Molecular Imaging for Lung Cancer: Exploring Small Molecules, Peptides, and Beyond in Radiolabeled Diagnostics
Abstract
:1. Introduction
2. Drug Delivery Systems
3. Targeting of Drug Delivery Systems
3.1. Passive Targeting
3.2. Active Targeting
4. Drug Delivery Systems in Nuclear Medicine for Lungs
Radionuclide | Nanoparticles/Chelate Agent | Mean Particle Diameter/Experimental Conditions | Radiochemical Purity (%) | Cell Line, Animal, or Clinical Model | Clinical Prospects and Applications | Ref. |
---|---|---|---|---|---|---|
[99mTc]Tc | Tetrofosmin | - | >95% | Solitary pulmonary nodule patients | [99mTc]Tc-tetrofosmin SPECT as highly sensitive imaging method in both primary and secondary malignant ≤ 3 cm SPNs | [44] |
[99mTc]Tc | Etoposide microparticles/chelate-free | 430 ± 10.2 nm; 10 min/25 °C | >99% | A549 cells and male Balb/c nude mice | Biodistribution and SPECT imaging for early diagnosing of lung cancer | [48] |
[99mTc]Tc | PLA/PVA/Atezolizumab nanoparticles | - | >99% | L-929 and A-549; mice | Accurate imaging for NSCLC detection | [49] |
[99mTc]Tc | Zolmitriptan | 45 min/25 °C | 92.5% | Male Swiss albino mice | Potential radiopharmaceutical for lung scintigraphy safer than what is commercially available | [50] |
[99mTc]Tc | Liposome/DTPA | 150–180 nm; 30 min/25 °C | >80% | A549 and H1299 cells | Theranostic nanosized, radiolabeled, co-drug-encapsulated liposomes’ potential for the diagnosis and therapy of NSCLC | [51] |
[99mTc]Tc | Gold nanoparticles (AuNPs) | 30 min/80 °C | 99% | 4T1-luc-GFP cell line; female BALB/c mice | Advantages of vascular targeting and nanotechnology to effectively target breast cancer metastasis | [52] |
[99mTc]Tc | Stealth liposomal doxorubicin (Caelyx)/DTPA | ~100 nm | - | Preclinical models of NSCLC and HNC | Treatment of locally advanced NSCLC | [53] |
[99mTc]Tc | Solid lipid nanoparticles/HMPAO | 10 min/25 °C; 200 nm | 97 ± 2% | Adult male Wistar rats | Biodistribution, lymphoscintigraphy, and therapy upon pulmonary delivery | [54] |
[188Re]Re | Liposome/BMEDA | 84.6 ± 4.12 nm; 30 min/60 °C | 71.1% | NCI-H292 cells | Chemotherapy and radiotherapy using NCI-H292 cells | [55] |
[188Re]Re | Human serum albumin microspheres/chelate-free | 1 h/95 °C/pH 2; 25 μm | >90% | Wistar rats | Biodistribution profiles in Wistar rats for lung radiotherapy | [56] |
[131I]I | Immuno-gold-nanoparticles/chelate-free | 52.9 nm | >95% | A549 tumor-bearing mice. | MicroSPECT/CT images of A549 tumor-bearing mice | [57] |
[124I]I | LHRH-modified human serum albumin-stabilized gold nanoclusters | 6 ± 0.5 nm; 10 min/25 °C | >98% | NIR fluorescence and PET imaging agent for early diagnosis in lung cancer model | [58] | |
[125I]I | Polyacrylamide nanoparticles/chelate-free | 20–40 nm; 30 min/25 °C | >95% | Human bronchial epithelial cell line (BEAS 2B) | Biodistribution and microPET imaging using BEAS 2B for lungs | [59] |
[111In]In | Perfluorocarbon nanoparticles | 242 nm | 85 to 90+% | White rabbit | αvβ3-integrin-targeted [111In]In nanoparticles for clinical use to identify occult tumors or metastases and guide follow-on high-resolution MRI. | [60] |
[18F]F | Icotinib | 100 min/50 and 80 °C | >99% | A549 xenograft mice | PET imaging of A549 xenograft mice | [61] |
[18F]F | MPG | 10 min/120 °C and 35 °C | >99% | NSCLC patients | PET for non-invasive imaging and quantification of EGFR-activating mutation status in preclinical models of NSCLC | [62] |
[177Lu]Lu | Chitosan nanoparticles/chelate-free | 30 min/25 °C/pH 5; 165 ± 10 nm | 98.6 ±1.2% | Epithelial lung cancer cells and C57BL/6 mice | Radionuclide therapy. In vitro results using epithelial lung cancer cell lines | [63] |
[177Lu]Lu | Cellulose nanocrystals/DOTA | 60 min/100 °C/pH 4; 136–158 nm | 74 ± 2% | BRAF V600E mutant cell lines (murine YUMM1.G1 and human A375) and wild-type BRAF cell line (murine B16-F10) | Biodistribution, chemotherapy and radionuclide therapy. In vitro and in vivo results using a lung metastatic melanoma model | [64] |
[64Cu]Cu | Polyglucose nanoparticles (Macrin)/NODAGA | 30 min/90 °C/pH 6; ~20 nm | >99% | MC38 cells in C57BL/6 immunocompetent mice and MC38 xenograft model | PET and optical imaging of tumor-associated macrophages in lung carcinoma | [65] |
