composition of Ticagrelor by Solid Dispersion Technique for Increasing Solubility and Intestinal Permeability. Int. J. Pharm. 2019, 555, 11–18. [Google Scholar] [CrossRef]
- Janssens, S.; Nagels, S.; De Armas, H.N.; D’autry, W.; Van Schepdael, A.; Van den Mooter, G. Formulation and Characterization of Ternary Solid Dispersions Made Up of Itraconazole and Two Excipients, TPGS 1000 and PVPVA 64, that were Selected based on a Supersaturation Screening Study. Eur. J. Pharm. Biopharm. 2008, 69, 158–166. [Google Scholar] [CrossRef]
- Pardhi, V.P.; Jain, K. Impact of Binary/Ternary Solid Dispersion Utilizing Poloxamer 188 and TPGS to Improve Pharmaceutical Attributes of Bedaquiline Fumarate. J. Drug Deliv. Sci. Technol. 2021, 62, 102349. [Google Scholar] [CrossRef]
- Gumaste, S.G.; Gupta, S.S.; Serajuddin, A.T. Investigation of Polymer-Surfactant and Polymer-Drug-Surfactant Miscibility for Solid Dispersion. AAPS J. 2016, 18, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Bao, J.; Shi, X.; Sheng, X.; Su, W. Preparation, Optimisation, and In Vitro-In Vivo Evaluation of Febuxostat Ternary Solid Dispersion. J. Microencapsul. 2018, 35, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Alhayali, A.; Tavellin, S.; Velaga, S. Dissolution and Precipitation Behavior of Ternary Solid Dispersions of Ezetimibe in Biorelevant Media. Drug. Dev. Ind. Pharm. 2017, 43, 79–88. [Google Scholar] [CrossRef]
- Fousteris, E.; Tarantili, P.A.; Karavas, E.; Bikiaris, D. Poly(vinyl pyrrolidone)—Poloxamer-188 Solid Dispersions Prepared by Hot Melt Extrusion. J. Therm. Anal. Calorim. 2013, 113, 1037–1047. [Google Scholar] [CrossRef]
- Dracinsky, M.; Hodgkinson, P. Solid-state NMR Studies of Nucleic Acid Components. RSC Adv. 2015, 5, 12300. [Google Scholar] [CrossRef] [Green Version]
- Hanada, N.; Higashi, K.; Zhao, Z.; Ueda, K.; Moribe, K. Preparation of a Ternary Amorphous Solid Dispersion Using Hot-Melt Extrusion for Obtaining a Stable Colloidal Dispersion of Amorphous Probucol Nanoparticles. Int. J. Pharm. 2023, 640, 122959. [Google Scholar] [CrossRef]
- Pongpeerapat, A.; Higashi, K.; Tozuka, Y.; Moribe, K.; Yamamoto, K. Molecular Interaction among Probucol/PVP/SDS Multicomponent System Investigated by Solidstate NMR. Pharm. Res. 2006, 23, 2566–2574. [Google Scholar] [CrossRef]
- Kuroiwa, Y.; Higashi, K.; Ueda, K.; Yamamoto, K.; Moribe, K. Nano-scale and Molecular-Level Understanding of Wet-Milled Indomethacin/Poloxamer 407 Nanosuspension with TEM, Suspended-State NMR, and Raman Measurements. Int. J. Pharm. 2018, 537, 30–39. [Google Scholar] [CrossRef]
- Geppi, M.; Guccione, S.; Mollica, G.; Pignatello, R.; Veracini, C.A. Molecular Properties of Ibuprofen and Its Solid Dispersions with Eudragit RL100 Studied by Solid-State Nuclear Magnetic Resonance. Pharm. Res. 2005, 22, 1544–1555. [Google Scholar] [CrossRef]
- Li, X.; Fu, W.; Wang, Y.; Chen, T.; Liu, X.; Lin, H.; Sun, P.; Jin, Q.; Ding, D. Solidstate NMR Characterization of Unsaturated Polyester Thermoset Blends Containing PEO–PPO–PEO Block Copolymers. Polymer 2008, 49, 2886–2897. [Google Scholar] [CrossRef]
- Ziaee, A.; Albadarin, A.B.; Padrela, L.; Faucher, A.; O’Reilly, E.; Walker, G. Spray Drying Ternary Amorphous Solid Dispersions of Ibuprofen–An Investigation into Critical Formulation and Processing Parameters. Eur. J. Pharm. Biopharm. 2017, 120, 43–51. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh, D.F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Higashi, K.; Ueda, K.; Moribe, K. Revealing the Mechanism of Morphological Variation of Amorphous Drug Nanoparticles Formed by Aqueous Dispersion of Ternary Solid Dispersion. Int. J. Pharm. 2021, 607, 120984. [Google Scholar] [CrossRef]
- Zhao, Z.; Katai, H.; Higashi, K.; Ueda, K.; Kawakami, K.; Moribe, K. Cryo-TEM and AFM Observation of the Time-Dependent Evolution Oo Amorphous Probucol Nanoparticles Formed by The Aqueous Dispersion of Ternary Solid Dispersions. Mol. Pharm. 2019, 16, 2184–2198. [Google Scholar] [CrossRef]
