Developing Robust Human Liver Microsomal Stability Prediction Models: Leveraging Inter-Species Correlation with Rat Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microsomal Stability Assay
2.2. HLM Stability Dataset
2.3. Modeling Methods
2.3.1. Random Forest
2.3.2. XGBoost
2.3.3. Graph Convolutional Neural Network (GCNN)
2.4. Model Building and Validation
3. Results and Discussion
3.1. Assay Performance
3.2. Distribution of HLM Data
3.3. Microsomal Stability Screening Paradigm at NCATS
3.4. Five-Fold Cross-Validation
3.5. External Datasets
3.6. External Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 2004, 3, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Schyman, P.; Wallqvist, A. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability. J. Chem. Inf. Model. 2015, 55, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Kassel, D.B. Applications of high-throughput ADME in drug discovery. Curr. Opin. Chem. Biol. 2004, 8, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Cytochrome P-450 3A4: Regulation and role in drug metabolism. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [Google Scholar] [CrossRef]
- Siramshetty, V.; Williams, J.; Nguyễn, Ð.T.; Neyra, J.; Southall, N.; Mathé, E.; Xu, X.; Shah, P. Validating ADME QSAR Models Using Marketed Drugs. SLAS Discov. 2021, 26, 1326–1336. [Google Scholar] [CrossRef]
- Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing Drug Discovery via Artificial Intelligence. Trends Pharmacol. Sci. 2019, 40, 801. [Google Scholar] [CrossRef]
- Shah, P.; Kerns, E.; Nguyen, D.-T.; Obach, R.S.; Wang, A.Q.; Zakharov, A.; McKew, J.; Simeonov, A.; Hop, C.E.C.A.; Xu, X. An Automated High-Throughput Metabolic Stability Assay Using an Integrated High-Resolution Accurate Mass Method and Automated Data Analysis Software. Drug Metab. Dispos. 2016, 44, 1653–1661. [Google Scholar] [CrossRef]
- Shah, P.; Siramshetty, V.B.; Zakharov, A.V.; Southall, N.T.; Xu, X.; Nguyen, D.-T. Predicting liver cytosol stability of small molecules. J. Cheminform. 2020, 12, 21. [Google Scholar] [CrossRef]
- Fourches, D.; Muratov, E.; Tropsha, A. Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation. J. Chem. Inf. Model. 2016, 56, 1243–1252. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery, San Francisco, CA, USA, 2016. pp. 785–794. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.; Hopper, T.; Kelly, B.; Mathea, M.; et al. Analyzing Learned Molecular Representations for Property Prediction. J. Chem. Inf. Model. 2019, 59, 3370–3388. [Google Scholar] [CrossRef] [PubMed]
- Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2011, arXiv:2010.16061. [Google Scholar]
- Bradley, A.P. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn. 1997, 30, 1145–1159. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Siramshetty, V.B.; Shah, P.; Kerns, E.; Nguyen, K.; Yu, K.R.; Kabir, M.; Williams, J.; Neyra, J.; Southall, N.; Nguyễn, Ð.T.; et al. Retrospective assessment of rat liver microsomal stability at NCATS: Data and QSAR models. Sci. Rep. 2020, 10, 20713. [Google Scholar] [CrossRef]