5. Lung Cancer Targeting Probes
6. Drug Delivery Systems and Recognition in Angiogenesis and Lung Metastasis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Houston, T. Screening for lung cancer. Med. Clin. N. Am. 2020, 104, 1037–1050. [Google Scholar] [CrossRef]
- Spiro, S.C.; Silvestri, G.A. One hundred years of lung cancer. Am. J. Respir. Crit. Care Med. 2006, 100, 2073–2084. [Google Scholar] [CrossRef]
- Hollings, N.; Shaw, P. Diagnostic imaging of lung cancer. Eur. Respir. J. 2002, 19, 722–742. [Google Scholar] [CrossRef]
- Budak, E.; Çok, G.; Akgün, A. The contribution of fluorine 18F-FDG PET/CT to lung cancer diagnosis, staging and treatment planning. Mol. Imaging Radionucl. Ther. 2018, 27, 73–80. [Google Scholar] [CrossRef]
- Blum, J.; Handmaker, H.; Lister-James, J.; Rinne, N. A multicenter trial with a somatostatin analog (99m)Tc depreotide in the evaluation of solitary pulmonary nodules. Chest 2000, 117, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, M.; Ilem-Ozdemir, D. Current approaches in nanomedicine. Arch. Nanomed. Open Access J. 2020, 2, 183–184. [Google Scholar] [CrossRef]
- Hong, H.; Zhang, Y.; Sun, J.; Cai, W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 2009, 4, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Assadi, M.; Afrasiabi, K.; Nabipour, I.; Seyedabadi, M. Nanotechnology and nuclear medicine; research and preclinical applications. Hell. J. Nucl. Med. 2011, 14, 149–159. [Google Scholar] [PubMed]
- Mello, F.V.C.; de Moraes, G.N.; Maia, R.C.; Kyeremateng, J.; Iram, S.H.; Santos-Oliveira, R. The effect of nanosystems on ATP-binding cassette transporters: Understanding the influence of nanosystems on multidrug resistance protein-1 and P-glycoprotein. Int. J. Mol. Sci. 2020, 21, 2630. [Google Scholar] [CrossRef] [PubMed]
- Freire, T.M.; Sant’anna, C.; Yoshihara, N.; Hu, R.; Qu, J.; Alencar, L.M.R.; Barros, A.O.d.S.d.; Helal-Neto, E.; Fernandes, L.R.; Simoes, R.L.; et al. Biomedical application of graphitic carbon nitrides: Tissue deposition in vivo, induction of reactive oxygen species (ROS) and cell viability in tumor cells. Nanotechnology 2021, 32, 435301. [Google Scholar] [CrossRef] [PubMed]
- Helal Neto, E.; Barros, A.; Saldanha-Gama, R.; Machado Brandão Costa, R.; Rebelo, L.; Alencar, R.; Costa, C.; Santos; Martínez-Máñez, R.; Ricci-Junior, E.; et al. Molecular and cellular risk assessment of healthy human cells and cancer human cells exposed to nanoparticles. Int. J. Mol. Sci. 2020, 21, 230. [Google Scholar] [CrossRef] [PubMed]
- İlem-Özdemir, D.; Gündoğdu, E.; Ekinci, M.; Aşıkoğlu, M. Nanoparticles: From diagnosis to therapy. Int. J. Med. Nano Res. 2016, 3, 015. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- da Silva de Barros, A.O.; Alencar, L.M.R.; Alexis, F.; Santos-Oliveira, R. Distinct methodologies to produce capped mesoporous silica with hydroxyapatite and the influence in intracellular signaling as cytotoxicity on human umbilical vein endothelial cells. Bioengineering 2021, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Felix, D.M.; Alencar, L.M.R.; de Menezes, F.D.; Midlej, V.D.V.P.; Aguiar, L.; Piperni, S.G.; Zhang, J.; Liu, Y.; Ricci-Junior, E.; Alexis, F.; et al. Graphene quantum dots decorated with imatinib for leukemia treatment. J. Drug Deliv. Sci. Technol. 2021, 61, 102117. [Google Scholar] [CrossRef] [PubMed]
- Braga, T.L.; Pinto, S.R.; dos Reis, S.R.R.; Portilho, F.L.; Barros, A.O.d.S.d.; Bernardes, E.S.; dos Santos, S.N.; Alencar, L.M.R.; Ricci-Junior, E.; Santos-Oliveira, R. Octreotide nanoparticles showed affinity for in vivo MIA Paca-2 inducted pancreas ductal adenocarcinoma mimicking pancreatic polypeptide-secreting tumor of the distal pancreas (PPoma). Pharm. Res. 2019, 36, 143. [Google Scholar] [CrossRef]
- Silindir, M.; Erdogan, S.; Özer, A.Y.; Maia, S. Liposomes and their applications in molecular imaging. J. Drug Target. 2012, 20, 401–415. [Google Scholar] [CrossRef]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2020, 25, 112. [Google Scholar] [CrossRef]
- Massoud, T.F.; Gambhir, S.S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev. 2003, 17, 545–580. [Google Scholar] [CrossRef]
- Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; et al. Safety of nanoparticles in medicine. Curr. Drug Targets 2015, 16, 1671–1681. [Google Scholar] [CrossRef]
- Dang, Y.; Guan, J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater. Med. 2020, 1, 10–19. [Google Scholar] [CrossRef]
- Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res. 2020, 24, 12. [Google Scholar] [CrossRef]
- Perkins, A.; Frier, M. Radionuclide imaging in drug development. Curr. Pharm. Des. 2004, 10, 2907–2921. [Google Scholar] [CrossRef]
- Kleynhans, J.; Grobler, A.F.; Ebenhan, T.; Sathekge, M.M.; Zeevaart, J.R. Radiopharmaceutical enhancement by drug delivery systems: A review. J. Control. Release 2018, 287, 177–193. [Google Scholar] [CrossRef]
- Datta, P.; Ray, S. Nanoparticulate formulations of radiopharmaceuticals: Strategy to improve targeting and biodistribution properties. J. Label. Compd. Radiopharm. 2020, 63, 333–355. [Google Scholar] [CrossRef]
- Prabahar, K.; Alanazi, Z.; Qushawy, M. Targeted drug delivery system: Advantages, carriers and strategies. Indian. J. Pharm. Educ. Res. 2021, 55, 346–353. [Google Scholar] [CrossRef]
- Singh, S.; Pandey, V.K.; Tewari, R.P.; Agarwal, V. Nanoparticle based drug delivery system: Advantages and applications. Indian J. Sci. Technol. 2011, 4, 177–184. [Google Scholar] [CrossRef]
- Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S2), 295–305. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019, 71, 1185–1198. [Google Scholar] [CrossRef]
- Mironidou-Tzouveleki, M.; Tsartsalis, S. Nanotechnology and radiopharmaceuticals: Diagnostic and therapeutic approaches. Curr. Drug Deliv. 2010, 7, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, D.; Little, S.; Langer, R.; Amiji, M. Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 1. In vitro evaluations. Mol. Pharm. 2005, 2, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol. 2015, 141, 769–784. [Google Scholar] [CrossRef]
- Yoo, J.; Park, C.; Yi, G.; Lee, D.; Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 2019, 11, 640. [Google Scholar] [CrossRef] [PubMed]
- Silindir, M.; Erdoğan, S.; Özer, A.Y.; Doğan, A.L.; Tuncel, M.; Uğur, Ö.; Torchilin, V.P. Nanosized multifunctional liposomes for tumor diagnosis and molecular imaging by SPECT/CT. J. Liposome Res. 2013, 23, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Hood, J.D.; Bednarski, M.; Frausto, R.; Guccione, S.; Reisfeld, R.A.; Xiang, R.; Cheresh, D.A. Tumor regression by targeted gene delivery to the neovasculature. Science 2002, 296, 2404–2407. [Google Scholar] [CrossRef]
- Öztürk, A.A.; Namlı, İ.; Güleç, K.; Görgülü, Ş. Design of lamivudine loaded nanoparticles for oral application by nano spray drying method: A new approach to use an antiretroviral drug for lung cancer treatment. Comb. Chem. High. Throughput Screen. 2020, 23, 1064–1079. [Google Scholar] [CrossRef]
- Akbaba, H.; Erel-Akbaba, G.; Kotmakçı, M.; Başpınar, Y. Enhanced cellular uptake and gene silencing activity of survivin-siRNA via ultrasound-mediated nanobubbles in lung cancer cells. Pharm. Res. 2020, 37, 165. [Google Scholar] [CrossRef]
- Başpınar, Y.; Erel-Akbaba, G.; Kotmakçı, M.; Akbaba, H. Development and characterization of nanobubbles containing paclitaxel and survivin inhibitor YM155 against lung cancer. Int. J. Pharm. 2019, 566, 149–156. [Google Scholar] [CrossRef]
- Liang, W.; Pan, H.W.; Vllasaliu, D.; Lam, J.K.W. Pulmonary delivery of biological drugs. Pharmaceutics 2020, 12, 1025. [Google Scholar] [CrossRef]
- Yang, W.; Peters, J.I.; Williams, R.O. Inhaled nanoparticles—A current review. Int. J. Pharm. 2008, 356, 239–247. [Google Scholar] [CrossRef]
- Stockhofe, K.; Postema, J.M.; Schieferstein, H.; Ross, T.L. Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals 2014, 7, 392–418. [Google Scholar] [CrossRef]
- Cherry, S.R.; Gambhir, S.S. Use of positron emission tomography in animal research. ILAR J. 2001, 42, 219–232. [Google Scholar] [CrossRef]
- Spanu, A.; Schillaci, O.; Pirina, P.; Arru, A.; Madeddu, G.; Chessa, F.; Marongiu, P.; Solinas, M.E.; Madeddu, G. 99mTc-tetrofosmin SPECT in solitary pulmonary nodule evaluation. Oncol. Rep. 2006, 16, 763–769. [Google Scholar] [CrossRef]