- Borde, S.; Hegde, P.; Prathipati, P.; North, J.; Kumari, D.; Chauhan, H. Formulation and Characterization of Ternary Amorphous Solid Dispersions of a Highly Potent Anti-Tubercular Agent and Curcumin. J. Drug Deliv. Sci. Technol. 2021, 64, 102564. [Google Scholar] [CrossRef]
- Zhang, Q.; Ren, W.; Dushkin, A.V.; Su, W. Preparation, Characterization, In Vitro and In Vivo Studies of Olmesartan Medoxomil in a Ternary Solid Dispersion with N-Methyl-D-Glucamine and Hydroxypropyl-Β-Cyclodextrin. J. Drug Deliv. Sci. Technol. 2020, 56, 101546. [Google Scholar] [CrossRef]
- Han, R.; Huang, T.; Liu, X.; Yin, X.; Li, H.; Lu, J.; Ji, Y.; Sun, H.; Ouyang, D. Insight into the Dissolution Molecular Mechanism of Ternary Solid Dispersions by Combined Experiments and Molecular Simulations. AAPS PharmSciTech 2019, 20, 274. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Gala, U.; Chauhan, H. Classification of Solid Dispersions: Correlation to (I) Stability and Solubility (II) Preparation and Characterization Techniques. Drug Dev. Ind. Pharm. 2015, 41, 1401–1415. [Google Scholar] [CrossRef] [PubMed]
- Chamsai, B.; Sriamornsak, P. Effect of Cooling Technique on Physicochemical Properties of Ternary Solid Dispersion of Manidipine Hydrochloride Prepared by Melting Method. Asian J. Pharm. Sci. 2016, 11, 193–194. [Google Scholar] [CrossRef]
- Eloy, J.O.; Marchetti, J.M. Solid Dispersions Containing Ursolic Acid in Poloxamer 407 and PEG 6000: A Comparative Study of Fusion and Solvent Methods. Powder Technol. 2014, 253, 98–106. [Google Scholar] [CrossRef]
- Sarodea, A.L.; Malekara, S.A.; Cotec, C.; Worthena, D.R. Hydroxypropyl Cellulose Stabilizes Amorphous Solid Dispersions of The Poorly Water Soluble Drug Felodipine. Carbohydr. Polym. 2014, 112, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.T.; Löbmann, K.; Rades, T.; Grohganz, H. Improving Co-Amorphous Drug Formulations by the Addition of the Highly Water Soluble Amino Acid, Proline. Pharmaceutics 2014, 14, 416–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonzo, D.E.; Zhang, G.G.Z.; Zhou, D.; Gao, Y.; Taylor, L.S. Understanding the Behavior of Amorphous Pharmaceutical Systems during Dissolution. Pharm. Res. 2010, 27, 608–618. [Google Scholar] [CrossRef]
- Amrutkar, C.; Salunkhe, K.; Chaudhari, S. Study on Self Nano Emulsifying Drug Delivery System of Poorly Water Soluble Drug Rosuvastatin Calcium. World J. Pharm. Res. 2014, 3, 2137–2151. [Google Scholar]
- Bejaoui, M.; Oueslati, H.; Galai, H. Ternary Solid Dispersion Strategy for Solubility Enhancement of Poorly Soluble Drugs by Co-Milling Technique. In Chitin and Chitosan—Physicochemical Properties and Industrial Applications; IntechOpen: London, UK, 2021; pp. 1–13. [Google Scholar]
- Nilsson, S. Interactions between Water-Soluble Cellulose Derivatives and Surfactants. 1. The HPMC/SDS/Water System. Macromolecules 1995, 28, 7837–7844. [Google Scholar] [CrossRef]
Drug | Polymer | Surfactant | Method of Preparation | Purpose | References |
---|---|---|---|---|---|
Manidipine | Copovidone | TPGS | Melt method | Improve Solubility | [36] |
Curcumin | PVP | Tween 80 | Rotary evaporation | Increase Dispersion, Solubility, and Stability | [37] |
Valsartan | HPMC | SLS | Spray-drying | Increase Solubility (in vivo) | [38] |
Docetaxel | Povidone K30 | Sodium dodecyl sulfate | Spray-drying | Increase Solubility | [39] |
Sirolimus | Eudragit® E | TPGS | Spray-drying | Improve Solubility | [40] |
Itraconazole | PVP VA64 | Myrj 52 | Rotary evaporation | Stability Evaluation | [41] |
Itraconazole | HPMCAS | Poloxamer 188 and 407 | Hot-melt extrusion | Improve Processability and Drug Release | [42,43] |
Itraconazole | HPMC | Pluronic F68 | Solvent evaporation | Improve Solubility | [44] |