- Zhu, H.; Rusyn, I.; Richard, A.; Tropsha, A. Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity. Environ. Health Persp. 2008, 116, 506–513. [Google Scholar] [CrossRef]
- Sedykh, A.; Zho, H.; Tang, H.; Zhang, L.; Rechard, A.; Rusyn, I.; Tropsha, A. Use of HTS-Derived Concentration-Response Data as Biological Descriptors Improves the Accuracy of QSAR Models of Toxicity. Environ. Health Persp. 2011, 119, 364–370. [Google Scholar] [CrossRef]
- Aliagas, I.; Gobbi, A.; Heffron, T.; Lee, M.-L.; Ortwine, D.F.; Zak, M.; Khojasteh, S.C. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: A practical tool for drug discovery. J. Comput. Aid Mol. Des. 2015, 29, 327–338. [Google Scholar] [CrossRef]
- Sohlenius-Sternbeck, A.K.; Afzelius, L.; Prusis, P.; Neelissen, J.; Hoogstraate, J.; Johansson, J.; Floby, E.; Bengtsson, A.; Gissberg, O.; Sternbeck, J.; et al. Evaluation of the human prediction of clearance from hepatocyte and microsome intrinsic clearance for 52 drug compounds. Xenobiotica 2010, 40, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.Y.; Lee, J.H.; Lee, B.H.; Song, J.S.; Ahn, S.; Oh, K.-S. PredMS: A random forest model for predicting metabolic stability of drug candidates in human liver microsomes. Bioinformatics 2022, 38, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.; Siramshetty, V.; Nguyễn, Ð.T.; Padilha, E.C.; Kabir, M.; Yu, K.-R.; Wang, A.Q.; Zhao, T.; Itkin, M.; Shinn, P.; et al. Using in vitro ADME data for lead compound selection: An emphasis on PAMPA pH 5 permeability and oral bioavailability. Bioorg. Med. Chem. 2022, 56, 116588. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lu, Z.; Liu, G.; Tang, Y.; Li, W. In Silico Prediction of Human and Rat Liver Microsomal Stability via Machine Learning Methods. Chem. Res. Toxicol. 2022, 35, 1614–1624. [Google Scholar] [CrossRef]
- Hu, Y.; Unwalla, R.; Denny, R.A.; Bikker, J.; Di, L.; Humblet, C. Development of QSAR models for microsomal stability: Identification of good and bad structural features for rat, human and mouse microsomal stability. J. Comput.-Aid Mol. Des. 2010, 24, 23–35. [Google Scholar] [CrossRef]
- Long, T.-Z.; Jiang, D.-J.; Shi, S.-H.; Deng, Y.-C.; Wang, W.-X.; Cao, D.-S. Enhancing Multi-species Liver Microsomal Stability Prediction through Artificial Intelligence. J. Chem. Inf. Model. 2024, 64, 3222–3236. [Google Scholar] [CrossRef]
Compound | Half-Life (t1/2) in Minutes |
---|---|
Buspirone | 14.4 ± 4.1 |
Loperamide | 18.9 ± 5.2 |
Propranolol | 55.2 ± 10.1 |
Antipyrine | >120 |
Method | Descriptor(s) | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|
RF | RDKit | 0.87 ± 0.02 | 0.81 ± 0.02 | 0.55 ± 0.04 | 0.93 ± 0.02 |
RF | RDKit + RLM | 0.89 ± 0.01 | 0.83 ± 0.01 | 0.62 ± 0.04 | 0.93 ± 0.01 |
XGBoost | RDKit | 0.87 ± 0.02 | 0.81 ± 0.02 | 0.65 ± 0.02 | 0.89 ± 0.02 |
XGBoost | RDKit + RLM | 0.89 ± 0.02 | 0.83 ± 0.01 | 0.70 ± 0.03 | 0.89 ± 0.02 |
GCNN | Graph | 0.84 ± 0.02 | 0.80 ± 0.02 | 0.57 ± 0.07 | 0.91 ± 0.03 |
GCNN | Graph + RDKit | 0.86 ± 0.02 | 0.80 ± 0.02 | 0.62 ± 0.07 | 0.89 ± 0.03 |