- Shih, W.J.; Samayoa, L. Tc-99m depreotide detecting malignant pulmonary nodules: Histopathologic correlation with semiquantitative tumor-to-normal lung ratio. Clin. Nucl. Med. 2004, 29, 171–176. [Google Scholar] [CrossRef]
- Grewal, R.K.; Dadparvar, S.; Yu, J.Q.; Babaria, C.J.; Cavanaugh, T.; Sherman, M.; Jacobstein, J. Efficacy of Tc-99m depreotide scintigraphy in the evaluation of solitary pulmonary nodules. Cancer J. 2002, 8, 400–404. [Google Scholar] [CrossRef]
- Wang, L.; Yin, X.; Wang, F.; Gu, J.; Lu, L.; Wu, Q.; Shen, B.; Li, X.-F. The usefulness of combined diagnostic CT and 99mTc-Octreotide somatostatin receptor SPECT/CT imaging on pulmonary nodule characterization in patients. Cancer Biother. Radiopharm. 2013, 28, 731–736. [Google Scholar] [CrossRef]
- Salvi, R.; Cerqueira-Coutinho, C.; Ricci-Junior, E.; dos Santos, S.N.; Pinto, S.R.; Bernardes, E.S.; de Araujo, P.L.B.; Santos-Oliveira, R. Diagnosing lung cancer using etoposide microparticles labeled with 99mTc. Artif. Cells Nanomed. Biotechnol. 2018, 46, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, M.; Santos-Oliveira, R.; Ilem-Ozdemir, D. Biodistribution of 99mTc-PLA/PVA/Atezolizumab nanoparticles for non-small cell lung cancer diagnosis. Eur. J. Pharm. Biopharm. 2022, 176, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Rashed, H.M.; Marzook, F.A.; Farag, H. 99mTc-zolmitriptan: Radiolabeling, molecular modeling, biodistribution and gamma scintigraphy as a hopeful radiopharmaceutical for lung nuclear imaging. Radiol. Med. 2016, 121, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Karpuz, M.; Silindir-Gunay, M.; Kursunel, M.A.; Esendagli, G.; Dogan, A.; Ozer, A.Y. Design and in vitro evaluation of folate-targeted, co-drug encapsulated theranostic liposomes for non-small cell lung cancer. J. Drug Deliv. Sci. Technol. 2020, 57, 101707. [Google Scholar] [CrossRef]
- Peiris, P.M.; Deb, P.; Doolittle, E.; Doron, G.; Goldberg, A.; Govender, P.; Shah, S.; Rao, S.; Carbone, S.; Cotey, T.; et al. Vascular targeting of a gold nanoparticle to breast cancer metastasis. J. Pharm. Sci. 2015, 104, 2600–2610. [Google Scholar] [CrossRef]
- Koukourakis, M.I.; Koukouraki, S.; Giatromanolaki, A.; Archimandritis, S.C.; Skarlatos, J.; Beroukas, K.; Bizakis, J.G.; Retalis, G.; Karkavitsas, N.; Helidonis, E.S. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J. Clin. Oncol. 1999, 17, 3512–3521. [Google Scholar] [CrossRef]
- Videira, M.A.; Botelho, M.F.; Santos, A.C.; Gouveia, L.F.; Pedroso De Lima, J.J.; Almeida, A.J. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J. Drug Target. 2002, 10, 607–613. [Google Scholar] [CrossRef]
- Lin, L.-T.; Chang, C.-H.; Yu, H.-L.; Liu, R.-S.; Wang, H.-E.; Chiu, S.-J.; Chen, F.-D.; Lee, T.-W.; Lee, Y.-J. Evaluation of the therapeutic and diagnostic effects of PEGylated liposome-embedded 188Re on human non-small cell lung cancer using an orthotopic small-animal model. J. Nucl. Med. 2014, 55, 1864–1870. [Google Scholar] [CrossRef]
- Wunderlich, G.; Pinkert, J.; Andreeff, M.; Stintz, M.; Knapp, F.; Kropp, J.; Franke, W.-G. Preparation and biodistribution of rhenium-188 labeled albumin microspheres B 20: A promising new agent for radiotherapy. Appl. Radiat. Isot. 2000, 52, 63–68. [Google Scholar] [CrossRef]
- Kao, H.-W.; Lin, Y.-Y.; Chen, C.-C.; Chi, K.-H.; Tien, D.-C.; Hsia, C.-C.; Lin, M.-H.; Wang, H.-E. Evaluation of EGFR-targeted radioimmuno-gold-nanoparticles as a theranostic agent in a tumor animal model. Bioorganic Med. Chem. Lett. 2013, 23, 3180–3185. [Google Scholar] [CrossRef]
- Han, W.; Yang, W.; Gao, F.; Cai, P.; Wang, J.; Wang, S.; Xue, J.; Gao, X.; Liu, Y. Iodine-124 labeled gold nanoclusters for Positron Emission Tomography Imaging in lung cancer model. J. Nanosci. Nanotechnol. 2020, 20, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ibricevic, A.; Cohen, J.A.; Cohen, J.L.; Gunsten, S.P.; Fréchet, J.M.J.; Walter, M.J.; Welch, M.J.; Brody, S.L. Impact of hydrogel nanoparticle size and functionalization on in vivo behavior for lung imaging and therapeutics. Mol. Pharm. 2009, 6, 1891–1902. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Lijowski, M.; Zhang, H.; Partlow, K.C.; Caruthers, S.D.; Kiefer, G.; Gulyas, G.; Athey, P.; Scott, M.J.; Wickline, S.A.; et al. Imaging of Vx-2 rabbit tumors with alpha(nu)beta3-integrin-targeted 111In nanoparticles. Int. J. Cancer 2007, 120, 1951–1957. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, C.; Li, X.; Gu, P.; Jia, L.; Zhang, L. Synthesis and preliminary evaluation of 18F-icotinib for EGFR-targeted PET imaging of lung cancer. Bioorganic Med. Chem. 2019, 27, 545–551. [Google Scholar] [CrossRef]