Gemfibrozil | PEG 6000 | Sucrose laurate | Hot-melt extrusion | Improve Solubility | [45] |
Paclitaxel | PVP K30 | SLS | Freeze-drying | Improve Solubility | [46] |
Itraconazole | PVP VA 64 | Inutec SP1 | Spray-drying | Improve Solubility | [47] |
Itraconazole | HPMC | Poloxamer 407 | Supercritical anti-solvent process | Improve Solubility | [48] |
Drug | Polymer | Polymer | Method of Preparation | Purpose | References |
---|---|---|---|---|---|
Tectorigenin | PVP | PEG4000 | Rotary evaporation | Improve Solubility | [55] |
Nilvadipine | Methylcellulose | Crospovidone | Rotary evaporation | Improve Solubility | [56] |
Nifedipine | HPMC | Eudagrit® S | Spray-drying | Improve Solubility | [57] |
Cilostazol | HPMC | PVP | Spray-drying | Improve Solubility | [58] |
Indomethacin | Eudragit E100 | PVP K90 | Rotary evaporation | Improve Solubility | [59,60] |
Glyburide | HP-β-CD | Kollicoat® IR/PVP | Freeze-drying | Improve Solubility | [61] |
Ibuproxam | PVP | PEG | Co-evaporation | Improve Solubility | [62] |
Griseofulvin | HPMC AS | PHPMA | Spray-drying | Improve Stability | [63] |
Itraconazole | HPMC 2910 E5 | PEG | Spray-drying | Improve Stability | [64] |
Drug | Polymer | Excipient | Method of Preparation | Purpose | References |
---|---|---|---|---|---|
Glycyrrhetinic acid | PVP | L-arginine | Hot-melt extrusion | Increase Solubility | [67] |
Indomethacin | HPMC/Copovidone/Kollicoat® IR | Hydrous silicon dioxide | Hot-melt extrusion | Improve Processability and Solubility | [68] |
Telmisartan | PEG 6000 | Magnesium oxide | Rotary evaporation | Increase Solubility | [69] |
Tibolone | PVP | Silicon dioxide | Solvent evaporation | Sustained Release | [70] |
Rebamipide | PVP VA 64 | Sodium hydroxide (alkalizer) | Spray-drying | Increase Solubility | [71] |
Troglitazone | PVP | Light anhydrous silicic acid | Co-milling method | Improve Stability | [72] |
Celecoxib | PVP | Isomalt | Spray-drying | Improve Solubility | [73] |
Cinnarizine | Soluplus® | Sorbitol/Citric acid monohydrate | Hot-melt extrusion | Improve Solubility and Stability | [74] |
Rebamipide | Sodium alginate | Sodium carbonate | Spray-drying | Increase Solubility | [75] |
Drug | Co-Former | Polymer/Excipient | Method | Result | References |
---|---|---|---|---|---|
Carbamazepine (CBM) | Citric acid (CA) | L-arginine (ARG) | Ball-milling | Improved dissolution profiles | [78] |
Sulfamethoxazole (SMZ) | Trimethoprim (TMP) | Eudragit (EDE) and polyacrylic acid (PAA) | Melt-quenching | Improve the stability and area under curve (AUC) | [79] |
Ketoconazole (KZN) | each oxalic (OXA), tartaric (TAR), citric (CIT) and succinic (SUC) acid | PVP | Spray-dried dispersions | Improved dissolution and physical stability | [80] |
Indomethacin (IMC) | Saccharin | PVP | Spray-drying | Improved dissolution profiles | [81] |
No | Component of Ternary Solid Dispersion | Advantages | Disadvantages |
---|---|---|---|
1 | TSD systems from ASD systems with added surfactants |
|
|
2 | TSD systems from ASD systems with added polymers | The addition of a third polymer enhances synergically amorphous stabilization and dissolution | The high viscosity of this system revealed the low wettability, leading to the slow dissolution rate |
3 | TSD systems from ASD systems with added excipients | The addition of a third water-soluble excipient can stabilize the system at varied pH levels | The large molecular weight and low water solubility of some excipients lead to the limitation of their application |
4 | TSD systems from co-amorphous/cocrystal systems with added excipients | The addition of a polymer can form complexes with the drugs, which enhances the stability and solubility of amorphous drugs | The addition of a polymer in the co-amorphous or cocrystal system can decrease the maximum achievable supersaturation, leading to a slow dissolution rate |