GCNN | Graph + RDKit + RLM | 0.87 ± 0.03 | 0.82 ± 0.02 | 0.67 ± 0.05 | 0.89 ± 0.02 |
External Test Set | Total Molecules | Unstable | Stable |
---|---|---|---|
E1 (Genentech) | 972 | 544 | 428 |
E2 (AstraZeneca) | 1102 | 260 | 842 |
E3 (PredMS) | 61 | 12 | 49 |
Dataset | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
E1 (NCATS Results) | 0.69 | 0.66 | 0.77 | 0.52 |
E1 (Genentech Results) | N/A | 0.67 | 0.67 | 0.68 |
E2 (NCATS Results) | 0.62 | 0.78 | 0.86 | 0.54 |
E3 (NCATS Results) | 0.54 | 0.80 | 1.00 | 0.43 |
E3 (PredMS Results) | N/A | 0.74 | 0.70 | 0.86 |
Test Set | Model (Descriptors) | Accuracy | AUC | Sensitivity | Specificity |
---|---|---|---|---|---|
E1 | NCATS XGBoost (RDKit) | 0.64 | 0.69 | 0.58 | 0.72 |
E1 | NCATS XGBoost (RDKit + RLM) | 0.66 | 0.73 | 0.66 | 0.66 |
E1 | NCATS GCNN (RDKit) | 00.67 | 0.70 | 0.62 | 0.73 |
E1 | NCATS GCNN (RDKit + RLM) | 0.67 | 0.77 | 0.65 | 0.70 |
E1 | Genentech Model | 0.67 | N/A | 0.67 | 0.68 |
E2 | NCATS XGBoost (RDKit) | 0.67 | 0.72 | 0.66 | 0.68 |
E2 | NCATS XGBoost (RDKit + RLM) | 0.73 | 0.80 | 0.75 | 0.73 |
E2 | NCATS GCNN (RDKit) | 0.74 | 0.77 | 0.62 | 0.78 |
E2 | NCATS GCNN (RDKit + RLM) | 0.76 | 0.68 | 0.62 | 0.70 |
E3 | NCATS XGBoost (RDKit) | 0.74 | 0.84 | 0.50 | 0.80 |
E3 | NCATS XGBoost (RDKit + RLM) | 0.84 | 0.87 | 0.75 | 0.86 |
E3 | NCATS GCNN (RDKit) | 0.82 | 0.87 | 0.50 | 0.90 |
E3 | NCATS GCNN (RDKit + RLM) | 0.85 | 0.79 | 0.58 | 0.84 |
E3 | PredMS Model | N/A | 0.74 | 0.70 | 0.86 |
Website | Number of Compounds Used to Train Model | Source of Data | Model Availability | Data Availability | Accuracy of Training Sets |
---|---|---|---|---|---|
PredMS | 1917 | Own | Yes/Website | External Set/61 compounds | ACC: 0.68 |
FP-ADMET | 3654 | ChEMBL | Yes/Downloadable Offline version on Github | Yes/ChEMBL | BACC: 0.77 |
ADME@NCATS | 6648 | Own | Yes/Website and Downloadable Offline version on Github | Yes/Partial dataset on PubChem (AID: 1963597) | BACC: 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, P.; Siramshetty, V.B.; Mathé, E.; Xu, X. Developing Robust Human Liver Microsomal Stability Prediction Models: Leveraging Inter-Species Correlation with Rat Data. Pharmaceutics 2024, 16, 1257. https://doi.org/10.3390/pharmaceutics16101257
Shah P, Siramshetty VB, Mathé E, Xu X. Developing Robust Human Liver Microsomal Stability Prediction Models: Leveraging Inter-Species Correlation with Rat Data. Pharmaceutics. 2024; 16(10):1257. https://doi.org/10.3390/pharmaceutics16101257
Chicago/Turabian StyleShah, Pranav, Vishal B. Siramshetty, Ewy Mathé, and Xin Xu. 2024. "Developing Robust Human Liver Microsomal Stability Prediction Models: Leveraging Inter-Species Correlation with Rat Data" Pharmaceutics 16, no. 10: 1257. https://doi.org/10.3390/pharmaceutics16101257
APA StyleShah, P., Siramshetty, V. B., Mathé, E., & Xu, X. (2024). Developing Robust Human Liver Microsomal Stability Prediction Models: Leveraging Inter-Species Correlation with Rat Data. Pharmaceutics, 16(10), 1257. https://doi.org/10.3390/pharmaceutics16101257