- Sun, X.; Xiao, Z.; Chen, G.; Han, Z.; Liu, Y.; Zhang, C.; Sun, Y.; Song, Y.; Wang, K.; Fang, F.; et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci. Transl. Med. 2018, 10, eaan8840. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, G.; Rohra, N.; Kumar, C.; Jadhav, S.; Sarma, H.D.; Borade, L.; Chakraborty, S.; Bhagwat, S.; Dandekar, P.; Jain, R.; et al. A facile strategy for synthesis of a broad palette of intrinsically radiolabeled chitosan nanoparticles for potential use in cancer theranostics. J. Drug Deliv. Sci. Technol. 2021, 63, 102485. [Google Scholar] [CrossRef]
- Imlimthan, S.; Khng, Y.C.; Keinänen, O.; Zhang, W.; Airaksinen, A.J.; Kostiainen, M.A.; Zeglis, B.M.; Santos, H.A.; Sarparanta, M. A theranostic cellulose nanocrystal-based drug delivery system with enhanced retention in pulmonary metastasis of melanoma. Small 2021, 17, 2007705. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Li, R.; Ng, T.S.C.; Courties, G.; Rodell, C.B.; Prytyskach, M.; Kohler, R.H.; Pittet, M.J.; Nahrendorf, M.; Weissleder, R.; et al. Quantitative imaging of tumor-associated macrophages and their response to therapy using 64 Cu-labeled macrin. ACS Nano 2018, 12, 12015–12029. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Yamamoto, Y.; Satoh, K.; Ohkawa, M.; Kameyama, K.; Hayashi, E.; Fujita, J.; Tanabe, M. Comparative study of Tc-99m MIBI and TI-201 SPECT in predicting chemotherapeutic response in non-small-cell lung cancer. Clin. Nucl. Med. 2000, 25, 364–369. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, S.; Wang, J.; Li, X.; Wu, T.; Xu, P.; Santos-Oliveira, R.; Zhang, A. Radioactive gold nanoparticle in two forms (19879Au GNPs and 99mTc-GNPs) for lung cancer antiproliferative induction and intralesional imaging: A proof of concept. Anticancer. Agents Med. Chem. 2020, 20, 1648–1653. [Google Scholar] [CrossRef]
- Kotzerke, J.; Andreeff, M.; Wunderlich, G.; Wiggermann, P.; Zöphel, K. Ventilation-perfusion-lung scintigraphy using PET and 68Ga-labeled radiopharmaceuticals. Nuklearmedizin 2010, 49, 203–208. [Google Scholar] [CrossRef]
- Qin, C.; Zhu, S.; Tian, J. New optical molecular imaging systems. Curr. Pharm. Biotechnol. 2010, 11, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Zhang, B.S.; Prescher, J.A. Advances in bioluminescence imaging: New probes from old recipes. Curr. Opin. Chem. Biol. 2018, 45, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Boppart, S.A.; Oldenburg, A.L.; Xu, C.; Marks, D.L. Optical probes and techniques for molecular contrast enhancement in coherence imaging. J. Biomed. Opt. 2005, 10, 041208. [Google Scholar] [CrossRef]
- Ma, X.; Hui, H.; Shang, W.; Jia, X.; Yang, X.; Tian, J. Recent advances in optical molecular ımaging and its applications in targeted drug delivery. Curr. Drug Targets. 2015, 16, 542–548. [Google Scholar] [CrossRef]
- Joshi, B.P.; Wang, T.D. Exogenous molecular probes for targeted ımaging in cancer: Focus on multi-modal imaging. Cancers 2010, 2, 1251–1287. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev. 2003, 24, 389–427. [Google Scholar] [CrossRef] [PubMed]
- Weiner, R.E.; Thakur, M.L. Radiolabeled peptides in the diagnosis and therapy of oncological diseases. Appl. Radiat. Isot. 2002, 57, 749–763. [Google Scholar] [CrossRef]