Analytical Method | Purpose | Results | Conclusion | References |
---|---|---|---|---|
Fourier Transform Infrared (FTIR) | To analyze the intermolecular interactions between drugs and excipients in the TSD system | The shifting of the major absorption bands of drugs in the TSD system | Hydrogen-bond interactions between the drugs and excipients in the TSD system | [83,87] |
Differential Scanning Calorimetry (DSC) |
|
|
| [80] |
Powder X-ray diffractometry (PXRD) | To analyze the amorphization of drugs in the TSD system | Halo patterns | Amorphous drugs in the TSD system | [93] |
Thermogravimetric analysis (TGA) | To determine the composition of each component in the TSD system | The weight loss due to the degradation | Composition of each component in the TSD system | [97] |
Solid-state NMR | To assess the molecular state of drugs in the TSD system |
|
| [105] |
Dielectric spectroscopy | To measure the molecular mobility of drugs in the TSD system | α-relaxation time | Molecular mobility of drugs in the TSD system | [79,80] |
Scanning Electron Microscope (SEM) | To examine the morphology of drugs in the TSD system | The particle size and shape | The particle size and shape of drugs in the TSD system | [80] |
Analytical Method | Purpose | Results | Conclusion | References |
---|---|---|---|---|
Dynamic Light Scattering (DLS) | To analyze the particle size distribution of drugs in the TSD system after being dispersed in water. | The size and PDI values. | Distribution of drugs in the TSD system after being dispersed in water. | [108] |
TEM and Cryo-TEM Measurements | To determine the morphology of drugs in the TSD system after being dispersed in water. | The size and shape of nanoparticles. | The size and shape of drugs in the TSD system after being dispersed in water. | [108,109] |
Atomic Force Microscopy (AFM) Measurements | To evaluate the topography and stiffness of the TSD system in an aqueous solution. | The size, shape, point of contact, and force of nanoparticles. | The size, shape, elasticity and stiffness of the TSD system in an aqueous solution. | [109] |
Solution-State 1H NMR | To determine the hydrogen-bonding interactions between the drugs and excipients in the solution phase. | A shift of the peak to the shielded region in the NMR. | Hydrogen-bonding interactions between the drugs, and excipients in the solution phase. | [110] |
Zeta Potential | To examine the dispersion stability of amorphous drugs in the TSD system after being dispersed in water. | The charge and surface zeta potential of the TSD system in the solution phase. | Good stability in the dispersed state. | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budiman, A.; Lailasari, E.; Nurani, N.V.; Yunita, E.N.; Anastasya, G.; Aulia, R.N.; Lestari, I.N.; Subra, L.; Aulifa, D.L. Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability. Pharmaceutics 2023, 15, 2116. https://doi.org/10.3390/pharmaceutics15082116
Budiman A, Lailasari E, Nurani NV, Yunita EN, Anastasya G, Aulia RN, Lestari IN, Subra L, Aulifa DL. Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability. Pharmaceutics. 2023; 15(8):2116. https://doi.org/10.3390/pharmaceutics15082116
Chicago/Turabian StyleBudiman, Arif, Eli Lailasari, Neng Vera Nurani, Ellen Nathania Yunita, Gracia Anastasya, Rizqa Nurul Aulia, Ira Novianty Lestari, Laila Subra, and Diah Lia Aulifa. 2023. "Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability" Pharmaceutics 15, no. 8: 2116. https://doi.org/10.3390/pharmaceutics15082116
APA StyleBudiman, A., Lailasari, E., Nurani, N. V., Yunita, E. N., Anastasya, G., Aulia, R. N., Lestari, I. N., Subra, L., & Aulifa, D. L. (2023). Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability. Pharmaceutics, 15(8), 2116. https://doi.org/10.3390/pharmaceutics15082116