- Okarvi, S.M. Peptide-based radiopharmaceuticals: Future tools for diagnostic imaging of cancers and other diseases. Med. Res. Rev. 2004, 24, 357–397. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, J.; Yang, X.; Liu, T.; Ding, J.; Nimmagadda, S.; Pomper, M.G.; Zhu, H.; Zhao, J.; Yang, Z.; et al. First-in-humans evaluation of a PD-L1–binding peptide PET radiotracer in non–small cell lung cancer patients. J. Nucl. Med. 2022, 63, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Huisman, M.C.; Niemeijer, A.-L.N.; Windhorst, A.D.; Schuit, R.C.; Leung, D.; Hayes, W.; Poot, A.; Bahce, I.; Radonic, T.; Oprea-Lager, D.E.; et al. Quantification of PD-L1 expression with 18F-BMS-986192 PET/CT in patients with advanced-stage non–small cell lung cancer. J. Nucl. Med. 2020, 61, 1455–1460. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, Y.; Liu, S.; Wang, F.; Chen, X. (18)F, (64)Cu, and (68)Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer. Bioconjug. Chem. 2009, 20, 1016–1025. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Z.; Chen, K.; Yan, Y.; Watzlowik, P.; Wester, H.-J.; Chin, F.T.; Chen, X. 18F-labeled galacto and PEGylated RGD dimers for PET imaging of αvβ3 integrin expression. Mol. İmaging Biol. 2010, 12, 530–538. [Google Scholar] [CrossRef]
- Liu, S.; Hsieh, W.Y.; Kim, Y.S.; Mohammed, S.I. Effect of coligands on biodistribution characteristics of ternary ligand 99mTc complexes of a HYNIC-conjugated cyclic RGDfK dimer. Bioconjug. Chem. 2005, 16, 1580–1588. [Google Scholar] [CrossRef]
- Alday-Parejo, B.; Stupp, R.; Rüegg, C. Are integrins still practicable targets for anti-cancer therapy? Cancers 2019, 11, 978. [Google Scholar] [CrossRef]
- Luo, B.H.; Carman, C.V.; Springer, T.A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 2007, 25, 619–647. [Google Scholar] [CrossRef]
- Rüegg, C.; Alghisi, G.C. Vascular integrins: Therapeutic and imaging targets of tumor angiogenesis. Recent. Results Cancer Res. 2010, 180, 83–101. [Google Scholar] [CrossRef] [PubMed]
- Pirooznia, N.; Abdi, K.; Beiki, D.; Emami, F.; Arab, S.S.; Sabzevari, O.; Pakdin-Parizi, Z.; Geramifar, P. Radiosynthesis, biological evaluation, and preclinical study of a 68Ga-labeled cyclic RGD peptide as an early diagnostic agent for overexpressed αvβ3 integrin receptors in non-small-cell lung cancer. Contrast Media Mol. Imaging 2020, 2020, 8421657. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhu, S.; Zhang, G.; Tan, X.; Qiu, L.; Lin, J.; Jiang, L. 68Ga-labeled cystine knot peptide targeting integrin αvβ6 for lung cancer PET imaging. Mol. Pharm. 2022, 19, 2620–2628. [Google Scholar] [CrossRef] [PubMed]
- Flechsig, P.; Lindner, T.; Loktev, A.; Roesch, S.; Mier, W.; Sauter, M.; Meister, M.; Herold-Mende, C.; Haberkorn, U.; Altmann, A. PET/CT imaging of NSCLC with a αvβ6 integrin-targeting peptide. Mol. Imaging Biol. 2019, 21, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Deng, S.; Shi, Y.; Xie, Y.; You, J.; Wang, W.; Huang, H.; Liu, Z. Pretargeted radioimmunoimaging with a biotinylated D-D3 construct and 99mTc-DTPA-biotin: Strategies for early diagnosis of small cell lung cancer. J. Int. Med. Res. 2020, 48, 0300060520937162. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Jakobsson, V.; Wang, J.; Zhao, T.; Peng, X.; Li, B.; Xue, J.; Liang, N.; Zhu, Z.; Chen, X.; et al. Dual targeting PET tracer [68Ga]Ga-FAPI-RGD in patients with lung neoplasms: A pilot exploratory study. Theranostics 2023, 13, 2979–2992. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Cheng, K.; Fu, Z.; Zheng, J.; Mu, Z.; Zhao, C.; Liu, X.; Wang, S.; Yu, J.; Yuan, S. [18F]AlF-NOTA-FAPI-04 PET/CT uptake in metastatic lesions on PET/CT imaging might distinguish different pathological types of lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1671. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, S.; Huang, Y.; Zheng, J.; Dong, Y.; Zhang, B.; Zhao, S.; Lu, H.; Liu, Z.; Yu, J.; et al. A pilot study of 18F-Alfatide PET/CT imaging for detecting lymph node metastases in patients with non-small cell lung cancer. Sci. Rep. 2017, 7, 2877. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, J.; Yao, S.; Li, J.; Fu, Z.; Liu, S. The application value of 18F-Alfatide-RGD PET/CT in the preliminary diagnosis of patients with non-small cell lung cancer. J. Radioanal. Nucl. Chem. 2022, 331, 4141–4148. [Google Scholar] [CrossRef]
- Li, L.; Zhao, W.; Sun, X.; Liu, N.; Zhou, Y.; Luan, X.; Gao, S.; Zhao, S.; Yu, J.; Yuan, S. 18F-RGD PET/CT imaging reveals characteristics of angiogenesis in non-small cell lung cancer. Transl. Lung Cancer Res. 2020, 9, 1324. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Sano, K.; Munekane, M.; Yamasaki, T.; Sasaki, H.; Mukai, T. A radiolabeled self-assembled nanoparticle probe for diagnosis of lung-metastatic melanoma. Biol. Pharm. Bull. 2021, 44, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Chen, K.; Mohamedali, K.A.; Cao, Q.; Gambhir, S.S.; Rosenblum, M.G.; Chen, X. PET of vascular endothelial growth factor receptor expression. J. Nucl. Med. 2006, 47, 2048–2056. [Google Scholar] [PubMed]
- Croft, A.P.; Campos, J.; Jansen, K.; Turner, J.D.; Marshall, J.; Attar, M.; Savary, L.; Wehmeyer, C.; Naylor, A.J.; Kemble, S.; et al. Distinct. fibroblast subsets drive inflammation and damage in arthritis. Nature 2019, 570, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Egeblad, M.; Nakasone, E.S.; Werb, Z. Tumors as organs: Complex tissues that interface with the entire organism. Dev. Cell. 2010, 18, 884–901. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012, 21, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Al-Husein, B.; Goc, A.; Somanath, P.R. Suppression of interactions between prostate tumor cell-surface integrin and endothelial ICAM-1 by simvastatin inhibits micrometastasis. J. Cell Physiol. 2013, 228, 2139–2148. [Google Scholar] [CrossRef]
- Wang, Y.-D.; Wu, P.; Mao, J.-D.; Huang, H.; Zhang, F. Relationship between vascular invasion and microvessel density and micrometastasis. World J. Gastroenterol. 2007, 13, 6269. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.G.; Wang, Z.; Zhang, M. Correlation between vascular endothelial growth factor C expression and prognosis in patients with esophageal squamous cell carcinomas after Ivor-Lewis esophagectomy. Asia Pac. J. Clin. Oncol. 2012, 8, e68–e76. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Xiong, X.; Su, Y.; Hu, J.; Tao, X. Serum vascular endothelial growth factor levels in patients with non-small cell lung cancer and its relations to the micrometastasis in peripheral blood. J. Huazhong Univ. Sci. Technol. Med. Sci. 2009, 29, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Bogani, G.; Palaia, I.; Perniola, G.; Fracassi, A.; Cuccu, I.; D’Auge, T.G.; Casorelli, A.; Santangelo, G.; Fischetti, M.; Muzii, L.; et al. Assessing the role of low volume disease in endometrial cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 274, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Bogani, G.; Mariani, A.; Paolini, B.; Ditto, A.; Raspagliesi, F. Low-volume disease in endometrial cancer: The role of micrometastasis and isolated tumor cells. Gynecol. Oncol. 2019, 153, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.W.; Volaric, A.; Morgan, J.T.; Chinn, Z.; Atkins, K.A.; Janowski, E.M. Pathologic evaluation and prognostic ımplications of nodal micrometastases in breast cancer. Semin. Radiat. Oncol. 2019, 29, 102–110. [Google Scholar] [CrossRef]
- Garnier, J.; Turrini, O.; Chretien, A.S.; Olive, D. Local ablative therapy associated with ımmunotherapy in locally advanced pancreatic cancer: A solution to overcome the double trouble?—A comprehensive review. J. Clin. Med. 2022, 11, 1948. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Hart, I.R. Biology of tumor micrometastasis. J. Hematother. 1996, 5, 525–535. [Google Scholar] [CrossRef]
- Wan, W.; Guo, N.; Pan, D.; Yu, C.; Weng, Y.; Luo, S.; Ding, H.; Xu, Y.; Wang, L.; Lang, L.; et al. First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J. Nucl. Med. 2013, 54, 691–698. [Google Scholar] [CrossRef]
- Gao, S.; Wu, H.; Li, W.; Zhao, S.; Teng, X.; Lu, H.; Hu, X.; Wang, S.; Yu, J.; Yuan, S. A pilot study imaging integrin αvβ3 with RGD PET/CT in suspected lung cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 2029–2037. [Google Scholar] [CrossRef]
- Sobic-Saranovic, D.; Pavlovic, S.; Jovanovic, D.; Nebojsa, K.; Todorovic-Tirnanic, M.; Subotic, D.; Artiko, V.; Obradovic, V. Assessment of non-small cell lung cancer viability and necrosis with three radiopharmaceuticals. Hell. J. Nucl. Med. 2008, 11, 16–20. [Google Scholar] [PubMed]
Radionuclide | Recognition Probe Systems | Experimental Conditions | Radiochemical Purity (%) | Cell Line, Animal, or Clinical Model | Clinical Prospects and Applications | Ref. |
---|---|---|---|---|---|---|
[68Ga]Ga | NOTA-WL12 | 15 min/60 °C | >99% | Chinese hamster ovary (CHO); non-small-cell lung cancer patients | Complementary diagnostic to immunohistochemistry to quantify PD-L1 levels for patient selection and therapeutic monitoring in anti-PD-L1 therapy | [77] |
[68Ga]Ga | DOTA-E(cRGDfK)2 | 5 min/125.4 °C | >%98 | A549 cells; Swiss male mice | Radiotracer for cancer imaging, tumor treatment response monitoring, and follow-up PET imaging | [85] |
[68Ga]Ga | DOTA-R01-MG | - | - | A549, H1975 and H1299 lung cancer cell lines | Potential to be a PET tracer for imaging αvβ6-positive lung cancer | [86] |
[68Ga]Ga | FAPI-RGD | 10 min/95 °C/pH 4.5 | 95% | Model lung neoplasm patients | PET [68Ga]Ga-FAPI-RGD increases tumor uptake and retention, tumor-targeting efficiency, and pharmacokinetics compared to monospecific markers | [89] |
[68Ga]Ga [125I]I [177Lu]Lu | SFITGv6 | - | - | NSCLC cell lines; NCI-H2009 and NCI-H322 tumor-bearing mice | Affinity and binding properties of SFITGv6 for αvβ6 integrin-expressing NSCLC cell lines and SFITGv6-PET/CT scan to distinguish between malignant and inflammatory lesions | [87] |
[99mTc]Tc | Biotinylated D-D3; DTPA-biotin | 30 min/30 °C; 15 min/25 °C; 4 h/4 °C. | 92.14 ± 3.55% | NCI-H446 cell line; female athymic nude mice | Pre-targeting technology using D-D3 and [99mTc]Tc signal amplification increases tumor radiopharmaceutical concentration and enables early diagnosis of small-cell lung cancer | [88] |
[18F]F | BMS-986192 | 45 min/45 °C | >95% | Models of advanced-stage NSCLC patients eligible for nivolumab treatment | Quantification of PD-L1 expression with PET/CT in patients with advanced-stage non-small-cell lung cancer | [78] |
[18F]F | AlF-NOTA-FAPI-04 | 10 min/110 °C | 98% | Model lung cancer patients | [18F]F-AlF-NOTA-FAPI-04 PET/CT imaging for quantification of FAP in metastases of lung cancer, especially in bone metastases, of different pathological types of lung cancer | [90] |
[18F]F | Alfatide | 5–30 min/70–110 °C/pH 2–6 | > 95% | NSCLC patients | [18F]F-Alfatide PET/CT imaging for diagnosing metastatic lymph nodes with a high sensitivity and specificity in patients with NSCLC | [91] |
[18F]F | Alfatide | - | - | NSCLC patients | [18F]F-Alfatide-RGD PET/CT for diagnosis and pathologic results of primary foci, lymph-node-positive, and metastatic lymph nodes of NSCLC | [92] |
[18F]F | RGD | 5–30 min/70–110 °C/pH 2–6 | > 95% | NSCLC patients | [18F]F-RGD PET/CT imaging for detection of angiogenesis in the tumor microenvironment of NSCLC | [93] |
[111In]In [125I]I | DTPA-G4/PEI/γ-PGA | 1 h/25 °C/pH 6 and 9 | >90% | B16-F10 cell line; male BALB/c mice | γ-PGA complex for nuclear medical diagnosis of lung-metastatic melanoma and the possibility of use as multimodality imaging probes | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekinci, M.; Magne, T.M.; Alencar, L.M.R.; Fechine, P.B.A.; Santos-Oliveira, R.; Ilem-Özdemir, D. Molecular Imaging for Lung Cancer: Exploring Small Molecules, Peptides, and Beyond in Radiolabeled Diagnostics. Pharmaceutics 2024, 16, 404. https://doi.org/10.3390/pharmaceutics16030404
Ekinci M, Magne TM, Alencar LMR, Fechine PBA, Santos-Oliveira R, Ilem-Özdemir D. Molecular Imaging for Lung Cancer: Exploring Small Molecules, Peptides, and Beyond in Radiolabeled Diagnostics. Pharmaceutics. 2024; 16(3):404. https://doi.org/10.3390/pharmaceutics16030404
Chicago/Turabian StyleEkinci, Meliha, Tais Monteiro Magne, Luciana Magalhães Rebelo Alencar, Pierre Basilio Almeida Fechine, Ralph Santos-Oliveira, and Derya Ilem-Özdemir. 2024. "Molecular Imaging for Lung Cancer: Exploring Small Molecules, Peptides, and Beyond in Radiolabeled Diagnostics" Pharmaceutics 16, no. 3: 404. https://doi.org/10.3390/pharmaceutics16030404
APA StyleEkinci, M., Magne, T. M., Alencar, L. M. R., Fechine, P. B. A., Santos-Oliveira, R., & Ilem-Özdemir, D. (2024). Molecular Imaging for Lung Cancer: Exploring Small Molecules, Peptides, and Beyond in Radiolabeled Diagnostics. Pharmaceutics, 16(3), 404. https://doi.org/10.3390/pharmaceutics16030404